Information Processing Letters 108 (2008) 210-213

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

n
Information
Processing Letters

On the false-positive rate of Bloom filters

Prosenjit Bose *, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison,

Michiel Smid, Yihui Tang

Carleton University, School of Computer Science, 1125 Colonel by Drive, Ottawa, Ontario, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 3 May 2004
Available online 26 June 2008
Communicated by F. Dehne

Keywords:
Data structures
Analysis of algorithms

Bloom filters are a randomized data structure for membership queries dating back to
1970. Bloom filters sometimes give erroneous answers to queries, called false positives.
Bloom analyzed the probability of such erroneous answers, called the false-positive rate,
and Bloom’s analysis has appeared in many publications throughout the years. We show
that Bloom’s analysis is incorrect and give a correct analysis.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A Bloom filter [2] is an extremely simple random-
ized data structure for testing membership in a set and
has found applications in many areas including (sequen-
tial, distributed and parallel) databases [7,12,13], computer
networks [3], social networks [9], and cryptography [1,5].
A Bloom filter represents an n element set S using a bit-
vector B = Bq, ..., By of length m. Initially all the bits of
B are set to 0. It is assumed that each element x to be
stored or searched for comes with a sequence of k ran-
dom! hash values x1,...,x, € {1,...,m}. To store the ele-
ment x one simply sets the bits By, = By, =--- =By, = 1.
To query a Bloom filter for an element y one simply checks
if By,,..., By, are all set to 1. If so, the filter outputs “yes”
otherwise it outputs “no”.

If y is stored in the filter then, by definition, By, ...,
By, are all set to 1, so the query algorithm correctly out-
puts yes. However, the converse is not true. It is possi-
ble that y is not stored in the filter but (by coincidence)

* Corresponding author.
E-mail addresses: jit@scs.carleton.ca (P. Bose), hguo2@scs.carleton.ca

(H. Guo), kranakis@scs.carleton.ca (E. Kranakis),
maheshwa@scs.carleton.ca (A. Maheshwari), morin@scs.carleton.ca
(P. Morin), morrison@scs.carleton.ca (J. Morrison), michiel@scs.carleton.ca
(M. Smid), y_tang@scs.carleton.ca (Y. Tang).

1 Here, as usual, the term “random” means chosen uniformly at random
and independently of any other “random” choices.

0020-0190/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.05.018

By,,...,By, are all set to 1. This situation is called a false
positive and the probability that this occurs is called the
false-positive rate. Bloom derives the false-positive rate in
the following way: The probability that any particular bit
B; is equal to 0 is (1 — 1/m)*", since the value i must be
avoided by all kn hash values. Therefore, the probability
that a particular bit is set to 1 is

p & PrBi=1)=1— (1 = 1/m)kn,

Now, in order for y to result in a false positive, each of the

k hash values yq, ..., yy must be the index of a bit that is
set to 1. The probability that this happens is

Pk.n,m dzefPr{By] =1and By, =1and ...and By, =1}
which is claimed to be

Pk = (11 —1/mim".)
This proof, which has appeared in many papers throughout

the years, is not quite correct. The error occurs in deriving
(1), where there is an implicit assumption that the event

“By;, =1" and the event “By, =By, =---=By, , =1" are
independent. At first glance, this seems to be true, since
¥1,...,yi are independent. However, a simple counterex-

ample to this proof can be obtained by considering the
case n=1, k=2, m= 2. In this case, by simply enumer-

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jit@scs.carleton.ca
mailto:hguo2@scs.carleton.ca
mailto:kranakis@scs.carleton.ca
mailto:maheshwa@scs.carleton.ca
mailto:morin@scs.carleton.ca
mailto:morrison@scs.carleton.ca
mailto:michiel@scs.carleton.ca
mailto:yprotect T1	extunderscore tang@scs.carleton.ca
http://dx.doi.org/10.1016/j.ipl.2008.05.018

P. Bose et al. / Information Processing Letters 108 (2008) 210-213 211

ating the 16 possible situations? one finds that the false-
positive rate is 5/8, whereas p* evaluates to 9/16 =4.5/8.
Thus, Bloom’s bound underestimates the false-positive rate
in this case.

