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Bachelor’s Thesis in Informatics

Cryptographically Secure, Distributed Electronic Voting

Kryptographisch sicheres Wählen in verteilten Systemen

Author: Florian Dold
Supervisor: Christian Grothoff, PhD (UCLA)
Advisor: Christian Grothoff, PhD (UCLA)
Date: October 15, 2014





I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, August 24, 2014 Florian Dold





Acknowledgments

I wish to thank Christian Grothoff for providing invaluable feedback and guidance
throughout my work on this thesis as well as on other projects.

I also thank the GNUnet team, especially Sree Harsha Totakura, Bart Polot and Matthias
Wachs, for their persistent support regarding bugs and questions.

vii





Abstract

Elections are a vital tool for decision-making in democratic societies. The past decade
has witnessed a handful of attempts to apply modern technology to the election process in
order to make it faster and more cost-effective.

Most of the practical efforts in this area have focused on replacing traditional voting
booths with electronic terminals, but did not attempt to apply cryptographic techniques
able to guarantee critical properties of elections such as secrecy of ballot and verifiability.

While such techniques were extensively researched in the past 30 years, practical im-
plementation of cryptographically secure remote electronic voting schemes are not read-
ily available. All existing implementation we are aware of either exhibit critical security
flaws, are proprietary black-box systems or require additional physical assumptions such
as a preparatory key ceremony executed by the election officials. The latter makes such
systems unusable for purely digital communities.

This thesis describes the design and implementation of an electronic voting system in
GNUnet, a framework for secure and decentralized networking. We provide a short sur-
vey of voting schemes and existing implementations.

The voting scheme we implemented makes use of threshold cryptography, a technique
which requires agreement among a large subset of the election officials to execute certain
cryptographic operations. Since such protocols have applications outside of electronic vot-
ing, we describe their design and implementation in GNUnet separately.
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1 Introduction

During the last decade, electronic voting has received a lot of negative attention. Strong
criticism was directed at a very primitive notion of electronic voting, namely direct-record
electronic voting, which aims to replace traditional, paper-based large-scale democratic
elections by computerized voting terminals. Not only is the idea of trusting such a black-
box voting machine in itself questionable; actual implementations of these systems were
shown to exhibit critical security flaws [KSRW04, Oos10].

A more radical deviation from the concept of paper-based elections is remote electronic
voting, which has been an active research area in the academic community at least since
Chaum published his seminal paper about mix-nets [Cha81] in 1981. In these voting
schemes, the voters prepare and submit a ballot on their own computing device. The
use of cryptography makes it possible to guarantee ballot secrecy, to provide voters and
external auditors a means to verify the correctness of the final tally, as well as other useful
properties.

This, however, assumes that voters have basic technological literacy and control over
their computing devices. With the recent revelations about the capabilities and activities
of security agencies such as the NSA and GCHQ, the latter can not be taken for granted,
which poses a problem for political elections.

Nevertheless, electronic voting is a tool that can be useful for fast and cost-effective
democratic decisions outside the scope of large-scale political elections. The German Pirate
Party, for example, uses an electronic voting software called LiquidFeedback1 for internal
decision-making. A distinguishing feature of LiquidFeedback is that voters can delegate
their right to vote on certain topics to other voters. The system, however, does not guar-
antee secrecy of ballot: The vote of every member becomes publicly visible after voting
concludes. To prevent fraud, voters are expected to check if their vote occurs correctly in
the final list. Cryptographically secure voting schemes might be an attractive addition to
such a system, enabling polls where secrecy of ballot is guaranteed and fraud is detected
more easily. As these elections are low-stake, the risk of attacks on the voters’ computing
devices is less significant.

The same reasoning applies to decentralized social networks (such as the social messag-
ing service being implemented in GNUnet [Tot13b]), where cryptographic voting protocols
could be used to for decision-making and opinion polls in social groups, with a reduced
chance of manipulation and surveillance when compared to black-box polls.

Unfortunately complete implementations of remote electronic voting schemes are not
readily available, especially not in a form that is easy to integrate into existing applications.

Many cryptographic voting schemes build upon distributed public key operations (such
as key generation and cooperative decryption). Especially distributed key generation is
costly to execute and challenging to implement correctly, and thus often neglected in ex-

1http://liquidfeedback.org/
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1 Introduction

isting prototypes. Instead, some existing systems rely on trusted third parties or physical
assumptions such as key generation ceremonies, where the organizers of the election are
required to meet in person. This is often impractical for digital communities, as a trusted
third party is generally unavailable and in-person meetings are too expensive.

This thesis describes the design and implementation of a cryptographically secure re-
mote electronic voting system in GNUnet2, a framework for secure peer-to-peer network-
ing. Chapter 2 provides some background on the cryptographic primitives and protocols
required in the following chapters. Chapter 3 describes the design, implementation and
performance of the distributed key operations service in GNUnet. Chapter 4 discusses
common cryptographic voting schemes and their properties, as well as existing imple-
mentations. We then discuss the design and implementation as well as performance char-
acteristics of electronic voting in GNUnet.

2https://gnunet.org

2
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2 Prerequisites

This chapter establishes some cryptographic primitives and protocols that are utilized by
both the distributed key operations and electronic voting protocols. For a more in-depth
introduction to cryptography, see for example the book by Katz and Lindell [KL08].

Note that parts of this chapter were already published in a seminar paper by this au-
thor [Dol13].

2.1 Public-Key Cryptography

In contrast to symmetric cryptography, where the same key is used for encryption and
decryption of a message, public-key cryptography uses two keys: A public key to encrypt
messages, and a corresponding private key to decrypt them.

2.1.1 Groups

Many modern public-key cryptosystems are based on problems assumed to be hard in
finite groups. Let g be a generator of the group G = 〈g〉, and let q be the order of G.

Hardness Assumptions The first common hardness assumption concerns the discrete
logarithm problem (DLP), which consists of solving the equation

gx = h (2.1)

for x ∈ Zq, written x = logg(h). While exponentiation is easy to compute (for example with
O(log n) group operations by repeated doubling), the DLP is believed to be intractable in
most large groups, and modular exponentiation is conjectured to be a one-way function.1

The computational Diffie-Hellman assumption (CDH) [Bon98] is stronger2 than the DLP,
and states that gab is hard to compute from only ga and gb for arbitrary a, b ∈ Zq.

The decisional Diffie-Hellman assumption (DDH) [Bon98] is stronger than CDH, and
states that for uniformly random a, b, c ∈ Zq, the distributions of (ga, gb, gab) and (ga, gb, gc)
are indistinguishable and thus gab is pseudo-random even if ga and gb are known.

Commonly used Group The DDH is assumed to hold in a number of groups [Bon98].
We use the multiplicative subgroup Gq ⊂ Z∗p of large prime order q, where p = 2q + 1 is
a safe prime.3 This group is also known as the group of quadratic residues modulo a safe

1 However, the DLP is still easy to solve for some groups. For example, when the order of G is smooth (only
has small prime factors) the Pohling-Hellman algorithm [PH78] can be used to solve the DLP.

