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Abstract

iDIBS is a peer-to-peer backup system which optimizes
the Distributed Internet Backup System (DIBS). iDIBS of-
fers increased reliability by enhancing the robustness of ex-
isting packet transmission mechanism. Reed-Solomon era-
sure codes are replaced with Luby Transform codes to im-
prove computation speed and scalability of large files. Lists
of peers are automatically stored onto nodes to reduce re-
covery time. To realize these optimizations, an acceptable
amount of data overhead and an increase in network uti-
lization are imposed on the iDIBS system. Through a vari-
ety of experiments, we demonstrate that iDIBS significantly
outperforms DIBS in the areas of data computational com-
plexity, backup reliability, and overall performance.

1. Introduction

Backing up important data has long been a standard prac-
tice. Clients traditionally rely on local storage devices to
store data, but maintaining such a centralized, full backup
system is expensive, especially when a large amount of data
must be stored. In addition, the backup device (e.g., hard
disks, tapes) is both an efficiency bottleneck due to its slow
bandwidth and a single point of failure, unless some re-
dundancy (which requires additional expensive hardware)
is used.

Many computer systems have large amounts of unused
disk space and long periods of inactivity. In a peer-to-peer
arrangement, these systems can cooperatively store each
other’s data in their unused space. This largely eliminates
the cost of backup hardware, reduces the space limitations,
lessens the bandwidth bottleneck, and (depending on imple-
mentation) removes the single point of failure. At the same
time, however, this kind of system introduces new concerns

about reliability and recovery, security, performance, and
fairness.

In a peer-to-peer backup system, reliability and recov-
ery are major concerns due to the volatility of the networks.
Peer nodes are free to enter and leave the network at will. If
a client is storing some data on a peer that leaves the net-
work, the client must decide whether to backup the data
again or wait for the peer to reconnect. If a peer leaves after
a client’s disk has failed and before the client attempts to
retrieve its data, recovery may not be possible unless some
kind of redundancy (or error correction) is used. On the
other hand, if a peer is storing some data for a client that
leaves the network, the peer must decide whether to keep
or discard the data. Another challenge is identifying peers
with a client’s data after the client has crashed. The list of a
client’s peer nodes could be stored on a permanent backup
system, but this would sacrifice some of the benefits of a
peer-to-peer approach, especially if the peer list changes
frequently.

Another factor affecting performance is client data
volatility. In the simplest implementation, when a file is
modified, it is retransmitted to peers in its entirety, even if a
similar version is already stored on those peers. A file which
changes frequently can therefore generate a large amount of
network traffic and occupy a large amount of storage. If er-
ror correcting codes are used for redundancy, as in many
peer-to-peer backup systems, this can also involve a large
amount of processor time. Similarly, to protect sensitive
data from untrusted peers, data is typically encrypted, fur-
ther increasing the computational expense of data volatility.
Finally, to ensure fairness, some mechanism must be incor-
porated into the peer-to-peer backup system so that no peer
can store its data without reciprocating.

We designed several solutions to address some of the
previously mentioned challenges in a peer-to-peer backup
system. To improve reliability, we modified existing mech-
anism for packet transmission. To facilitate recovery after a



crash, we store information on each peer to help identify the
other peers. Also, we implement an efficient erasure code to
reduce computation time and thus enhance scalability of the
system. We call this system iDIBS, to the best of our knowl-
edge, it is the first to introduce the use of Luby Transform
erasure codes in a peer-to-peer distributed backup system.

This paper focuses on the reliability, recovery, and per-
formance factors of our solutions, since we identified these
as potential areas of improvement in DIBS [16] (a source-
forge project of a peer-to-peer backup system). In the next
section, DIBS and iDIBS are related to existing work in the
area. Section 3 discusses the existing DIBS system. Sec-
tion 4 describes the concepts underlying the changes imple-
mented in iDIBS. Section 5 gives the details of the actual
implementation of the changes and Section 6 describes re-
sults, as well as measurements of those changes. The paper
concludes with a discussion of potential areas of improve-
ment (Section 7) and a general assessment of iDIBS (Sec-
tion 8).

2. Related work

There has been a considerable research effort in the area
of peer-to-peer backup systems. Typically, the primary ob-
jective of these systems is to provide reliability and security
without sacrificing the autonomy of each node. Pastiche
[6] and Samsara [7] are two examples that share with DIBS
the goal of decentralized peer-to-peer backup systems. In
addition, [4] proposed a decentralized storage cluster archi-
tecture, CoStore, where nodes share equal responsibilities
in storing data using network attached storage devices.