Mitzenmacher [10] gives a concentration result on the
number of 1 bits in Bloom filter that somewhat justifies
the standard analysis of Bloom filters for certain common
choices of parameters. In this paper, we perform a more
detailed analysis of the false-positive rate of Bloom fil-
ters. The analysis of the false-positive rate is not nearly
as straightforward as one would hope. The contributions
of this paper are as follows:

1. We give an exact formula for the false-positive rate of
Bloom filters. Unfortunately, this formula is not any-
where near closed form, but could be useful for small
values of k, n and m.

2. We give an upper bound on the false-positive rate that
converges to p* for most common choices of the pa-
rameters k and m.

3. We show that, rather than being an upper-bound, p*
is actually a strict lower bound on the false-positive
rate for any k > 2. That is, for any choice of k, m, and
n with k > 2, the false-positive rate of the resulting
Bloom filter is greater than pk.

To the best of our knowledge, this is the first paper to
point out this error in the analysis of Bloom filters and
give a corrected analysis. The only similar result we know
of is a paper by Carter et al. [4] in which they define a
data structure (Approximate Membership Tester 1) that,
under their assumptions, is equivalent to a Bloom filter.
They show that the expected number of bits set to 1 in
the filter is mp so the probability of a false positive “is at
most about” pX. Their use of the qualifier “about” indicates
that they realize this is not the exact probability, but they
do not elaborate any further.

The remainder of this paper is organized as follows: In
Section 2 we derive an exact formula for the false-positive
rate. In Section 3 we give tight upper and lower bounds
on the false-positive rate. In Section 4 we summarize and
conclude.

2. An exact formula

We model the problem of determining the false-
positive rate as a problem on balls and urns. We are given
m urns. We throw kn white balls at random into these
urns. We call an urn white if it contains at least one white
ball. Next we throw k black balls in the urns. Let A be
the event that each black ball is in a white urn. We want
to evaluate Pr{A}. To see that this correctly models Bloom
filters, treat the urns as the bits By,..., B, and use the
convention that B; =1 if and only if urn i is white. Thus,
the event A corresponds to a false positive (k randomly
chosen bits are all set to 1). Thus, the false-positive rate
Pk.n,m is equal to Pr{A}.

2 There are two elements involved, the element x stored in the table
and some element y not stored in the table. Whether or not y is a false
positive depends only on x1, x2, y1 and y;.

Observe that the set of white urns can be represented
as a subset of {1,...,m}. For any I C {1,...,m}, let E; be
the event that I is the set of white urns. Observe that 1 <
|I| < m. Using conditional probabilities, we get

Pr{A} = Z Pr{A | E;} - Pr{E}.
11, ...,m}

If I is fixed then

1%
Pr{A|E} = (5) ,

whereas Pr{E;} is the quotient of

e the number of surjections from a set of size kn onto a
set of size i, and

e the number of functions from a set of size kn to a set
of size m.

The number of surjections from a set of size kn onto a
set of size i is given by i!{kl.”} where

k 1 i 7,
bl
j=0

is called a Stirling number of the second kind [6, Section 6.1].
The number of functions from a set of size kn to a set
of size m is equal to m*".
Putting everything together, we obtain

k L
1] |I|-{|u}

Pr{A} = Z (E) x mkn
1 n Jea [T [kn
) ;' “(i){ i }

Theorem 1. Let py . be the false-positive rate for a Bloom fil-
ter that stores n elements in a bit-vector of size m using k hash
functions. Then,

1 m m)\ [kn
_ ik
Pinm = i1y ;l l'(i){ i }
i=

3. Asymptotic bounds

Unfortunately, the formula for px,m given by Theo-
rem 1 is not very enlightening. In particular, it is not
easy to compare it directly with p¥, the value derived by
Bloom. In this section, we use probability theory to study
the asymptotics of pg . m, and give closed-form upper and
lower bounds. We make use of the following result on balls
and urns due to Kamath et al. [8] (see also Motwani and
Raghavan [11, Theorem 4.18]):

Theorem 2. (See [8].) Let W denote the number of white urns
after throwing kn white balls into m urns. Then

oa-a(o-(1-3))

and for A > 0

212 P. Bose et al. / Information Processing Letters 108 (2008) 210-213

2 J—
Pr{|W — E[W]| > 1} < 2exp(_w)

m2 — E[W12
< 2exp(—2A2%/(2m)).

