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Abstract. Differential privacy is a recent notion, and while it is nice
conceptually it has been difficult to apply in practice. The parameters of
differential privacy have an intuitive theoretical interpretation, but the
implications and impacts on the risk of disclosure in practice have not yet
been studied, and choosing appropriate values for them is non-trivial. Al-
though the privacy parameter € in differential privacy is used to quantify
the privacy risk posed by releasing statistics computed on sensitive data,
€ is not an absolute measure of privacy but rather a relative measure. In
effect, even for the same value of €, the privacy guarantees enforced by
differential privacy are different based on the domain of attribute in ques-
tion and the query supported. We consider the probability of identifying
any particular individual as being in the database, and demonstrate the
challenge of setting the proper value of e given the goal of protecting
individuals in the database with some fixed probability.
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1 Introduction

As volumes of personal data collected by many organizations increase, the prob-
lem of preserving privacy is increasingly important. The potential social benefits
of analyzing such datasets drive many organizations to be interested in releas-
ing statistical information about the data. In the field of privacy preserving
data analysis, the main goal is to release statistical information about sample
databases safely without compromising the privacy of any individuals who’s
records contribute to the database. These two conflicting objectives pose chal-
lenging trade-off between providing useful information about the population and
protecting the privacy of any individuals.

Privacy laws typically protect individually identifiable data; data that cannot
be linked to an individual is not considered a privacy risk. Unfortunately, what
it means for data to be individually identifiable is not simple to define. Statis-
tical summaries can reveal information about a single individual, particularly if
an adversary knows information about other individuals. Differential Privacy [6]
provides a strong guarantee of privacy even when the adversary has arbitrary
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external knowledge. Basically, differential privacy hides the presence of an indi-
vidual in the database from data users by making two output distributions, one
with and the other without an individual, be computationally indistinguishable
(for all individuals). To achieve this, differential privacy uses an output pertur-
bation technique which adds random noise to the outputs. The magnitude of
noise to add, which determines the degree of privacy, depends on the type of
computation and it must be large enough to conceal the largest contribution
that can be made to the output by one single individual. To be specific, let X be
a database to release statistics about and f be a query function. e-differentially
private mechanism gives perturbed response f(X)+Y instead of the true answer
f(X), where Y is the random noise.

While this seems a perfect solution, the amount of noise needed to achieve
indistinguishability between two datasets generally eliminates any useful infor-
mation. The actual definition is for e-differential privacy (see Definition[I]), where
the € factor is a difference between the probabilities of receiving the same out-
come on two different databases. € becomes a parameter on the degree of privacy
provided. € is a relative measure since it bounds the data user’s information gain,
instead of the absolute amount. Even for the same value of €, the probability of
identifying an individual enforced by differential privacy is different depending
on the universe.

Unfortunately, ¢ does not easily relate to practically relevant measures of
privacy. For example, assume a very simple problem where an adversary wants
to determine the value of a binary attribute about an individual - simply “is the
individual in the dataset” (such as a research dataset for diabetes, where simply
revealing presence in the dataset places an individual at risk of discrimination.)
What we would really like is a measure of the risk to an individual — what is
the probability that an individual is in the dataset given release of statistical
information about the data? If disclosure allows an adversary to calculate too
high a probability that the individual is in the dataset, then that individual’s
privacy (in legal terms, which typically protect “individually identifiable data”)
is at risk. This is addressed for anonymization in [I4], and the problem would
seem a perfect match for differentially privacy. The challenge is that choosing
an appropriate value of € turns out to be quite challenging.