Usually, peer-to-peer backup systems replicate data re-
dundantly onto multiple nodes. However, since nodes in a
peer-to-peer network constitute an untrusted environment,
the data is not simply copied; a significant body of research
advocates data encryption (e.g. [1] and [9]), as well as au-
thentication [8], in order to ensure privacy.

Another concern in an untrusted environment is
freeloaders–nodes that store their data on the network with-
out providing storage space in return. To address this prob-
lem, pStore [1], Pastiche [6], Samsara [7], and PeerStore
[12] use symmetric trading, in which each node must pro-
vide the same amount of storage as it uses for its own back-
ups. A more flexible variation of this idea is Storage Auc-
tions [5], a bidding mechanism in which peers advertise
their needed and available space, and pair up with com-
plimentary nodes. This mitigates the threat of freeloading
while allocating space where it is needed. Fairness can also
be enforced using a decentralized, zero-sum trading system
where each node is treated as an autonomous agent [10].
More recently, [11] proposed the use of game theory to
reward nodes with good reputation and, at the same time,
minimize freeloaders by giving nodes an incentive to share

resources.
Most peer-to-peer backup systems attempt to optimize

their storage methods for efficiency. Pastiche, for example,
identifies data shared in common by several peers in order to
minimize the quantity of data stored. The creators of pStore
demonstrated that only a small number of replications are
needed to ensure an acceptable level of redundancy, while
the authors in [2] emphasized the need for small circle trad-
ing to ensure best efficiency. Moreover, network locality
can be exploited for better performance [18].

3. Architecture of DIBS

The Distributed Internet Backup System (DIBS) was
chosen as the platform for our implementation. DIBS is
a readily available stand-alone software, which implements
all of the common features of peer-to-peer backup systems
that we wanted to improve, including the use of erasure
codes for redundancy and the maintenance of an explicit
peer list. DIBS also has other important features, such as
asymmetric key encryption using GPG, which do not di-
rectly pertain to our modifications but are nonetheless sig-
nificant characteristics of the system.

The basic idea of DIBS is to reach backup reliability
through replications. Replication is needed in a peer-to-
peer backup system, as the peer-to-peer network is usually
quite volatile. In other words, peers may frequently come
online/go offline. There are several methods to ensure ro-
bustness for the process of replication; one is through the
use of erasure codes [13]. In DIBS, Reed-Solomon (RS)
codes, explained below, are used to achieve this purpose.
Another important design of DIBS is to have transparency
under regular use. In other words, the user should not be
bothered by the program during the normal operation of the
system.

The RS codes are used to provide redundancy in DIBS
by encoding the data and then splitting it into a number of
blocks (or pieces). As long as a certain number of blocks are
still accessible, the original data can be recovered. When
DIBS backs up a file for a user, some number of blocks
k is specified as the minimum number of blocks required
for a successful recovery and is dependent on the file size.
The ability to reconstruct a file with some minimum amount
of data, irrespective of which pieces of data are missing,
makes erasure codes suitable for use in a volatile, peer-to-
peer network. In order to provide data redundancy, DIBS
generates additional blocks. Altogether, the total number
of blocks generated, transmitted, and stored among peers is
n = k+p, where p is a user selected parameter that defaults
to 2. Note that if the client is part of a small peer-to-peer
network, it may be the case that some peers receive more
than one block of the same encoded file. It is not difficult to
see that such situation may lead to decrease in reliability, as



more than one block of the file will be missing if one such
peer goes offline.

An example of the DIBS backup process is presented in
Figure 1, with k = p = 3 and n = k+p = 6. In this figure,
a file is encoded and then split into different blocks, which
are denoted by lettered squares. The blocks are then trans-
mitted to peers for storage. The rightmost part of Figure 1
shows a possible scenario after the blocks have been stored
onto Peer1, Peer2, and Peer3.

The redundancy level determines the maximum number
of blocks that can be missing while still allowing the file
to be recovered. For example, for the redundancy level of
n
k = 2k

k = 2, a file can be recovered if at least half of
the peers, which store that file, are still online. Figure 2
illustrates this scenario with n = 6 and k = 3, showing that
recovery is possible even when Peer2, which stores 1

3 of
the total number of blocks, is offline.