Again, let A be the event “every black ball is contained
in a white urn”. We want to compute upper and lower
bounds on Pr{A}.

3.1. The upper bound

In this section we give an upper-bound on py , . How-
ever, it is awkward (and not very useful) to give an upper
bound that holds for all possible choices of k, n and m. Our
upper bound requires the condition that

’i /lnm—Zlclnpgc @)
p m

for some constant ¢ < 1. The reasons for this will become
apparent in the analysis. To see that this assumption is jus-
tified, note that, in nearly all applications of Bloom filters,
the parameter k is chosen (as a function of m and n) so
that p=1—(1 —1/m)¥" is a constant, usually close to 1/2.
Under these conditions, k = ®(m/n) and (2) becomes

k [lnm—2klnp (m m/n—l—lnm)
S — =0/) <¢
p m n m

For sufficiently large values of m, this is satisfied as long as
m = 0(n3/?). Again, this is true in all applications of Bloom
filters since, if we are willing to use m = ®(nlogn) bits of
storage, hash tables are a better alternative since they offer
constant time searches with no false positives.

We obtain the upper bound by conditioning on the
value of W which, according to Theorem 2 is strongly con-
centrated around its expected value. Recall the definition
p=1—(1—=1/m)*" and let j = E(W]+/m(nm — 2kIn p).

Then

Pr{A} =Pr{W < j} x P{A | W < j}
+Pr{W > j} xPr{A | W > j} (3)
ST xPr{A|W =j}+Pr{W > j} x 1 (4)

_ <E[W] + /m{nm — 2k1np))"
= m

1 — 2kl
+2exp<_m(nm2m k np))

k
=(p+,/—1“m‘m2"'"") + 2/ (6)
< k k=i () Inm—2kInp i N 7
\gp (\/T)ﬁ-p/m (7)

k i
k [Inm—2klnp
<PkX<Z(E T) +2/\/ﬁ) (8)

i=0
1_— (L‘ /Inm—2kInp)k-H
=pk x < P L —+ 2/«/11_1)
1_ k /Inm—2klnp
pV m

< x (+z/m) (10)

1
k /lnm—2klnp
T-ovV—m
k /Inm—2klnp
=pkx (S R +2/\/ﬁ> (11)

1+ —F

k /Inm—2klnp

=5V =

k /1 —kl
:p’(x<l+0<%,/7nmm "p)>, (12)

where (7) uses the inequality (easily verified by induction
on k) which states that
(a+b)* <d*+kb@+b)*~!, valid for a,b >0

and that, when iterated k + 1 times gives

@+b* <Y d k=i < Y d bk,
i=0 i=0

valid for a,b > 0.

3.2. The lower bound

For the lower bound, we use a very different argument.
Let bq,...,br be the urns in which the k black balls are
thrown. We will show that, for 2 <i <k,

Pr{b; is white | b1, ...,bj_1 are white}
> Pr{b; is white} = p. (13)
Therefore,

k
Pr{A} = l_[Pr{bi is white | by, ..., bj_; are white} > p¥.
i=1

Note that this lower-bound is strict, so the actual false-
positive rate of a Bloom filter is strictly greater than p*
whenever k > 2. To finish the proof, all that remains is to
justify (13). Recall that b1, ..., bj_1 are just randomly cho-
sen urns. For any j > 2, the following is obvious

Pr{bq,...,bj_1 are white | W > j}
> Pr{bq, ..., bj_1 are white}. (14)

We say that this is obvious because, for example, the case
in which all white balls land in one urn is excluded. From
the definition of conditional probability, (14) is equivalent
to

Pr{W > j|bq,...,bj_1 are white} > Pr{W > j}.

The above statement says that the random variable W
conditioned on “bq,...,bj_1 are white” stochastically dom-
inates the random variable W (conditioned on nothing).
Note that, if a random variable X stochastically dominates
a random variable Y then E[X] > E[Y]. Therefore,

E[W | bq,...,bj_1 are white] > E[W].