2In the sense that it is a stricter requirement which holds in fewer groups.
3This is a special case of a Schnorr group where p = rq + 1.
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2 Prerequisites

prime. Note that Z∗p is the group of integers under multiplication modulo p with order
p− 1 = 2q.

In practice, concrete values for the parameters q, p can be found by generating a random
prime q of the desired size (depending on the required security, typically between 1024
and 4096 bits) and repeating the process until 2q + 1 is also prime. A generator g of Gq can
be computed as follows [MVO96, Section 4.6]:

1. Repeatedly choose an α ∈ Z∗p at random, until it satisfies αq 6= 1 and α2 6= 1, that is,
the order of α is neither q nor 2 nor 1. Then α is a generator of Z∗p.
Proof: By Lagrange’s Theorem, Z∗p has exactly two proper non-trivial subgroups of
order q and 2, respectively. As α is neither of order q, 2 nor 1, it can only be a gener-
ator of the full group Z∗p.

2. Compute g = αk, where k := (p− 1)/q = 2. Then g is a generator of Gq.
Proof: Let ord(·) be the order of a group element. As k divides ord(α), it follows from
a standard result of group theory [Jud94, Proposition 4.5] that ord(αk) = ord(α)/k =
q.

Other commonly used groups are obtained from elliptic curves. A bijection between ele-
ments of an elliptic curve group and Zq is usually hard to construct (but possible [BHKL13]),
making it challenging to encode messages as group elements. Consequently some com-
mon cryptosystems (such as Elgamal [ElG85] and Paillier [Pai99]) are not easily usable
with elliptic curves.

2.1.2 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange [DH76] is used to establish a shared secret between two
parties (let us call them Alice and Bob), where Alice has a secret key a ∈R Zq and Bob has
secret key b ∈R Zq. The corresponding public keys A = ga and B = gb are known to both
Alice and Bob.4

A shared secret s ∈ G only known to Alice and Bob can be established in the following
way: Bob computes s = Ab = (ga)b = gab and Alice computes s = Ba = (gb)a = gab.

2.1.3 The Elgamal Scheme

The Elgamal cryptosystem [ElG85] is obtained by a straightforward application of the
Diffie-Hellman key exchange. The main purpose of Elgamal is to encrypt messages with a
public key h = gx such that only the owner of the private key x ∈R Zq can decrypt them.

A message m̄ is then encrypted in the following way: First, m̄ is encoded as a group
element m ∈ G. Then the sender creates a random ephemeral private key α ∈R Zq. The
encryption of m̄ is then the pair (c1, c2) = (gα, sm) where s = hα. Note that c1 can be
interpreted as the ephemeral public key corresponding to α.

The receiver can than use his private key x to compute s = cx1 = gαx = hα. By multiply-
ing c2 with s−1 (the modular inverse of s in Zq), the encoded message m is obtained and
consequently m̄ can be decoded.

4These public keys should be exchanged or verified over a secure channel; otherwise the Diffie-Hellman key
exchange is susceptible to a man-in-the-middle attack.

4



2.2 Secret Sharing

Elgamal is only semantically secure (in the sense that an attacker cannot even obtain par-
tial information about the plaintext corresponding to a ciphertext) if the decisional Diffie-
Hellman assumption holds in the underlying group G.

Homomorphic Properties Let E(·) and D(·) be Elgamal encryption and decryption re-
spectively. The following properties hold:

D(E(x) · E(y)) = x · y (2.2)

D(E(xa)) = D(E(x)a) for all a ∈ Zq (2.3)

This can be easily derived from the equations for encryption and decryption.
While this kind of ciphertext malleability is usually not desired (and can be prevented

by padding a message with random data), it is useful in some cryptographic protocols,
as computations can be done on ciphertexts without revealing the plaintext. Additive
homomorphic encryption allows addition, while multiplicative homomorphic encryption
allows multiplication. Fully homomorphic encryption allows both addition and multipli-
cation to be performed over encrypted data [Gen09].

2.2 Secret Sharing

Secret sharing is an important building block for cryptosystems with multiple parties,
where single parties are generally not trusted.

2.2.1 The Scenario

In a secret sharing protocol, a dealer holds a secret that he wishes to share5 with a group of `
players, in such a way that at least k players must cooperate to recover the secret. He does
so by dividing the secret s into ` shares D1, . . . , D`, such that at least k different shares are
necessary to restore s, and a group of players smaller k is not able to gain any information
about the secret. The shares are then sent over a private channel to the intended recipients.
Note that secret sharing with a dealer does not suffice for establishing a distributed key
without a trusted third party, as in this scheme the dealer must know the secret.

Three common approaches exist for secret sharing [BKS09]. The most well known scheme
is Shamir’s secret sharing, a scheme based on polynomial interpolation over finite fields.
Other constructions include Blakley’s geometric approach using the intersections of hy-
perplanes [Bla99], and the Asmuth-Bloom construction [AB83] that relies on the Chinese
remainder theorem. In this thesis we will focus on Shamir’s scheme.

2.2.2 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing [Sha79] utilizes the fact that in order to fully determine a polyno-
mial of degree k−1, at least k different data points have to be known. In order to make the

5In contrast to colloquial usage of the term “sharing”, we do not interpret sharing as replication.

5



2 Prerequisites

memory requirements of the scheme feasible and ensure information-theoretic security6,
computations are done in a finite field of appropriate size to fit the secret.

The dealer wishing to share the secret s chooses a polynomial f of degree k − 1 with
random coefficients a1, . . . , ak−1 and a0 = s:

f(X) =
∑

0≤i<k
aiX

i (2.4)

Consequently, f(0) = s and at least k data points are required to fully determine f . The
dealer can now evaluate the polynomial at ` ≥ k distinct points to obtain the shares Di =
f(i) for i ∈ {1, . . . , `}, where the share Di is intended for the i-th player.

In order to restore the secret, at least k of these shares must be known in order to inter-
polate the polynomial and obtain the secret by evaluating f(x) at x = 0.

A polynomial can be interpolated using Lagrange’s formula. The secret s is restored
with

s =
∑
j∈Λ

Djλj,Λ (2.5)

where the Lagrange coefficients are

λj,Λ :=
∏
l∈Λ
l 6=j

l

l − k
. (2.6)

and Λ is the set of indices for the available shares and the arithmetic operations are done
over Zq.

2.2.3 Verifiable Secret Sharing

The above scheme does not preclude the dealer from sending inconsistent shares to the
other players. The dealer could, for instance, choose the coefficients such that subset A of
the players would reconstruct a different secret than subset B.

A technique due to Feldman [Fel87] uses a masking and binding commitment in order to
ensure that the dealt shares are consistent, that is, each sufficiently large subset of shares
will yield the same secret upon reconstruction.