In order to provide security for the files, DIBS protects
the data and file names using asymmetric key encryption.
On the other hand, integrity is provided by hashing the files
and calculating a MD5 value, which is a message digest,
per file. The nodes keep a list of these MD5 values and use
them whenever stored files are recovered.

The main operation of DIBS is as follows. The nodes
found in a DIBS network may work as servers (S) or clients
(C) or both. It is the responsibility of client C1 to find k+p
servers when it wants to backup its data. Once k+p servers
(S1 . . . Sk+p) have been found, the data is stored and a list
of these servers and the files are kept for future recovery.
In the same way, Si will keep a list of the blocks that it is
storing, as well as the client to whom these blocks belong.

As nodes may come and go, there is a synchronization
procedure to ensure that k+p replicas of each file are stored
over the network. In order to accomplish this, DIBS uses
timeouts to determine whether a peer is still alive. A peer
which has been unresponsive for more than d days (d is a
user selected parameter that defaults to 10) is assumed to
be permanently offline. During this time, data of the unre-
sponsive peer that is stored on other peers remains intact.
However, after the timeout period, a client will consider the
peer to no longer be alive, remove that peer’s data from its
storage, and copy the data it had stored on that peer to a dif-
ferent peer. In this way, DIBS maintains a redundancy of p
extra blocks in addition to the k pieces required for a suc-
cessful recovery. Note that if more than p blocks become
unavailable at the same time for a d-day period and if the
owner of the file crashes, the file cannot be recovered since
there is not enough encoded data to reconstruct the file. In
the case where a peer that is believed to be permanently of-
fline returns, its stored data is treated as invalid and should
be deleted.

For a node to recover all backups (such as after a com-
plete disk failure), it must be able to locate a sufficient num-
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Figure 2. Decoding process in DIBS

ber of peers that stored its data, as well as decrypt the data.
This means that the peer list and GPG key for a client must
be stored on some other types of backup system (such as
removable media or dedicated backup hardware). If the lat-
est backup of the peer list does not include at least k as
many peers as originally stored a file, that file will be un-
recoverable. The necessary frequency of peer list backups
thus depends on the frequency with which nodes go offline.
For a highly volatile network, this could require an unrea-
sonable amount of user activity. The other way to recover
all backups without a peer list is to exhaustively search for
all servers that have the desired data. Clearly, this process
could take a significant amount of time, and will substan-
tially increase network traffic.

4. iDIBS

Based on our analysis of DIBS, we identified three op-
timizations or improvements of this system, which we re-
fer to collectively as iDIBS (improved DIBS). The three
optimizations are: (i) implementing Luby Transform (LT)
codes, described later, in place of the RS codes, (ii) im-
proving reliability via modifications to packet transmission
mechanism, and (iii) providing automatic peer list backups.

4.1. Erasure codes in distributed backup
systems

Unlike uncoded data, encoded files provide improved re-
liability at the expense of data redundancy and encoding
complexity [14]. The idea of using redundancy in backup
systems is not new; the original design of RAID [17] uses
a parity check to prevent failure in the case where a disk in
the array fails. In 1960, the widely known Reed-Solomon



[19] (RS) codes were developed. These are non-binary
block-codes that can be used as erasure codes and also as
error-correcting codes. A block code produces n encoded
symbols of length T bits from k source symbols, whereby
R = k

n is defined as the code-rate. RS codes have been
widely used in many applications due to their remarkable
characteristics, namely the fact that they are maximum dis-
tance separable (MDS) codes. This means that, if the code
is used as an erasure code, whenever the decoder has avail-
able at least the number of source symbols k, then decoding
will be successful. Such a property is highly desired in era-
sure codes. However, the penalty is that the encoding and
decoding operations are very complex, i.e. O(k2). In prac-
tice only small source symbol sizes are used, e.g. 8 bits.
Also, the number of encoded symbols in a RS code is deter-
mined by T .

The need for a code that has a performance comparable
to MDS, is easily scalable and at the same time has small
encoding and decoding complexities became more urgent
as the data sizes to be transmitted became larger, especially
in the Internet scenario. Although DIBS uses incremental
backup to reduce the amount of data to be transmitted and
stored, a general trend is that the size of new files increases
as years pass by, thus emphasizing the need for more effi-
cient encoding/decoding methods.