The problem is that protecting privacy requires knowing not only the data to
be protected, but also the entire universe of individuals from which that data
might be drawn. This is a known challenge with differential privacy, as calculat-
ing the sensitivity of a query is based on all possible databases differing by a single
value. This may be an inherent problem with protecting privacy; d-presence [14]
faces the same issue (although an approximation based on univariate statistics
is given in [I3].) What makes this a particular problem for differential privacy
is that not only do we need to know the entire universe to use a differentially
private mechanism, it is also needed to determine an appropriate value of €. In
this paper, we will show that given a goal of controlling probabilistic disclosure
of the presence of an individual, the proper of € varies depending on individual
values, even for individuals not in the dataset.
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To see this, imagine the following (hypothetical) scenario. Purdue University
has put together a “short list” of alumni as possible commencement speakers.
A local newspaper is writing a story on the value Indiana taxpayers get from
Purdue, and would like to know if these distinguished alumni are locals or world
travelers. Purdue does not want to reveal the list (to avoid embarrassing those
that are not selected, for example), but is willing to reveal the average distance
people on the list have traveled from Purdue in their lifetimes. Using a differ-
entially private mechanism to add noise to the resulting average will protect
individuals - but how much noise is needed? Outliers in the data, such as Pur-
due’s Apollo astronaut alumni (who have been nearly 400,000km from campus),
result in a requirement for a significant amount of noise. More critically, we show
that such outliers also change the appropriate value for €. As a result, simply
setting parameters to be used for differential privacy is an unsolved problem.

Although differential privacy has been extensively studied in many papers,
to our best knowledge, no studies have been conducted toward the issues on
the application of differential privacy in practice. In many papers, the value of
privacy parameter € is chosen arbitrarily or assumed to be given. This leaves
an impression that € can be freely chosen as needed but, in reality, decision on
the value of € should be made carefully with considerations of the domain and
the acceptable ranges of risk of disclosure. In this paper, we illustrate why the
choice of € is important using the perspective of the risk of revealing presence
and how an inappropriate value of ¢ can cause a privacy breach. We also show
that a value of € that is appropriate for a particular universe of values may lead
to a breach with a different set of values.

2 Related Work

The concept of differential privacy was motivated by the impossibility of abso-
lute protection [4] against adversaries with arbitrary external information [5]. In
a differentially private mechanism, what a potential adversary can learn from
interactions with the mechanism is limited (within a multiplicative factor) no
matter what external information the adversary has. Essentially, what can be
learned from a dataset with a particular individual also can be learned from a
dataset without that individual [9L[T1]. This definition enables a privacy model
that does not need to make assumptions on an adversary’s external informa-
tion, a key limitation of prior work on protecting privacy. A line of research on
indistinguishability between two neighboring databases leads to emergence of
differential privacy. [2L[9}10]

The notion of differential privacy has received much theoretical attention in
the privacy community and has been extensively studied in the literature [2,[3]
TOLBLI]; a recent survey on differential privacy is provided in [7]. However, most
research on differential privacy has focused on exploring theoretical properties
of the model. The main focus of study has been how to safely release database
while preserving privacy for a particular function f. For example, [5] studies how
to release count queries and [9] touches on more general query functions such



328 J. Lee and C. Clifton

as histograms and linear algebraic functions. The concept of global sensitivity
was introduced in [6] and it has been shown that releasing a database with noise
proportional to the global sensitivity of the query functions achieves differential
privacy. Nissim et al. [I5] expanded the framework of differential privacy by
introducing smooth sensitivity, which reduces the amount of noise added. It is
motivated from the observation that, for many types of query functions, the
local sensitivity is small while global (worst-case) sensitivity is extremely large.
To decide the magnitude of noise, they use a smooth upper bound function .S,
which is an upper bound on local sensitivity.

There are a few implementations supporting differential privacy. PINQ [12] is
an implementation of differential privacy that provides answers to SQL queries
in a differentially private way. AIRAVAT [I6] is another system that applies
differential privacy mechanism for MapReduce computation in a cloud comput-
ing environment. Although their system has been built upon differential privacy
framework, this doesn’t mean that privacy is actually enforced by the system.
It is still the responsibility of users who use the system to select the value of ¢
that prohibits any inferences on the dataset beyond what is allowed.