The dealer commits to each ai for 0 ≤ i ≤ k − 1 by publishing the value Ai := gai . This
allows the consistency of commitments to be verified, as each receiver of a share Di can
check that

gDi =
∏

0≤j<k
Ai

j

j . (2.7)

The previous equation follows from raising both sides of the formula for evaluating the
polynomial f over g, namely

Di = f(i) =
∑

0≤j<k
aji

j . (2.8)

No useful information is leaked by the commitments if in the underlying group the deci-
sional Diffie-Hellman assumption holds.

6In non-finite fields, partial information about one share can be computed from only a subset of the shares

6



2.3 Zero-Knowledge Proofs

2.3 Zero-Knowledge Proofs

In a zero-knowledge proof, a prover wants to convince a verifier that a given statement is
true, without revealing any information that the verifier did not have before [GO94].

All zero-knowledge proofs given here are interactive, three-round protocols consisting
of a commitment, challenge and response round.

2.3.1 Knowledge of Discrete Logarithms

A well-known zero-knowledge proof, known as Schnorr’s protocol, convinces the verifier
that the prover knows the discrete logarithm x of a value h = gx known to the verifier
[Sch90]. Many other zero-knowledge proofs presented here will build upon this zero-
knowledge proof.

Start The verifier knows h = gx and the prover additionally knows x.

Commitment The prover chooses k ∈R Zq and sends t := hk to the verifier.

Challenge The verifier computes and sends to the prover the challenge c ∈R Zq.

Response The prover computes r ∈ Zq as r := k + xc, using her knowledge of x. She
then sends r to the verifier.

Verification The verifier checks whether hr ?
= thc.

As the protocol requires interaction, it would be cumbersome for the prover to convince
multiple verifiers that she knows a discrete logarithm. However, the Fiat-Shamir trick
[FS87, GK03] can be used to transform the proof into a non-interactive zero-knowledge
proof (NIZK). Instead of requiring the verifier to generate a challenge each time, the chal-
lenge is derived off-line by hashing the previous protocol transcript — the prover com-
putes the challenge as c = H(h, z, k, t). Note that this transformation can only be proven
secure under the Random Oracle Model, where H is replaced by a truly random function.

2.3.2 Knowledge of Discrete Logarithm Equality

A similar protocol [CP93] can be used to prove the equality of two logarithms to different
bases, i.e. that

α = logg x = logh y

where x, y ∈ Zq and g, h ∈ Z∗p are known, but α ∈ Zq is only known to the prover.

Start The verifier knows x, y, g, h and the prover additionally knows α.

Commitment The prover chooses w ∈R Zq and sends (a, b) := (gw, hw) to the verifier.

Challenge The verifier computes and sends to the prover the challenge c ∈R Zq.

Response The prover computes r ∈ Zq as r := w + αc, using her knowledge of α. She
then sends r to the verifier.

7



2 Prerequisites

Verification The verifier checks whether hr ?
= byc and gr ?

= axc.

Note that this protocol is only honest-verifier zero knowledge [CP93], meaning that a
dishonest verifier could choose the challenge in such a way that information about α is
revealed. Therefore applying the Fiat-Shamir trick to the protocol is essential, as now the
verifier cannot request a specially crafted challenge anymore.

As an example application, this proof can show that an Elgamal pair (x, y) encrypts the
messagem = g0 = 1, without the verifier being able to run the decryption protocol directly
(as the verifier does not know α).

This obviously is not immediately useful. However, a construction such as [CDS94] can
be employed to obtain a disjunctive zero knowledge proof for discrete logarithm equality.
That is, a statement of the following form (with g, h ∈ Z∗p and x,mi, yi ∈ Zq for 1 ≤ i ≤ n).

α = logh x = logg(y1m1) ∨ . . . ∨ α = logh x = logg(ynmn)

can be proven in zero knowledge. This now has a useful application: It can convince the
verifier that a ciphertext is an encryption of one of n alternatives from M = {m1, . . . ,mn}.
For an intuitive explanation of this technique, as well as other discrete logarithm zero
knowledge proofs, see [CS97].

Let v be the index of the message mv that is actually encrypted in (x, y). The basic idea
is to simulate n − 1 proofs for the values that are not encrypted in (x, y) by selecting a
commit/challenge/response triple ((ai, bi), di, ri) for i 6= v which passes the verification.
Finding such a triple is trivial if the prover can select the challenge freely. For the remaining
disjunction, the challenge is derived from the actual challenge c as dv = c−∑i 6=v di. Due to
this construction, exactly one of the n proofs cannot be simulated, as exactly one challenge
for a sub-proof cannot be freely selected.

Start The verifier knows M = {m1, . . . ,mn}, x = gα, y = hαmv, g, h and the prover
additionally knows α as well as v ∈ {1, . . . , n}.

Commitment The prover chooses w ∈R Zq and sets (av, bv) := (gw, hw). For i 6= v, the
prover simulates the sub-proofs ((ai, bi), di, ri) with ri ∈R Zq, di ∈R Zq and ai :=
gri x

di , bi := hr(ym−1
i )di . All pairs (ai, bi) for 1 ≤ i ≤ n are sent to the verifier.

Challenge The verifier computes and sends to the prover the challenge c ∈R Zq.

Response The prover computes the challenge for the remaining sub-proof as dv := c −∑
i 6=v di. She then computes rv := w − αdv and sends (ri, di) for 1 ≤ i ≤ n to the

verifier.

Verification The verifier checks that c ?
=
∑
di and (ai, bi)

?
= (grixdi , hri(ymi)

di).

Note that again the Fiat-Shamir trick should be applied, as the proof is only honest-
verifier zero knowledge.

8



2.3 Zero-Knowledge Proofs

2.3.3 Fair Paillier Encryption

The Paillier cryptosystem [Pai99] has the same basic use as Elgamal, but exhibits different
homomorphic properties, which are useful for certain zero knowledge proofs. In contrast
to Elgamal, Paillier only works in very specific groups.

In particular, Paillier allows for a proof of fair encryption [FS01] in zero knowledge. This
proof convinces a third party who knows gx that the logarithm x ∈ Zq can be restored from
a ciphertext that encrypts x by the intended recipient (using his private Paillier key). Note
that this is slightly different from a proof of correct encryption, as it only guarantees that
x can be restored with relatively high computational effort of the recipient, but not that x
has been encrypted correctly. A more direct proof of correct encryption is not yet known
to exist.

The Paillier Cryptosystem

We now describe the simplified Paillier scheme as introduced by Katz et al. [KL08]. Let
N = pq, where p, q are primes of the same length. Then the following holds:

1. gcd(N,φ(N)) = 1.

2. (1 +N)a = (1 + aN) mod (N2) for 0 ≤ a ≤ N .

3. ZN × Z∗N is isomorphic to Z∗N2 , and

f : ZN × Z∗N → Z∗N2

f(a, b) = (1 +N)a · bN mod N2

a bijection [KL08]. It is conjectured that f is a one way function.

We call y ∈ Z∗N2 an N th residue modulo N2 if there is an x such that y = xN mod N2. Note
that is is the case for all f(0, b) ∈ Z∗N2 with b ∈ Z∗N [KL08].