To improve broadcasting scenarios, Luby et al. intro-
duced the concept of a rateless code [3] . These codes are
also referred to as digital fountain (DF) codes. We decided
to optimize DIBS by introducing the LT codes [15] into the
system. LT codes are the first practical realization of a dig-
ital fountain and are based on a simple, scalable and irreg-
ular graph structure. In this code, the source symbols are
encoded into a potentially endless number of randomly gen-
erated encoded symbols, i.e. n→∞, and therefore R→ 0.
The code can easily manage large data lengths and file stor-
age over multiple servers. Encoding and decoding com-
plexity grows with the logarithm of the number of source
symbols O(log(k)), which means that these codes are less
complex than RS codes. However, due to their random na-
ture, these codes have a small reception overhead of about
k + O(

√
kln2(k/δ)) with a probability of recovering a file

being 1− δ, where δ is a configurable parameter of the code
[15]. In practical terms this represents an ε = 10%− 15%,
which means that at least (1+ε)×k = 1.1×k encoded sym-
bols need to be available to the decoder (in average), for the
decoding operation to succeed with high probability. Due to
the random nature of the code, a so-called encoded symbol
identifier (ESI) is required to identify each encoded sym-
bol to the decoder so that it can setup the decoding graph
properly. Decoding is usually done using message passing.

Other applications of LT codes include satellite commu-
nications file and video distribution over the Internet, and
delivery of content to mobile clients in wireless networks

[15]. We will demonstrate the advantage of using LT codes
in lieu of RS codes in Section 6.

4.2. Packet transmission mechanism

We can improve the reliability of DIBS by modifying
its packet transmission mechanism (when packets are being
sent out to peers for backups). Consider a situation where
a client wants to back up a file. DIBS responds to such a
request by splitting the file into many different pieces and
then storing the pieces remotely. The minimum number of
pieces, k, needed for a full recovery is determined by the RS
codes and is dependent on the size of the file under consid-
eration. To cope with the situation where some peers may
go offline, DIBS actually stores n = k + p pieces. In other
words, the client is provided with k+p

k redundancy level.
When a peer that stores the client’s file is considered

to be permanently offline, DIBS will find different peer(s)
to store additional pieces of that file in order to provide
the promised redundancy level. Since DIBS stores p extra
pieces of the file, one may assume that recovery is possible
as long as up to p peers are offline. However, this is not
always the case. Consider an example presented in Figure
3. The file to be stored is determined to have k = 5 and
n = k + 2 = 7 (note that we are using the default value
of p, which is 2). Furthermore, assume there are 5 peers
in the network. In this example, the number of available
peers needed for a successful recovery is not a constant; if
any combination of two peers among Peer3, Peer4, and
Peer5 goes offline, the file is still recoverable and hence
only three peers are needed. However, if either Peer1 or
Peer2 goes offline, the total number of available pieces on
the network reduces to 5 and thus, no more peers can go
offline or the file is no longer recoverable.

f
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Figure 3. Packet transmission mech. (DIBS)
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Figure 4. Packet transmission mech. (iDIBS)

As can be seen from the above example, DIBS can-
not readily provide a recoverability guarantee based on the
number of peers that can become offline. To remedy this
problem, we modified the packet transmission mechanism



as follows. We left the value of required pieces, k, un-
changed. However, we developed a new formula to deter-
mine the number of pieces to be sent. Instead of storing
k + p pieces (as is the case in DIBS), we store only the re-
quired number of pieces plus some additional ones in such a
way that if one peer is offline, the file can still be recovered
(Figure 4). It is worth noting that if the network is large,
our mechanism reduces to storing k + 1 pieces. The reason
why we reduced the default data redundancy level of k+2

k to
k+1

k is because the LT codes, discussed in the last subsec-
tion, introduce an additional overhead of about 15% of the
original file size. In this way, we were able to address the
weakness of DIBS, as discussed above, while keeping the
amount of redundancy at a reasonable level. To increase the
level of redundancy, the user may vary the value of p, which
is defaulted to a small value of 2. However, it is in general
unreasonable to expect the user to set the right value of p
based on the characteristics of the network such as volatil-
ity, which change in time. For example, an optimal value of
p given a file to backup depends on the number of required
pieces as well as the number of available peers in the net-
work at that instance. Requiring users to manually select p
limits both the automation and adaptability of the system.
To address this issue, iDIBS automatically selects the opti-
mal value of p based on the actual network properties.