3 Differential Privacy

A database D is a collection of data elements drawn from the universe U. A row
in a database corresponds to an individual whose privacy needs to be protected.
Each data row consists of a set of attributes A = Ay, Ao, ..., A,. The set of
values each attribute can take, attribute domain, is denoted by dom(A4;) where
1 < i < m. A mechanism M : D — R¢ is a randomized function that maps
database D to a probability distribution over some range and returns a vector
of randomly chosen real numbers within the range. A mechanism M is said to
be e-differentially private if adding or removing a single data item in a database
only affects the probability of any outcome within a small multiplicative factor.
The formal definition of an e-differentially private mechanism is:

Definition 1 (e-differentially private mechanism). A randomized mecha-
nism M is e-differentially private if for all data sets D1 and Do differing on at
most one element, and all S C Range(M)

Pr[M(D,) € S] < exp(e) x Pr[M(D3s) € S|

This paper considers an interactive privacy mechanism and the same assump-
tions as in [0]. In an interactive model, users issue queries to the database and
receive a noisy response where the magnitude of noise added to the response
is determined based on the query function f. Sensitivity of a query function f
represents the largest change in the output to the query function which can be
made by a single data item.
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Table 1. Example database X

Name School year Absence days

Chris 1 1
Kelly 2 2

Pat 3 3
Terry 4 10

Definition 2 (Global Sensitivity). For the given query function f : D — R%,
the global sensitivity of f is

Af = max|f(z) — f(y)|
for Yz, y differing in at most one element.

Let Lap(\) be the Laplace distribution whose density function is h(z) =
o €xp(— ‘X;“‘) where p is a mean and A(> 0) is a scale factor. Dwork et al.
proved that, for the given query function f and a database X, a randomized
mechanism M s that returns f(X)+Y as an answer where Y is drawn i.i.d from
Lap(Aef ), gives e-differential privacy [9].

4 Example: Mean

In this section, we illustrate how the value of € should be adjusted according to
the change of domain (or universe) of the attribute in question to enforce the
same level of protection. While essentially the same as the problem described in
Section [I we switch to a different motivation both to show the generality of this
problem and to give realistic numbers that are easy to demonstrate.

Consider a database consisting of 4 students registered for a course, which
includes each student’s name, school year, and number of absence days in the
previous semester. Let X denotes the database. In X, there is one student, Terry,
who was placed on academic probation in the previous semester. Table [Il shows
the example database. Note that Terry’s number of absence days is relatively
large compared to those of other students. Assume that the school wants to
release data on students who have not been on academic probation to support
academic success research. Let X’ denote the database to be published, i.e.,
X' =X —{Terry}. Since knowing if a student has been on academic probation
is clearly a privacy breach, the school allows faculty and staff (who may know
the year in school and absence days of individual students, but not who has been
placed on probation) to query X’ only via an e-differentially private mechanism.
For the purpose of illustration, let us assume that the goal of the data provider is
to hide the presence of data contributors (or, in this case, non-contributors) by
keeping the adversary’s probability of identifying their presence in the database
less than 1/3. Throughout the example, we show that what values of € needed
to achieve that goal for queries on mean year and mean absence days, and
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demonstrate that in spite of the similarity between the data columns (in fact
identical for the data in X’), a different value of ¢ is needed depending on which
column is queried.

4.1 Achieving Differential Privacy

We now describe an e-differentially private mechanism & for releasing the mean
school year and absence days of students in X’. Informally, the goal of & is to
make the query responses from any databases that differ in only one element
be indistinguishable within a factor of e, so that the absence of Terry in X’
(and thus probation status) isn’t revealed. At the same time, the privacy of
individuals who participated in the database X’ needs to be protected as well.
The sensitivity of the mean query function Af is computed by measuring the
maximum change in the query output caused by a single individual. Notice that
calculating the sensitivity requires global knowledge on that domain since every
possible attribute value that not only presently exists in X’ but also could exist
needs to be considered. For any possible data instance Y of size 3 and a tuple ¢
of Y, Af is determined as the maximum value among the results of the following
computation:

Af(X) = max |f(Y) = f(Y = )| where Y] =3

From our example, it is calculated as follows:

C[t4+2+10 142| 17

A
! 3 2 6

For now, let’s assume e=2; we later show how this choice of € discloses the
information. The random noise drawn from the Laplace distribution with mean
0 and scale factor A = 47 is 1.1677. The query response <y is produced as
v=rp(X") = f(X)+ Lap(Aef) =2+ 1.1677 = 3.1677. Consider the following
probabilities:
Priks(X) > 3.1677]
Priks(X') > 3.1677)

Note that the above value computed from the cumulative density function of the
Laplace distribution. The adversary cannot distinguish the response from queries
against X and X'’ within the factor of e2, so differential privacy is achieved.
However, does this also mean that Terry’s privacy is protected?