The security of Paillier can be reduced to the hardness of distinguishing f(0, r) from
f(r′, r) for random r′ ∈ ZN and r ∈ Z∗N .

Keys. The public key is (G,N) = (N+1, N), and the private key is φ(N) = (p−1)(q−1),
where φ is Euler’s totient function.

Encryption. A message m ∈ Zn is encrypted as

c = f(m, 1) · f(0, r) = f(m, r) (2.9)

for a random r ∈ Z∗N ; this implies gcd(r,N) = 1 and thus according to Euler’s theorem
rφ(N) = 1 mod N .

9
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Decryption. Let
ĉ := cφ(N) mod N2 (2.10)

and note that
ĉ = fφ(N)(m, r)

= f(m · φ(N) mod N, rφ(N) mod N)

= f(m · φ(N) mod N, 1)

= (1 +N)m·φ(N) mod N

= (1 + (m · φ(N) mod N) ·N) mod N2,

(2.11)

and thus the message can be restored with

m =
ĉ− 1

N
· φ(N)−1 mod N, (2.12)

where the fraction denotes integer division.

Proof of Fair Encryption

We now give the proof of fair encryption [FS01, PS00], reformulated in the simplified Pail-
lier scheme.

Let 〈g〉 = Gq′ ⊂ Z∗p′ be the group of quadratic residues modulo a safe prime p′ of order
q′, and y = gx mod p′ with x ∈ Zq′ . Additionally let H be a hash function which produces
a value in [0, B). Fix A such that A ≥ B · q′ + k′ holds for a security parameter k′.

The proof of fair encryption convinces a verifier that, using the Paillier private key φ(N),
it is possible to find values σ < A and τ < B such that σ = τx mod q′ andGσY −τ = f(0, κ)
for some κ. These two equalities will later be used in the reconstruction of x.

The proof consists of the following steps executed by the verifier and prover, and fails
with probability smaller than 1− 2−k

′
for an honest prover [FS01].

Start The verifier knows the encryption Y = f(x, u), the group element y = gx and the
Paillier public key (G,N). The prover additionally knows x.

Commitment The prover chooses random r ∈R [0, A) and random s ∈ Z∗N . He then sends
t := (gr mod p,GrsN mod N2) to the verifier.

Challenge The verifier sends to the prover the randomly selected challenge e ∈R Zq.

Response The prover computes z := r + ex and w := sue mod N and sends (z, w) to the
verifier.

Verification The verifier checks whether z < A, gr ?
= gzy−e mod p andGrsN = GzwNY −e mod

N2.

The protocol is made non-interactive with the Fiat-Shamir trick by using e = H(g,N, y, Y, gr mod
p,GrsN mod N2). Due to the failure probability for an honest prover, the generation of the
non-interactive proof must be repeated with different values for t until z < A.

10



2.3 Zero-Knowledge Proofs

Reconstruction. Let x̃ be the decryption of Y . If gx̃ = y mod p′, then x = x̃ and no recon-
struction is necessary. Otherwise, x can be reconstructed from N and x̃ if the proof of fair
encryption was valid (see [PS00] for an algorithm to compute Y that make reconstruction
necessary).

From the proof of fair encryption it follows that

f(0, κ) = GσY −τ

= Gσ(GxuN )−τ

= f(σ, 1) · f(x, u)−τ

= f(σ, 1) · f(−τx, u−τ )

= f(σ − τx, u−τ )

(2.13)

and thus σ − τ x̃ = 0 mod N .
Finding σ and τ can thus be reduced to the shortest vector problem for the lattice with

base ((N, 0)T , (x̃, 1)T ). From τ and σ, the discrete logarithm logg y = x can then be restored
as x = στ−1 mod q′.

In practice, for finding σ and τ the Gauss algorithm[Coh93, Algorithm 1.3.14] can be
used, which finishes in O(logN) iterations.

Gauss Algorithm for Discrete Logarithm Reconstruction

Let ~a = (N, 0)T and~b = (x̃, 1)T be two linearly independent vectors in an Euclidean vector
space. The following algorithm (sometimes called the Gauss algorithm [Coh93, Algorithm
1.3.14]) finds the shortest7 non-zero vector ~z = (σ, τ)T such that c1~a + c2

~b = ~z for some
c1, c2 ∈ Z:

1. Set A := ‖~a‖, B := ‖~b‖. If A < B, exchange A with B and ~a with~b.

2. Set n := a1b1 + a2b2, r := bn/B + 1/2c and T := A− 2rn+ r2B.

3. If T ≥ B then output ~z := ~b and terminate. Otherwise, set ~t := ~a − r~b, ~a := ~b, ~b := ~t,
A := B, B := T and go to step 2.

7For some given norm. For our purposes, we use the norm ‖~z‖ = z2
1 + z2

2
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3 Distributed Key Generation and
Cooperative Decryption

In traditional asymmetric cryptostems, a single party maintains ownership of a secret key
used for signing and/or encryption. This is unacceptable in distributed computations,
where there is commonly no single party that is trusted to be both honest and sufficiently
immune to compromise.

Threshold cryptography is an approach to solve this problem. It replaces the trust in a
single party with trust in the assumption that no large subset of the participants will be
compromised by the same party or form a collusion. We only consider a (k, `) threshold
scheme, where at least k of ` parties must cooperate in order to restore the secret key. The
parties P1, . . . , P` of the group are known at the start of the protocol; the group cannot
change during the protocol.

While threshold cryptosystems exist for a variety of cryptographic operations, we only
focus on the operations immediately relevant for the implementation of electronic voting:
Distributed key generation (DKG) and cooperative decryption. The former is necessary as
no single party can be trusted to “forget” a secret key after generating and distributing it.
The latter protocol enables the decryption of a message which has been encrypted with the
group’s public key, without allowing recovery the secret key, as this would again expose
the secret key to a single party.

This chapter first explains the principle behind the threshold cryptography required for
some electronic voting schemes. After giving the basic scheme of Pedersen [Ped91], we
consider two advanced protocols due to Gennaro [GJKR99] and Fouque [FS01] respec-
tively, which aim to fix problems with Pedersen’s scheme. We proceed to discuss our
implementation of Fouque’s scheme in GNUnet and give some performance figures.

Some of the material in this chapter has been adapted from a seminar paper written by
this author [Dol13].

3.1 Background

Elgamal [ElG85] is used as the underlying cryptosystem for the threshold schemes we
discuss here (see section 2.1.3). A basic building block for Pedersen’s and Fouque’s dis-
tributed key generation schemes is Feldman’s Verifiable Secret Sharing scheme [Fel87].
The cooperative decryption relies on a zero-knowledge proof for the equality of logarithms
(see section 2.3.1).