4.3. Peer list backups

Rather than requiring the user to manually backup the
peer list every time it changes, we incorporate this backup
process into the functionality of iDIBS. This reduces the
frequency with which the user is required to perform some
manual operation to keep the backups viable. It also brings
the system closer to pure peer-to-peer backup, since less
data must be stored offline. Perhaps most importantly, peer
list backup increases the reliability of the entire system,
since rather than relying on a (potentially outdated) backup
of the peer list, every peer holds the most recent copy and
only one is needed to recover the entire peer list.

Every time a peer is added or removed from the list, and
every time the data stored on a peer changes, the modi-
fied peer list is backed up. Recording the addition and re-
moval of peers is important for maintaining access to at least
the minimum number of data blocks required for recovery.
Recording which data is stored on each peer is also impor-
tant for recoverability, since the system depends on that in-
formation to determine what files to recover (i.e., when a
total recovery is being performed after a crash) and which
peers store blocks for which files. It is important that this
peer list backup occurs as soon as possible after a change,
especially in more volatile networks.

Rather than distributing encoded blocks of the file as
usual, an entire copy of the peer list is stored on each peer.

Without this property, only a marginal reliability benefit
would be gained by storing peer lists on peers. (In partic-
ular, the remaining benefits are that there is no single point
of failure and that the peer list backups are kept current au-
tomatically.)

After a complete disk failure or crash, a user needs only
rediscover a single peer in order to recover its peer list, and
from there recover all stored data. Once this initial peer has
been identified, no further searching is required and the sys-
tem may proceed to the backup process. This is not a per-
fect solution, since the initial peer must still be identified,
and (in order to decode data) the GPG key must be backed
up as before. The former problem is simplified by the fact
that the iDIBS approach guarantees that the stored version
of the peer list is entirely current as of the time of the crash.
The latter problem is likely unavoidable, but since the GPG
key is a static block of information (unlike the peer list), it
may be easily stored offline in any number of ways.

4.4 Design tradeoffs

Table 1 summarizes the expected advantages and disad-
vantages of iDIBS, all of which will be verified and further
explained in Section 6. In general, iDIBS improves on reli-
ability and scalability, while imposing data overhead.

Table 1. Tradeoffs of the iDIBS system

iDIBS
Advantages Disadvantages

LT codes are: - LT codes are probabilistic:
- Faster than RS they depend on δ to define a
- More scalable than RS probability of decoding
- Flexible transmit symbol (nonetheless, for a properly
size T, let us decide the designed system the probability
performance of the of failure is negligible)
encoder/decoder. - As T exceeds 256,
(larger T, better performance) decoding overhead becomes

larger.

Increased reliability - LT codes need a minimum
by improving packet of 15% of extra overhead
transmission mechanism plus ESIs to decode a file.

Peer Lists: - Peer Lists induce a small
- Allow for faster recovery amount of overhead.
- Increase reliability



5. Implementation

In this section, we give the implementation details of our
optimizations. The modifications regarding packet trans-
mission mechanism, as well as those involving peer list
backups, were implemented directly on top of the original
DIBS in Python from the Sourceforge project. To incor-
porate the LT codes in lieu of the RS codes, we encapsulated
a C implementation of the LT codes encoder/decoder mod-
ules, with the purpose of having an additional improvement
in performance, via Swig (a C/C++wrapper), for use in
iDIBS.

5.1. Luby transform codes

As part of our implementation, we developed encoder
and decoder modules, which are designed to use the Digital
Fountain concept of the LT codes. These modules are writ-
ten in C but are later ported into Python for use in iDIBS.

The LT encoder reads a file of arbitrary size and calcu-
lates the redundancy needed for the encoded file. It then
splits the file into pieces that are ready to be sent to peers in
the network. An important parameter of the encoder is the
symbol size T , which determines the number of encoded
symbols given a file. Moreover, to construct the encoded
pieces, the LT codes need a label called ESI (Encoded Sym-
bol Id) to identify each symbol. Since ESI must be transmit-
ted along with the encoded pieces, it will induce overhead
to the backup process. Although not implemented in iDIBS,
this extra overhead can be reduced by source coding (com-
pressing) the list of ESI to be transmitted to each peer.