=3.2933 < 2

4.2 Adversary Model

In this example (as is the goal of differential privacy), we assume a very strong ad-
versary who has complete knowledge on the universe, i.e., full access to all records
in the universe U; thus each attribute value of all records in X is known to the ad-
versary. In other words, the adversary can potentially access the records of every
student in this school. The adversary knows everything about the universe ex-
cept that which individual is missing in the database X’ (i.e., who is on academic
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probation). In addition to the complete knowledge about X, the adversary knows
the fact that X’ consists of students who have never been on academic probation.
Assuming an adversary having complete knowledge about each individual in the
database is not unrealistic because differential privacy is supposed to provide pri-
vacy given adversaries with arbitrary background knowledge.

In our model, the adversary has a database X consisting of n records, i.e.,
knowledge of the exact attribute values of each individual in X, and has an infi-
nite computational power. Given a database X’ with n—1 records sampled from
X (ie., X' C X and | X'| = |X|—1), the adversary’s goal is to figure out absence
of a victim individual in X’ by using knowledge of X. This is identical to find
out other individuals’ presences in X’. With respect to our example, a privacy
breach is to allow the adversary to guess absence/presence of an individual in
X' correctly with high probability.

4.3 Attack Model

To determine membership in X', the adversary maintains a set of tuples (w, «, 5)
for each possible combination w of X', where o and 3 are the adversary’s prior
belief and posterior belief on X’ = w given a query response. Let ¥ denote the
set of all possible combinations of X’. For simplicity, we assume « is a uniform
prior, i.e., Vw € ¥, a(w) = (nﬁl) = TIL We refer to each possible combination w
in ¥ as a possible world. The posterior belief 3 is defined in Definition [3]
Definition 3 (Posterior belief on X' = w). Given the query function f and
the query response v = k¢(X’), for each possible world w, the adversary’s poste-
rior belief on w is defined as:

Plrfw)=7) _  Plisw) =)
P(v) Zwew P(ky() =)

where k¢ is an e-differentially private mechanism for the query function f.

B() = P(X' = wly) =

The posterior belief G(w) represents the adversary’s changed belief on each pos-
sible world that the underlying database being queried against is w. To figure
out which individuals are in the database, the adversary issues a query against
X’ and gets a noisy answer. After seeing the query response, the adversary com-
putes the posterior belief for each possible world. Finally, the adversary selects
one with the highest posterior belief as a “best guess”. The confidence of the
adversary’s guess is calculated using Definition [l

Definition 4 (Confidence level). Given the best guess w', the adversary’s
confidence in guessing the missing element is defined as

conf(w') = BW) — alw)

As the adversary’s posterior belief on each possible world becomes large, the
chances of disclosing any individual’s presence in the database also become high,
which makes disclosure of the statistics. This has an implication that the adver-
sary’s posterior belief on each possible world can be thought of as the risk of
disclosure.
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Fig. 1. Query response distributions

Definition 5 (Risk of disclosure I'). Given the set of possible worlds ¥, the
risk of disclosing presence/absence of any individual in the database I' is defined
as the adversary’s mazximum posterior belief.

P o)

4.4 Limitation of Differential Privacy

Basically, the underlying assumption that differential privacy is relying on is that,
if two extreme query answers that can be produced from any dataset possible in
the universe are indistinguishable, the presence or absence of any individual can
be hidden. The difference between those two extreme answers is masked by ran-
dom noise. However, there is a problem with this approach. Although differential
privacy ensures that every possible database of the same size is indistinguishable
within some factor ¢, there always exists a distribution that is more likely than
others given the query response. For example, in Figure [T, w; is the most likely
to be the true distribution among 4 possible worlds given the response y=1. This
allows the adversary to improve the belief of each possible world after seeing the
response.