Fouques scheme additionally requires Pailliers cryptosystem [Pai99] and a zero-knowledge
proof of fair encryption; both are described in section 2.3.3.
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3.2 Pedersen’s Distributed Key Generation

The basic idea of Pedersen’s DKG protocol [Ped91] is that each player Pi deals a pre-secret
xi using the Feldman Verifiable Secret Sharing (VSS) scheme [Fel87]. The resulting shares
of all pre-secrets are then re-combined to yield a threshold-shared secret that is not known
to any of the participants. The values published as a by-product of the Feldman VSS can be
used to compute the public key h = gx =

∏
gxi corresponding to the secret-shared private

key x =
∑
xi.

3.2.1 Basic Protocol

Let f be a polynomial of degree k − 1 where x = f(0) is the private key that will be jointly
generated by and threshold-shared among the group, in a matter such that Pi learns f(i)
for i ∈ {1, . . . , `}.

First, each player Pi generates a secret pre-share xi ∈ Zq, and deals it with Feldman’s
VSS protocol (see section 2.2.3) This results in ` polynomials φ1, . . . , φ`, where φi represents
the threshold-shared pre-secret of player Pi.

Player Pi now knows

• his own pre-secret xi = φi(0) and

• one share φj(i) of the pre-secret xj for each player Pj with j ∈ {1, . . . , `}.

A player Pi can now recombine his shares of the pre-secret to a share f(i) of the public
key x = f(0), as

f(i) =
∑

1≤j≤`
φj(i). (3.1)

From that it follows that

x = f(0) =
∑

1≤j≤`
φj(0) =

∑
1≤j≤`

xj . (3.2)

As a by-product of the Feldman VSS protocol, each player has computed and published
gφi(0) = gxi . These values are utilized to compute the public key h = gx as

h = gx = g
∑

1≤i≤`
xi =

∏
1≤i≤`

gxi . (3.3)

3.2.2 Handling Complaints

If a player receives no shares or a share that does not pass verification, he has to file a
complaint against the faulty player. However, it is also possible for complaints to be filed
fraudulently against an honest player. A possible strategy for handling complaints is the
following [FS01]:

• If at least k complaints are filed against player Pi, he must be faulty and is disquali-
fied, as we can assume that no threshold of players files a fraudulent complaint.
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3.3 Gennaro’s Protocol

• A player with less complaints reveals all shares he sent to a complaining player. If
the shares do not match the commitment, the player is disqualified. Otherwise, less
than k shares of the player’s pre-secret have been revealed, and the scheme is still
secure.

Note that this can only work when filing and resolving complaints is done over a reliable
broadcast channel, as peers much reach (Byzantine) consensus on the complaints and the
corresponding answers.

Problems with Pedersen’s Protocol

In the asynchronous or bounded synchronous communication model, Pedersen’s protocol
is susceptible to an attack by a rushing adversary. A rushing adversary is able to wait for
and observe values sent to him before contributing his own values.

A coalition of t malicious peers can influence the distribution of the public key in the
following way: The malicious peers wait until all other peers revealed their values they
previously committed to. The malicious coalition can then choose between 2t different
public keys by deciding for each of the malicious t players whether they will reveal his
values or drop out of the protocol.

A modified version of the attack [GJKR99], which requires t > 1, also works in the
synchronous model (which precludes rushing adversaries). The malicious players each
distribute k − 1 incorrect shares to the honest players, which will not yet disqualify them.
The malicious coalition can then decide for each malicious peer whether an additional
complaint will be filed against him, which will disqualify him. In this version of the attack,
it is not clear who played incorrectly, as complaints could also be fraudulent.

It is not fully clear to what extent the rushing attack is purely theoretical. While the
distribution of keys is indeed biased (causing problems with some security proofs), the at-
tacker can only select between a number of public keys that is negligible small compared to
the total number of public keys. Gennaro et al. have shown [GJKR03] that some protocols
are still provably secure when Pedersen’s key generation protocol is used.

3.3 Gennaro’s Protocol

Gennaro’s protocol [GJKR99] is a modification on Pedersen’s protocol that repairs the pos-
sible bias on the public key distribution introduced by malicious players.

The key insight of Gennaro’s scheme is to mask the group’s public key until all shares
have been exchanged. The protocol introduces a second round, where all players that
completed the first round without being disqualified reveal information that allows all
players to compute the group’s public keys. The attack where malicious players do not
contribute their share in the second round is addressed by a reconstruction algorithm run
by the honest peers.

Gennaro’s protocol is secure against rushing adversaries, and a malicious collusion of
peers cannot use the handling of complaints to bias the distribution of the public key
[GJKR03].
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3.4 Fouque’s Protocol

Fouque’s protocol [FS01] is another variation of Pedersen’s protocol, where communica-
tion over private channels is replaced by reliable broadcast and fair encryption. This ap-
proach has the advantage that it is easy to verify that all parties played correctly, making
the handling of complaints unnecessary.

3.4.1 The Protocol

Each player Pi generates random coefficients for a polynomial

fi(X) =
∑

0≤j<k
ai,jX

k ∈ Zq[X] (3.4)

and a Paillier key pair (SK i,PK i).

First Round. Each player Pi for 1 ≤ i ≤ ` broadcasts his Paillier public key PK i as well
as a commitment gfi(0) to his pre-share fi(0). Note that the original description omits the
commitment, which is necessary to guarantee security against a rushing adversary without
a incoercible third party (see section 3.4.2).

Second Round. Each player Pi for 1 ≤ i ≤ ` broadcasts the following values

• Ai,j = gai,j for 0 ≤ j ≤ k

• yi,j = gfi(j) for 1 ≤ j ≤ `

• Yi,j = EncPK j (fi(j)) = G
fi(j)
j uNi

i,j mod N2
j for 1 ≤ j ≤ ` and random ui,j ∈ Z∗N .

• A zero-knowledge proof (ei,j , wi,j , zi,j) that proves that fi(j) can be restored from Yi,j
by Pj for 1 ≤ j ≤ `. See section 2.3.3 for the description of the zero-knowledge proof.

Verification. All players must check all zero-knowledge proofs (even the ones that do
not prove anything about the values encrypted with their own public key) and verify that

t∏
k=0

Aj
k

i,j = yi,j . (3.5)

for all 1 ≤ i ≤ ` and 1 ≤ j ≤ `.
All players that pass the verification are in the set QUAL, which is the same for all honest

players.

Shares and Public Key. The share of Pj for the private key x =
∑
i∈QUAL fi(0) is com-

puted as sj :=
∑
i∈QUAL fi(j).

The public key h = gx is computed as h =
∏
i∈QUALAi,0.

16



3.5 Cooperative Decryption

3.4.2 Defense against Rushing Adversaries

The rushing attack against Pedersen’s protocol also applies to Fouque. To defend against
it, Fouque suggests employing an incoercible player. The incoercible player is essentially
a trusted third party that supplies a uniformly distributed random value that can neither
be influenced nor predicted by any of the players. The incoercible player will provide an
additional share after all other players provided their values in round two.

While in practice an incoercible player may be hard to attain, it is possible to simulate
one with a collective coin flipping protocol [BOL90], executed as a third round.