The LT decoder receives as parameters the encoded sym-
bols, or a fraction of it if not all peers are alive, in addition
to the ESI’s. Other parameters for the decoder such as the
degree of the distribution and the value of δ are predefined
in the system. The only prerequisite for a successful de-
coding is to have over 115% of the original data with its
corresponding ESI’s. If a higher probability for successful
recoveries is desired, the redundancy level can be increased
to achieve this effect.

5.2. Packet transmission mechanism

This optimization was implemented by modifying parts
of the DIBS source code that determine the total number
of pieces to be transmitted over the network. Let us assume
that the number of required pieces to recover, which is based
on the file size, has been previously determined. In the orig-
inal DIBS, the total number of pieces to be transmitted, n,
is calculated as n = k + p. In iDIBS, recall that we want to
determine the total number of pieces in such as way that if a
peer becomes offline, the file can still be recovered. To ac-

complish this, we replaced the above calculation of n with a
new code segment presented below in forms of pseudocode:

if: num > k then
n← k + 1

else:
n← n ∗ � k

num−1�
end if

Here, num represents the number of live peers and k is
the number of required pieces to recover. As can be seen
from the above pseudocode, determining n is straightfor-
ward when the number of live peers num is greater than
the number of required pieces k. In such situations, n can
be set to k + 1. The more challenging situations happen
when num is less than k. For example, assume client A has
three live peers in its peer list and wants to store a file that
requires at least four pieces to recover. If A only sends out
4 + 1 = 5 pieces over the network, two peers P1 and P2
will receive two pieces and the third peer P3 will receive
only one. In the case where P3 goes offline, the file can
still be recovered since P1 and P2 collectively have four
pieces. However, if either P1 or P2 goes offline, only three
pieces can be obtained and thus the file cannot be recovered.
To prevent this situation from happening, the above else
statement ensures that recovery is possible as long as up to
one peer is offline.

5.3. Peer list backups

To automate the backup of peer lists, the source for DIBS
was modified at every point where a relevant change to the
peers and backup data could occur. These include the places
where a peer is added, where a peer is removed, where a
peer discards the client’s data, and where data is transferred
to a peer. In each of these places, the internal representation
of the peer list in DIBS changes. In iDIBS, this is immedi-
ately followed by writing out the internal peer list as a peer
list file, and designating the file for automatic backup.

In order to ensure that an entire copy of the peer list is
stored on each peer, the DIBS backup mechanism was aug-
mented to check whether a file is the peer list, and to treat it
as a special case. When the peer list is the file being stored,
the erasure code parameters are set to treat the file as one
data block, and to store it redundantly on every peer.

6. Results

The claims made in the previous sections are verified
based on some experimental results presented below. All
experiments were performed on 15 HP Workstations with
3.2 GHz Intel Pentium IV processor, 1 GB of RAM, 1 MB
cache size, and Linux 2.4 kernel. Each workstation was
connected to each other via LAN. The results shown in



this section were obtained by testing the running version
of iDIBS. For the case of erasure code comparison, the en-
coder/decoder modules were tested independently and of-
fline in order to subject both the encoder and decoder to
the same conditions and parameters. To assess the relative
performance of iDIBS with respect to DIBS, representa-
tive file sizes (1KB-1MB) were used instead of complete
backup system benchmarks. As the performance of the en-
coding/decoding mechanisms depends on the file sizes, and
not the number of files being transmitted, experiments that
are based on different file sizes are more appropriate for
comparative purposes.

6.1. LT codes vs. RS codes

In order to assess our implementation of the LT en-
coder/decoder, we compare the performance of the RS im-
plementation in DIBS against that of our LT implementa-
tion. Our objective is to prove that in practice LT codes are
more scalable than RS codes and, as a consequence, more
suitable for distributed backup systems. The performance
benchmark is designed to test the encoders and decoders in
terms of processing time, given several file sizes. We calcu-
lated the mean time of three encoding and decoding runs for
files of the following sizes: 20KB, 40KB, 100KB, 250KB,
500KB, 750KB, and 1MB. In the case of our LT modules
we performed two experiments with two different values of
symbol size T ∈ {32, 256}. These values are used to illus-
trate the behavior of the encoder/decoder with medium size
symbols 32 and large size symbols 256, although the sym-
bol size may take any positive, non-zero value. The out-
come of these experiments can be seen in Figure 5 through
Figure 8.