In our example, for illustration we assume U = X and, without loss of gen-
erality, the response is 2.2013. Recall that the sensitivity Af of mean query
function for the domain of absence days is 16.7. The adversary’s posterior belief
of w; when € = 2 is:
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Table 2. Posterior belief 8(w)

Possible world(w) e=5 e=2 e=1 e¢=0.5e¢=0.1€¢=0.01

{1, 2, 3} 0.9705 0.5519 0.4596 0.3477 0.2328 0.2482
{1, 2, 10} 0.0159 0.1859 0.2019 0.2305 0.2527 0.2503
{1, 3, 10} 0.0087 0.1463 0.1791 0.2171 0.2558 0.2506
{2, 3, 10} 0.0049 0.1159 0.1594 0.2048 0.2588 0.2509

Table 3. Posterior belief 8(w)

Possible world(w) e=5 e=2 e=1 e¢=05e¢=0.1€¢=0.01

{1, 2, 3} 0.9705 0.6825 0.4596 0.3477 0.2680 0.2518
{1, 2, 10} 0.0158 0.1315 0.2017 0.2303 0.2469 0.2497
{1, 3, 10} 0.0088 0.1039 0.1793 0.2172 0.2440 0.2494
{2, 3, 10} 0.0049 0.0821 0.1594 0.2048 0.2411 0.2491

P(ry(w) =2.2013)
S Prg(wi) = 2.2013)
_ 0.3602
"~ 0.3062 4 0.0784 + 0.0619 + 0.0489

Blwr) =
=0.6180

The adversary will come to the conclusion that X’ = w;. Even though the output,
mean of absence days, is released via a differentially private mechanism, the
adversary can still make a correct guess on who is absent from the list with high
probability and confidence. Consider the probability when the attribute queried
is school year. The sensitivity of mean query function for the school year domain
is 2 The adversary’s posterior belief on w; for this case is 0.3390. Although
the same parameter and response values are used for both cases, the resulting
adversary’s probabilities are significantly different. Notice that the adversary’s
posterior belief, G(w), is a random variable and Table 2l and Table Bl show two
different instances of it. As shown in Table[2] an adversary’s best guess would be
X' = {Chris, Kelly, Pat}, which is correct, with the confidence of 0.7705=0.9705-
0.25 when e=5. When €=0.5, the adversary still get it right but the confidence is
only 0.0977(0.3477-0.25). When ¢=0.01, the adversary fails to make the correct
guess given the set of query responses.

5 Choice of €

The previous section demonstrated that given sufficiently low e, e-differential
privacy does limit an adversary’s ability to identify an individual. However, as
lowering e reduces the utility of the answer, the question of the proper value of € is
still open. We now demonstrate how to choose € to control the adversary’s success
at identification of an individual in this particular scenario, and demonstrate the
difficulties that arise.
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5.1 Upper Bound on Adversary’s Posterior Belief

Let X = {z1,22,...,2pn—1,v} and X' = {z1,22,...,Tn_1}. Without loss of gen-
erality, assume that elements are sorted in ascending order (i.e., z1 < z2 <

. < Tp—1 < v). Two databases X and X’ are identical except that only
one element, v, is missing in X’. For illustration, we impose an ordering to
the enumeration of possible worlds. Let w; denote the #" possible world main-
tained by an adversary and z¥ be the K" smallest element of w;. For any
wi, wj € ¥,w; is lower than w; if Vks.t.1 < k < n, rk < xf For example, w; =
{$17£L'27 BN xn71}7w2 = {$17£L'27 cee ,l’n,27’0}7a}3 = {xla Z2,...,Tn-3,Tn—1, 'U},
etc. To get an upper bound on the adversary’s probability of a correct guess,
we have to assume the worst case in which the correct answer seems to be most
likely (i.e., v = f(wz)) Given the query response v, the adversary’s posterior

ili I — i N — _ Plagwi)=)
probability on X' = w; is f(w;) = - e

denominator of B(w;) by P(k¢(ws) =7),

If we divide numerator and

1
Blwi) = . P (1)
(5 (wi)=7)
LD et ki P(K,J}(wlj)z'}’)
1
= . Al 2)
L D kbt © e siwn|
e by
1
< (3)
S N =)l
L3 gy i € A
1
< " e (4)
LD ey g€
1

1+ (n—1)e 37

where Av = maxi<; j<n | f(wi) — f(wj)] and i # j.