3.5 Cooperative Decryption

After executing the distributed key generation protocol, a sufficiently large set of players
could cooperate to restore the secret key in order to use it for a signing or decryption
operation. This, however, is not desirable, as then some parties would know the full key,
and could use it for further operations without any cooperation from the rest of the players.

Fortunately, it is possible to combine Lagrange interpolation with Elgamal decryption
to obtain an algorithm which allows the group of players to decrypt a value without re-
covering the secret key x [CGS97].

From the equation for Elgamal decryption

m = c2 · s−1, (3.6)

we obtain
m = c2/

∏
j∈Λ

w
λj,Λ
j , (3.7)

where wj = c
sj
1 is a partial decryption that is computed by each participating player and can

only be used to decrypt one specific message.

3.6 Robust Decryption with Zero-Knowledge Proofs

While the generation of the key is verifiable, a malicious player P̃i could still disrupt the
decryption protocol by contributing a wrong value for wi. To prevent this, each player
must construct a non-interactive zero-knowledge proof for the fact that wi has been com-
puted correctly, i.e. that

si = logg g
si = logc1 wi. (3.8)

In other words, the Pi has to prove that that wi has actually been computed with the
player’s share.

For this, the Chaum-Pedersen protocol can be used, which builds on the Schnorr-protocol
[Sch90] (see also section 2.3):

Start The prover knows her share sj and the verifier knows the ciphertext (c1, c2)

Commitment The prover sends (gβ, cβ1 ) to the verifier, with β ∈R Zq.

Challenge The verifier sends to the prover the challenge γ ∈R Zq.
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Response The prover computes r := β + siγ, using her knowledge of si. She then sends
r to the verifier.

Verification The verifier checks the following equations:

gr
?
= gβ(gsi)γ (3.9)

cr1
?
= cβ1w

γ
i (3.10)

Note that this protocol is only zero-knowledge under the assumption that the verifier
is honest, which requires either the Fiat-Shamir trick to be applied, or access to a shared
source of randomness.

3.7 Implementation

We implemented Fouque’s protocol and robust cooperative decryption for GNUnet in
form of the DKO (distributed key operations) service. Instead of using reliable broad-
cast, values are communicated with the CONSENSUS service, which implements Byzantine
agreement on sets. Its implementation is described in a separate report [Dol14].

In our implementation, the size of the generated Elgamal public key is fixed to 1024 bits.
We use Paillier with 2048-bit keys.

3.7.1 Key Generation

The generation of a new threshold key is initiated by all peers calling GNUNET DKO create session
with the same value for

• the list of other peers in the group,

• the threshold value k,

• a unique session identifier (which allows the same group of peers to have multiple
sessions and thus generate multiple threshold-shared keys simultaneously),

• the time when key generation should start1 and end.

Peers that are in the group but do not participate are considered faulty.
When the key generation concludes, every peer receives a share and the group’s public

key, which can be used to encrypt messages.

1This value is passed to the CONSENSUS service. If the start time is in the future, the key generation will be
delayed to the start time. If the start time is in the past, the local peer will skip some consensus rounds,
and the consensus might still succeed.
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3.7 Implementation

3.7.2 Decryption

Decryption is initiated by calling GNUNET DKO decrypt and providing

• the value to encrypt,

• the peer’s share of the group secret and

• the time when decryption should start2 and end.

The decryption does not have a dedicated session identifier, as the decryption session
is already identified by the value that is to be decrypted. If a peer requests decryption
and less than k other peers request decryption of the same value in the same interval, the
decryption will time out and fail.

3.7.3 Limitations of the Implementation

The current implementation does not simulate the incoercible third party. This reduces the
security of the protocol to the security of Pedersen’s protocol. We argue, however, that it
is still favorable to implement this version of the protocol, as the communication between
peers (especially for the treatment of complaints) is highly simplified.

Gennaro et al. [GJKR03] have shown that even Pedersen’s protocol is secure for some
applications. It is an open question if and to what degree an attacker could exploit the
rushing attack to compromise the voting system discussed in chapter 4.

3.7.4 Performance Evaluation

The total number of bytes broadcast during the distributed key generation (including the
EdDSA signatures on the consensus set elements) is 528` + 120k` + 1796`2, where ` is the
number of peers and k is the threshold. The total size the of zero-knowledge proofs, which
grows quadratically with `, limits the maximum number of peers to ` ≤ 11, as a single
consensus set element may not exceed 64 Kilobytes in the current implementation of the
CONSENSUS service. For a single decryption, only 872` bytes are broadcast.

We simulated the execution of the key generation protocol using GNUnet’s testbed in-
frastructure [Tot13a]. We measured the CPU user time (shown in table 3.1 taken by gnunet-
service-dko with the time command commonly available on GNU/Linux systems.

Note that the measurements only include cryptographic operations executed in the DKO
service, and do not take the resources required by other GNUnet components into account.
We do not give measurements for the execution time of the full protocol including commu-
nication, as the underlying communication primitive (CONSENSUS) is not implemented in
the fully robust (i.e. Byzantine fault tolerant) version. Furthermore the execution time is
highly dependent on the performance of the underlying transport protocol as well as the
CADET service3, whose implementation is still evolving.

The large standard deviation of measured user time can be explained by the large vari-
ance of the number of context switches (obtained with time -f ’%c’). While the con-
text switches itself are not accounted for in the user time, a higher number of cache misses

2See footnote 1.
3GNUnet’s end-to-end transport protocol, comparable to a TCP/IP for P2P networks [PG14].
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group size `
user time for key

generation
CPU user time for key

generation
3 1 s± 0.2 s 1.1 s± 0.2 s

5 1.25 s± 0.36 s 1.36 s± 0.40 s

10 1.92 , s± 0.31 s 2.0 s± 0.36

Table 3.1: Performance of distributed key generation measured with TESTBED on a 4-core
Intel i5 3.3 GHz processor. The standard deviation of the measurements is shown
in parentheses. For the threshold, k = d2`/3e was chosen. Measurements were
repeated and averaged over 10 executions.

due to context switching could be responsible for the higher execution times. In our ex-
periments, the number of context switches for processes in the same TESTBED execution
differed by a factor of up to two. Note that number of context switches differs too severly
to be explainable by just the difference in execution time.
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4 Electronic Voting

A myriad of cryptographically secure voting schemes have been proposed in the literature,
beginning with Chaum’s mix-net voting [Cha81] in the 1980s.

In this chapter, we will first discuss some electronic voting schemes and implementa-
tions we consider relevant and notable. As we are mainly concerned with remote electronic
voting in digital communities interacting in a peer-to-peer network, paper-based schemes
such as Prêt à Voter [RBH+09], PunchScan [PH06], Scratch & Vote [Adi06] or Scantegrity
[CCC+08] will not be further discussed.

We then describe and evaluate the performance of our implementation of the scheme by
Cramer et al. in GNUnet.

4.1 Properties of Voting Schemes

To evaluate which of the proposed voting systems is most appropriate for this kind of use,
we consider the following desirable properties (for a more detailed discussion of security
properties see e.g. [Cet08]):

Secrecy of Ballot It is infeasible to determine which option a voter has voted for.