We first tested the encoding time for both the RS and LT
codes. As Figure 5 shows, the LT encoder outperforms the
RS encoder with T of 32 for any size of the testfile. We
can also see in Figure 6 that increasing T to 256 drastically
improves the performance of the LT encoder. These two
graphs clearly show the benefits and scalability of the LT
codes. As for the decoding time, when T = 32, the RS
codes outperform the LT codes for files larger than 200KB
(Figure 7). However, when we increase T to 256, as shown
in Figure 8, we observe a clear improvement in the decoding
speed of the LT codes, which significantly outperform the
RS codes.

Based on these results, it seems that as files to be stored
get larger, the value of T should also increase for the use
of the LT codes to be advantageous. Increasing the value of
T comes at the price of increased redundancy; the network
utilization naturally increases as the amount of redundant
data grows.
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Figure 6. Encoder: processing time compari-
son for RS and LT, T=256

6.2. Packet transmission mechanism

To determine the difference in network usage between
DIBS and iDIBS, we monitored the amount of data that was
transmitted over the network for files of various sizes by
first checking, for each file, the size of pieces that are ready
to be sent out and then taking their sum. The test run was
performed only once per file since the total packet size is
constant given the parameters such as the file size and the
total number of pieces to be sent.

Figure 9 illustrates the outcome of our experiments. The
plot shows the network utilization per file, given its redun-



dancy, in contrast to the original file size. In this scenario,
k = 5 and the number of peers in the network is assumed
to be greater than k + 2. The plot shows the performance
of several systems; we have included a DIBS system with
redundancy of 100%, i.e. 2k, as a marker to compare with
the original system using k + 2 and our implementation us-
ing k + 1 of redundancy. It can be seen that iDIBS with
k + 1 and using RS codes has an expected reduction in net-
work utilization. However, the final version of iDIBS using
LT codes and the same redundancy philosophy of k + 1 has
a slight overhead in network utilization per file due to im-
provement in scalability, performance and reliability.
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Figure 7. Decoder: processing time compari-
son for RS and LT, T=32
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Figure 9. Difference in network utilization be-
tween DIBS and iDIBS

6.3. Peer list backups

The advantages of automated peer list backups can be
evaluated in terms of correctness and efficiency. Correct-
ness was verified by modifying the peer list in various ways,
taking all but one peer offline, attempting a recovery, and
checking that the returned file decoded to an accurate peer
list. This demonstrated that the peer list is automatically
and correctly stored for retrieval from any individual peer.
We performed this experiment in various scenarios involv-
ing three or more network nodes.

To experimentally determine the amount of increased
network traffic induced by the peer-list storage feature re-
quires some assumptions about DIBS networks. The fre-
quency of peer list modifications (and thus transmission)
depends on network characteristics such as volatility. The
efficiency of this feature can be analyzed numerically: A
record for a single peer typically occupies less than 250
bytes in the peer list. A peer list with n peers, then, would
occupy under 0.25n KB. Since this is distributed to every
peer, the total transmission is n2 ∗ 0.25 KB. Defining net-
work volatility as the probability p that a specific node will
go offline (permanently) in a given period of time, the prob-
ability that at least one node goes offline (and thus the peer
list changes) in that time period is q = 1 − (1 − p)n. On
the other hand, the average amount of data transmitted is
q ∗ n2 ∗ 0.25 KB. Considering that the average amount of
data transmitted to maintain normal backup data is given
by p ∗ d (where d is the amount of data backed up; the
expected value of peers that go offline is n ∗ p and each
peer holds d/n data), the cost of maintaining the peer list
only exceeds the cost of maintaining the backup data when
n >

√
4 ∗ p ∗ d/q (where d is in kilobytes). For a client

with only 50MB in backups on a network with p = 0.5
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as a function of the number of users

(being conservative), the value of n is 315 peers. The aver-
age list size could vary greatly with different sizes of DIBS
networks; however, since most of the features of DIBS and
iDIBS are designed for trusted networks with less than 50
nodes, it is safe to assume that in general usage, the cost of
maintaining the peer list will be small relative to the cost of
maintaining backups.