In @), the distance between f(w;) and f(wy) is approximated with Aw, the
longest distance between f(w;) and f(w;) where 1 < i,j < n. Recall that in our
example, the missing value is the largest in the database, which means w, is a
true distribution. Under this condition, the distance between f(w;)(1 < i < n)
and f(w1) has little difference, which makes (@) and (@) approximately the same.
Therefore, the upper bound becomes tight. In order to make every possible world
look equally likely, the following equation needs to be satisfied:

1 1

1+ (n— 1)6_6AAfU n

! This “all possible worlds” knowledge is the same information needed to calculate
global sensitivity for differential privacy; extending differential privacy to work with
more limited information is beyond the scope of this paper, and would face similar
challenges to those addressed for generalization-based anonymization in moving from
[14] to [13].
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The value of € which satisfies the equation is 0. Therefore, to make every possible
dataset in the universe to look equally likely, the query results would be pure
random noise, providing no utility.

5.2 Determining the Right Value of €

We now show how the proper value of € can be chosen given the goal of hiding
any individual’s presence (or absence) in the database. Assume that the privacy
requirement for our example dataset is to limit the any individual’s probability of
being identified as present in the database to be no greater than § We show two
ways of selecting a good choice of € that guarantees the probability of identifying
any individual’s presence is no greater than the maximum tolerable value §.
One is to use the upper bound presented in Section 5.} the other is to search
for the right value. We first consider how the upper bound on the adversary’s
probability can be utilized to enforce the requirement. Let p be the probability
of being identified as present in the database. We need to find e that satisfies
the following inequality.

can S (6)

Rearranging yields

Av 1—0p (™)
Note that the greater n and p are, the greater the minimum e needed. Therefore,
as the size of database to publish and the probability to bound get larger, less
noise need be added.

In our example, the maximum distance between function values of every pos-
sible world, Av, is f(ws) — f(w1) = 5 —2 = 3. Thus, in order to enforce the
adversary’s probability to be no greater 1

30
1 1
_eAv S (8)
1+ (n—1)e as
17, 3
< 1 ~ 0.382
€< g n(2) 0.3829 (9)

Let’s consider how this value changes when the attribute to release is the school
year rather than absence days. In this case, the sensitivity Af and the maxi-
mum distance between possible answers Av need to be recalculated since those
are the parameter values that are completely dependent on the universe. The
recomputed values of Af and Av are 2 and 1, respectively. Note that the mean
value of school year information is less sensitive than that of absence days, which
results in smaller values of both Af and Av. The right value of € for the school
year domain using the upper bound is € < g In g ~ 0.3379. However, even when
€ = 0.5(> 0.3379), the risk of disclosure is
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miaxﬁ(wi) = B(w1) (10)
1
= 11
l4+e54+e 5 +e s (1)
1
~0.3292 < (12)

which is still lower than the maximum acceptable level of risk. This means that a
more precise value of € can be found. As shown in Figure[2, our upper bound on
the risk of disclosure is not tight when the domain does not include outliers. In
other words, when the domain of the attribute to be released has low sensitivity,
the upper bound of Section [E1] gives a value of € that may be significantly
greater than the actual value of € needed to satisfy the privacy constraint (the
actual impact on the amount of noise added follows from the differential privacy
literature.) Although the value obtained using the upper bound ensures that any
individual’s risk of being identified as present in the database is no greater than 9,
this might be overkill, especially when there is no value that significantly deviates
from the mean of that distribution. In such case, we can perform binary search
to determine the maximum e that meets the requirement. Before performing
the search, the range within which the value of ¢ will be searched needs to
be determined. The minimum would be 0 which means no information can be
learned while the maximum can be calculated using the upper bound above.
Let €, and € denote the beginning and end of the range to search, respectively.
Firstly, compute the risk of disclosure when € = es'gef . Next, if it is greater than
0, set € to the current value of e. Otherwise, set €, to e. Repeat this search
process until the maximum value of € that satisfies the constraint is found.