Correctness Votes are counted according to the rules of the election. In particular, it is
impossible for a voter to submit more votes than designated, or to tamper with the
result by contributing an invalid vote.

Individual Verifiability Every voter is able to convince himself that his vote was counted
in the final result.

Universal Verifiability Any third-party auditor is able to verify that the votes were tallied
correctly.

Coercion-resistance It is infeasible for an adversary to verify that a voter complied to the
adversary’s demands, for example that he voted for a certain candidate or abstained
from voting. A weaker version of coercion-resistance is receipt-freeness, where the
voter is not able to construct a proof that shows to a third party which option he
voted for.

Fairness It is not possible to leak a partial result of the election’s outcome, as the partial
result could influence the decision of subsequent voters.

Flexibility The voting scheme should support commonly used electoral systems. At the
least, the voting scheme should allow to select from a list of candidate, allowing
cumulative voting.
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Robustness The election scheme tolerates that a certain threshold fraction of the election
officials may behave unexpectedly in arbitrary ways, for instance by being unavail-
able, corrupted or under attack of an adversary.

4.2 General Setting

A widely used setting for describing voting schemes was introduced by Benaloh [Ben87].
The main entities in this model are the voters V1, . . . , Vn, the voting authorities (sometimes
called trustees) A1, . . . , A` and a bulletin board.

The bulletin board conceptually is a stateful, append-only public channel: Messages
may be posted to it by (authorized) voters and authorities, but not removed. The content
of the bulletin board is publicly accessible to facilitate election audits by third parties. In
practice, the bulletin board is often implemented by the authorities themselves. See for
example the survey by Peters [Pet05] or our implementation in section 4.6.1.

Note that some schemes rely on additional physical assumptions, such the secret one-
way communication channels from Hirt and Sako [HS00].

An election generally proceeds in the following phases:

1. Initialization. The parameters of the voting scheme are initialized, by an election
supervisor and/or by cooperation of the authorities.

2. Ballot Preparation. The vote preparation phase is optional, and allows voters to com-
pute and post values to the bulletin board which will speed up the next phase, with-
out deciding on their vote yet.

3. Ballot Casting. The voters post a message to the bulletin board that represents their
vote.

4. Tallying. Authorities cooperate to count all votes. The result, including proofs allow-
ing verification, are posted to the bulletin board.

4.3 Voting Scheme of Cramer et al.

The voting scheme of Cramer et al. [CGS97] (henceforth called CDS for the authors’ ini-
tials) is particularly attractive as it is efficient and satisfies all properties discussed in sec-
tion 4.1 except for coercion resistance. Let κ be a security parameter. To cast their vote,
voters only need to post a message of size O(κ) to the bulletin board. The computation
time to generate the message is dominated by O(κ) modular exponentiations.

Initialization In the initialization step of the scheme, the authorities A1, . . . , A` jointly
generate a (k, `) threshold Elgamal key pair (see chapter 2 for the full key generation pro-
tocol). Note that the decisional Diffie-Hellman assumption (see section 2.1.1) must hold
in the group used for Elgamal. In our work, we will use the order q group Gq ⊂ Z∗p of
quadratic residues modulo a safe prime p.

Let x ∈ Zq be the private key of the group (which is shared among the authorities, but
not stored in memory anywhere) and h = gx the corresponding public key. A message m
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which is encrypted with random nonce α ∈ Zq as (gα, hα ·m) can then only be decrypted
by at least k cooperating authorities, and no information can be derived about m by less
than k authorities. For an election with K choices, the election additionally must agree on
K independent generators G1, . . . , GK of Gq.

Vote Casting Each voter encrypts his vote for choice v ∈ {1, . . . ,K} as

(x, y) = (gα, hα ·Gv).

where α ∈R Zq is a nonce. In order to prove that the encryption was computed correctly,
the voter generates a zero-knowledge proof for

logg xi = logh(y/G1) ∨ . . . ∨ logg xi = logh(y/Gη)

This proof can be obtained by applying the construction from [CDS94] to the Chaum-
Pedersen non-interactive zero-knowledge proof for equality of discrete logarithms (see
section 2.3.1). Let (xi, yi) denote the encrypted voted of voter Vi.

Tallying After the vote submission phase, authorities compute

(X,Y ) =

(
n∏
i=1

xi,
n∏
i=1

yi

)

and use the cooperative decryption protocol to obtain the encoded tally

W = GT1
1 · . . . ·G

TK
η

where Ti is the number of votes for choice i respectively.
The tally (T1, . . . , TK) can be obtained via brute-force for smaller elections by trying

all non-negative valuations for T1, . . . , TK that satisfy
∑K
i=1 Ti = n. For larger elections,

more sophisticated algorithms such as baby-step giant-step [Sut07] may be employed to
improve the O(nK) runtime of the naive algorithm to O

(
n

K−1
2

)
[CGS97].

4.4 Other Cryptographic Voting Schemes

4.4.1 Voting with Mix-nets

In mix-nets [Cha81, Nef03], messages are routed through a sequence of mutually distrust-
ing servers S1, . . . , S` in order to hide the correspondence between message accepted by
S1 and messages output by S`. In particular, messages are transformed and their order is
shuffled when being passed from one server to the next. The origin of a message remains
hidden as long as at least one server operates correctly.

An electronic voting system can be built with a mix-net by requiring all voters to post
their encrypted vote together with their identity to the bulletin board. After the voting
phase has ended, all encrypted votes are sent through the mix-net, which anonymizes the
votes.
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Not all types of mix-nets are appropriate for electronic voting. In decryption mix-nets,
first described by Chaum [Cha81], each server Si has an asymmetric key pair (PK i,SK i),
where the PKi is the public key and SKi is the private key. Let Enci(m) denote the en-
cryption of message m with PKi. A message m given to Si is encrypted as

E1,...,n = Enc1(Enc2(. . .Encn(m) . . . )),

and each server in the chain peels off one layer of encryption by decrypting the received
message with its private key. The exit server S` will output m. While this type of mix-
net is useful for implementing an anonymous communication channel [DMS04], it is not
appropriate for electronic voting, as the mixing is not reliable: Servers can drop and forge
messages1.

Re-encryption mix-nets[Nef03], on the other hand, are more appropriate for electronic vot-
ing. In this variation, a message m is encrypted with a threshold public key (see chapter 3)
before sending it to S1. Instead of decrypting it, the servers re-encrypt the message before
passing it on to the next server. Re-encryption is the process of transforming a ciphertext
into a different ciphertext without changing the corresponding plaintext, making it hard to
link the two ciphertexts. To achieve verifiability, the servers additionally publish a proof
which demonstrates that the shuffling and re-encryption was performed correctly.

The set of peers that established the threshold public key must then cooperate to decrypt
the votes that are output by Sn. It is easy to verify that the result of the election is correct
by checking all proofs of shuffling and re-encryption as well as the proof of correct of
decryption.