6.4. iDIBS tradeoff

Although we have demonstrated how we can improve
DIBS through modification of several key architectural
designs, whenever a system is exposed to fundamental
changes, there exists a tradeoff in performance, reliability
or complexity. This section is dedicated to quantifying the
costs and drawbacks of iDIBS. We designed an experiment
to illustrate the consequences of our modifications. This ex-
periment involves the transmission of a file of fixed size, in
this case 500KB, that is sent the first time a user performs a
file backup. The idea is to quantify the network utilization
of both iDIBS and DIBS as the number of users increases.

Figure 10 presents a series of curves showing the net-
work utilization as the number of users increases. The solid
lines represent the network utilization needed when back-
ing up for the first time, while the dashed lines represent the
minimum amount of transmitted data required to recover
the files without any errors.

Again, a reference system with redundancy of 100% (2k)
is shown to reflect the tradeoff of network utilization present
in the system when we aim to increase reliability. In addi-
tion, the plot shows the behavior of iDIBS, which certainly
reduces the overhead of the backup system when compared

with a system using 2k redundancy. On the other hand we
can also see that iDIBS induces some overhead both in the
initial data to be sent as backup and in the minimum amount
of data required to correctly recover the backed up file when
compared to DIBS using k + 2 redundancy. After looking
at these results, a likely question would be regarding the
tradeoff between DIBS and iDIBS. The overhead of iDIBS
is mainly dependent on the inherent characteristics of the LT
codes that need approximately a level of redundancy of the
15% of the file size plus the necessity to transmit encoded
symbol identifiers (ESI), whose number is dependent on the
transmit symbol size T. We can see how the dashed line of
iDIBS has a flat behavior that represents the size of the file
having the minimum needed for LT codes to decode, that
is an extra 15% overhead, plus the size of transmitting the
ESIs. This minimum is reached when we lose one peer. On
the other hand, DIBS presents a curve allowing one extra
piece to be lost, when the network size increases, and still
can recover the backup file. This is a characteristic of the RS
codes that allow to decode a file just by using an amount of
data equivalent to the size of the file. The tradeoff is appar-
ent: DIBS transmits less data (sacrificing performance and
scalability) and theoretically allows the system to lose one
extra user. Our design assumption implies that scalability,
reduced computational complexity, and increased reliability
are more important than the increase in network utilization
introduced by LT codes and the reduction in redundancy
level to k + 1. As stated earlier, we are convinced that the
advantages of iDIBS offset its drawbacks and that, in over-
all, iDIBS outperforms DIBS.

7. Future work

One way this work could be continued is by integrating
the components of iDIBS more tightly. Some components,
though completed and tested individually, are not entirely
integrated with the system as a whole. Complete integration
would simplify use and allow large-scale and expected-use
tests. This would also permit improvements to the exist-
ing Graphical User Interface (GUI), which has not yet been
officially released at the time of this writing.

Testing is another area where more work is needed. It is
difficult to know how suitable iDIBS is for different scenar-
ios until it has been tested in them. Network volatility statis-
tics would be particularly useful, along with information on
the bandwidth, existing network load, and data volatility for
common or expected uses.

Other useful extensions of this work would be the im-
plementations of inter-peer communication when a node is
going offline intentionally. Finally, to further improve com-
putation speed and the decoding overhead inefficiency, the
Raptor codes [20] can be implemented in place of the LT
codes. The main advantages are that the encoding and de-



coding complexities grow linearly per source symbol and
the decoding overhead is much smaller (ε ≈ 0.1%).

8. Conclusion

By implementing an improved version of DIBS, we
showed that our proposed optimizations are feasible and po-
tentially beneficial to peer-to-peer backup systems in gen-
eral. Our system maintained reliability by monitoring the
network more intelligently. By also backing up peer lists,
iDIBS not only improved recoverability but also stayed
closer to the principle of peer-to-peer backup (though not
quite achieving that ideal, since a user’s GPG key must still
be stored offline). The use of LT codes improved scalability
in terms of the data encoding/decoding speed, making the
system much more feasible for large backups, though at a
cost in data transfer overhead. To the best of our knowl-
edge, this is the first distributed backup system that uses
Luby Transform codes, hence introducing a novel applica-
tion to this revolutionary type of erasure codes.

In order to more rigorously verify the benefits of iDIBS,
however, the system should be tested in a real user environ-
ment. for a longer period of time. While we have shown
that iDIBS improves on DIBS in certain areas, it is not un-
til these steps are taken that we can confirm iDIBS out-
performs its predecessor. In the general case, this paper,
nonetheless, provides evidence that it can happen in real
user environments.
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