6 Example: Median

We now show that the appropriate value of € is dependent not only on the
data and universe of values, but also on the query to be computed. This section
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Table 4. Senstivity of median for the database X

Possible world(w) LSy (w)

{1,2,3} 0.5
{1, 2, 10} 4
{1, 3, 10} 3.5
{2, 3, 10} 3.5

repeats the previous analysis on the example student database shown in Table
[ but where the query is instead median.

Let f(X) = median(xy, za, ..., x,) where x; are real numbers. The median of
a finite list of numbers is defined to be the middle one when all the observations
are arranged from lowest value to highest value. If a dataset has an even number
of observations, there may be no single middle value; in this case we define the
median to be the mean of the two middle numbers. Without loss of generality,
assume 1 < --- < x,; this gives the following definition for median:

Tk forn=2k—-1 (13)
J(X) = @k +zp

5 for n = 2k (14)

where k is a positive integer. To calculate sensitivity, let X’ be a database
obtained by removing one element from X. If X has an odd number of ele-

ments (i.e., n = 2k — 1), f(X) = z; and f(X') could be *¥Jr1 Tk-1¥r op
1’“‘1;1’““ . On the other hand, if X has an even number of elements (i.e., n = 2k),

f(X) = $k+21‘k+1 and f(X’) is either xy or xg4+1. Thus, the local sensitivity of
median for X is
LS (X) {Illax(ﬂck+12—xk7xk—;k17 $k+1‘£$k—1 _xk’) for n = 2%k — 1
f =

ThL T for n = 2k

(15)

and the global sensitivity of median is
Af(X) = max LSy (w)

Table [] shows the sensitivity of median for the absence days attribute of our
example database. As with Section [5.2] our target is that the adversary’s prob-
ability estimate for the value of this attribute should be no greater than § In
our example, the maximum difference between medians of each possible world is
1 (i.e., Av =maxi<; j<a |f(wi) — f(w;)| =1). Applying the upper bound gives

1 1

can S (16)
14+ (n—1)e a5 3
1 1

e < 17

1+3e ¢+~ 3 (17)

e< 4ln(g) ~ 1.6219 (18)
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o, f0,)=2
0, 1(0,)=4.33

o, f(o)=2

o, f(0)=2

0 f(0)=4.67 02
0, 1(0)=5

0y f(0,)=3 1

0, f(0,)=3

o
@

Probability
°
~
Probability

0.1

0
) -5 5 0 o
X(X) ®(X)

(a) f = mean (b) f = median

Fig. 3. Distributions of each possible world for different type of queries

A more precise upper bound can be found by replacing Av with exact values as
follows:

1

B(wi) = . =) (19)

L4+ i ppi € A

1
1+el+e x +e
1
_ 1 1)
24 2e A

The inequality 1. < lleadstoe<4In2=~2.776.
242¢" 47 — 3

Recall that the sensitivity of the mean function for the database X' is 167 ~

2.83 and € < 0.3829 to limit the adversary’s probability no greater than :1,) With
the same universe, we can allow larger epsilon (e < 2.776) to enforce the same
degree of privacy for the median whose sensitivity is larger than that of the mean.
This is because the type of query affects the distributions of possible world. In
Figure Bl(a), given the response v < 3.16, w; is significantly more likely than
others. On the other hand, in Figure Bi(b), given any response value of -, both
wy and wo are always equally likely and difference of likelihood between each
possible world is relatively small.

7 Conclusion

While the concept of differential privacy has received considerable attention in
the literature, there has been little discussion of how to apply it in practice.
Although € is the privacy parameter for differential privacy, it does not directly
correlate to a practical privacy standard. We have shown that given a practical
standard, namely the risk of identifying an individual, it is possible to deter-
mine an appropriate value of €. However, this requires knowing the queries to be
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computed, the universe of data, and the subset of that universe to be queried.
While this is not a disabling issue, as such knowledge (except the subset to be
queried, presumably known to the data holder) is typically required to construct
a differentially private mechanism anyway, it does raise additional research chal-
lenges. Succinctly, any discussion of a differentially private mechanism requires
a discussion of how to set an appropriate e for that mechanism, a challenge that
may be as or more difficult than developing the mechanism itself.
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