Consider the random variable W/m and observe that
E[W /m] = Pr{b; is white}. Therefore, we have

P. Bose et al. / Information Processing Letters 108 (2008) 210-213 213

Pr{b; is white | b1, ...,b;j_q are white}
=E[W/m|bq,...,bj—1 are white]
> E[W/m]
= Pr{b; is white}

as required for (13).
This completes the proof of

Theorem 3. Let py,m be the false-positive rate for a Bloom
filter that stores n elements in a bit-vector of size m using k
hash functions, where k > 2 and k, n and m satisfy (2). Let
p=1—(1—1/m)*. Then,

k /Inm—kIn
N =)
P m

4. Conclusions

We have shown that the analysis of Bloom filters orig-
inally given by Bloom, and repeated in many subsequent
papers, is incorrect. The actual false-positive rate is strictly
larger than p*=(1- (1 — 1/m)k”)k. We have also given
bounds on how much larger the false-positive rate can be.
Our upper bounds show that, for large enough values of m
with small values of k, the difference between p* and the
actual false-positive rate is negligible.

Mullin [12] and Gremillion [7] both observe that the
false-positive rate of Bloom filters in their database appli-
cations are slightly higher than p¥. However, they attribute
this to poor quality pseudorandom numbers. Our results
offer another possible explanation: the actual false-positive
rate is higher than p¥, even if perfect random numbers are
available.

Acknowledgements

The authors are grateful to Michael Mitzenmacher for
bringing his paper [10] to our attention.

References

[1] S.M. Bellovin, W.R. Cheswick, Privacy-enhanced searches using en-
crypted Bloom filters, Draft, 2004, http://www.research.att.com/
~smb/papers/bloom-encrypt.ps.

[2] B.H. Bloom, Space/time trade-offs in hash coding with allowable er-
rors, Communications of the ACM 13 (7) (1970) 422-426.

[3] A. Broder, M. Mitzenmacher, Network applications of Bloom filters:
A survey, in: Proceedings of the 40th Annual Allerton Conference on
Communication, Control and Computing, 2002, pp. 636-646.

[4] L. Carter, R. Floyd, J. Gill, G. Markowsky, M. Wegman, Exact and ap-
proximate membership testers, in: Annual ACM Symposium on The-
ory of Computing, 1978, pp. 59-65.

[5] E.-]. Goh, Secure indexes for efficient searching on encrypted com-
pressed data, Technical Report 2003/216, Cryptology ePrint Archive,
2003. http://eprint.iacr.org/2003/216/.

[6] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, second
ed., Addison-Wesley, 1994.

[7] LL. Gremillion, Designing a Bloom filter for differential access, Com-
munications of the ACM 25 (7) (1982) 600-604.

[8] A. Kamath, R. Motwani, K. Palem, P. Spirakis, Tail bounds for occu-
pancy and the satisfiability threshold conjecture, in: Proceedings of
the 35th Annual IEEE Symposium on Foundations of Computer Sci-
ence, 1994, pp. 592-603.

[9] J. Schachter M. Ceglowski, Loaf, Online at http://loaf.cantbedone.org/.

[10] M. Mitzenmacher, Compressed Bloom filters, IEEE/ACM Transactions
on Networks 10 (5) (2002).

[11] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge Univer-
sity Press, 1995.

[12] J.K. Mullin, A second look at Bloom filters, Communications of the
ACM 26 (8) (1983).

[13] M.V. Ramakrishna, Practical performance of Bloom filters and parallel
free-text searching, Communications of the ACM 25 (7) (1982) 600-
604.

http://www.research.att.com/~smb/papers/bloom-encrypt.ps
http://www.research.att.com/~smb/papers/bloom-encrypt.ps
http://eprint.iacr.org/2003/216/
http://loaf.cantbedone.org/

	On the false-positive rate of Bloom filters
	Introduction
	An exact formula
	Asymptotic bounds
	The upper bound
	The lower bound

	Conclusions
	Acknowledgements
	References