Mix-net-based electronic voting schemes provide incoercibility, a property that currently
no other construction can provide. The main disadvantage of the approach, aside from its
complexity, is that failure of just one of the mix servers can disrupt the whole election pro-
cess. While this can be detected and cannot lead to a wrong election result, it may delay
an election. Due to the large number of zero-knowledge proofs, mix-net based voting sys-
tems tend to be inefficient and hard to implement, though some proposals exist to simplify
checking and creating proofs by making them probabilistic [Ben06, JJR02].

A more recent scheme based on mix-nets [CKLM13] claims to be more efficient, having
linear runtime in the number of voters, mix servers and cooperative decryption authorities.

4.4.2 Voting with Blind Signatures

Blind signatures schemes [Cha83] are a well-studied variation of digital signature schemes,
where the party that requests a signature applies a blinding factor to the message that is
sought to be signed before sending it to the signer. The signer then responds to the blinded
message with a blinded signature, and the requester is able to produce a valid signature
by removing the blinding from the blinded signature. In addition to the usual properties
of digital signatures, the following must hold for blind signatures:

• The signer is not able to learn the content of the message being signed, and

• the signer cannot link an unblinded message to a corresponding blinded message.

1To provide secrecy of ballot, votes must not signed.
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It is possible to construct a simple electronic voting scheme with blind signatures [Cha83,
FOO93]. In this scheme, the voters must authenticate themselves with the voting admin-
istration in order to obtain a blind signature over their vote. The voters send their signed
vote to a counting authority over an anonymous channel. After the election has ended, the
counting authority makes the list of submitted signed votes publicly available.

While this scheme is cheap, simple and elegant, it lacks a number of desirable properties:

Fairness. The counting authority could publish a preliminary result of the election, pos-
sibly influencing the decision of the remaining voters. The variation by Fujioka [FOO93]
prevents this by having voters request a signature over a commitment to the vote, instead
of the vote itself. Only after the vote submission period has ended, voters anonymously
reveal their votes. This only partially solves the problem, as voters can still decide not to
reveal their vote (and thus effectively abstain from voting), after a preliminary result was
leaked in the reveal phase.

Verifiability. While voters can verify that their vote was counted for the final tally, it is
possible for the voting administration to create an arbitrary number of valid votes, simply
by signing them. It is only possible to detect this if the number of counterfeit votes exceeds
the number of abstaining voters, which is typically quite large.

Secrecy of Ballot. If a voters want to prove that either a blind signature was not issued
correctly or their vote was not counted, they have to reveal their vote when filing a com-
plaint.

Robustness. The voting administration, which blindly signs votes, is a single point of
failure.

4.4.3 Voting with Publicly Verifiable Secret Sharing

An elegant but relatively unknown electronic voting scheme is based on Schoenmakers’
publicly verifiable secret sharing scheme (PVSS) [Sch99]. A secret sharing scheme is pub-
licly verifiable if not just the share-holders but any third party can verify the validity of a
sharing. An advantage of Schoenmakers’ scheme is that it does not require the authorities
to generate a threshold public key. This makes the scheme especially suitable for smaller
elections, where the overhead of the distributed key generation dominates.

Unfortunately, the scheme described by Schoenmakers does only allow binary elections
(i.e. with two choices). It might be fruitful to investigate whether the constructions in
[CDS94] could be applied to yield a multi-choice election protocol.

Schoenmakers’ protocol does not provide coercion resistance.
In a certain sense, Schonmakers’ scheme is dual to the CDS protocol. While in CDS,

the authorities threshold-share the decryption key and voters encrypt ballots, in Schoen-
makers’ scheme the voters threshold-share their vote with all authorities by posting the
encrypted shares on the bulletin board. This makes the size of one ballot linear in the
number of authorities `. As the secret sharing scheme is publicly verifiable, the correctness
of a casted ballot can be verified by third parties.
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In the tallying phase, the authorities decrypt their respective shares from the bulletin
board and homomorphically add them. This results in every authority having a share of
the final tally. If at least k authorities (where k is the threshold parameter) post a partial
decryption of the final tally on the bulletin board, the final tally can be restored in plaintext.

4.5 Existing Implementations

Despite the enormous amount of research on electronic voting protocols, practical imple-
mentations are scarce. Some of the claimed implementation such as the CyberVote [ER06]
or Sensus [CC96] either have no source code available or are unmaintained and propri-
etary prototypes.

To out knowledge, the ADDER voting system [KKW06] is the first implementation of a
voting protocol based on homomorphic encryption that uses a distributed key generation
protocol. Although the authors do not explicitly mention the origin of the construction
they use for homomorphic tallying, it appears that a variation of the scheme of Cramer et
al. is employed. ADDER uses a single MySQL database to implement the bulletin board.
Authorities do not sign messages written to the bulletin board, but must authenticate with
their email address and a password to a “guard server” before writing to the bulletin
board. This renders the “guard server” a single point of failure.

Helios 1.0 [Adi08] is an implementation of mix-net voting. The system does not im-
plement threshold decryption, but requires a trusted third party to hold the decryption
key.

In Helios 2.0 [ADMP+09], the mix-net approach was replaced by a voting protocol with
homomorphic encryption in the style of the CDS scheme. Helios 2.0 does not implement
distributed key generation, but relied on physical assumptions (the removal of all net-
work devices and writable storage devices except a “trusted” USB thumb drive in a key
ceremony). Helios 2.0 as been successfully used for the real-world election of a univer-
sity president. The client implementation, however, was shown to exhibit security flaws
[ED10], which were subsequently fixed in Helios 3.0. To date, the bulletin board in Helios
is implemented by a single server. The implementation of Helios is free and open source
software2.

Civitas [CCM07] is an implementation of mix-net voting with focus on coercion free-
ness and verifiability. Civitas claims to implement a robust and scalable bulletin board
by having multiple “ballot box servers“ collect votes. At the end of the voting period, a
trusted election supervisor signs the content of each of the ballot boxes, before they are
sent through the mix net. This ensures that votes submitted to at least one honest ballot
box are counted, but only if the election supervisor is honest. While there is a technical
report about some implementation details of Civitas [DCC08], to date there is no publicly
available implementation.

2https://github.com/benadida/helios-server, https://vote.heliosvoting.org/
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4.6 Implementation of Electronic Voting in GNUnet

We now describe our implementation of the CDS voting scheme in GNUnet. The source
code is available in the org.gnunet.voting package of GNUnet-Java, licensed under
the GPLv3+.

4.6.1 Bulletin Board

As a bulletin board, we use GNUnet’s Consensus service, which is fully described in an
separate technical report [Dol14]. Deviating from other common implementations of bul-
letin boards (see Peters [Pet05] for a survey of other bulletin board implementations), we
do not implement a replicated state machine. Instead, voters must post their ballots to
at least one correct authority (similar to Civitas). The authorities then jointly execute a
Byzantine fault tolerant multi-peer set reconciliation protocol on their respective set of
ballots received from voters. This stands in contrast to state-machine replication, where
latency due to Byzantine agreement is incurred on every submission of a ballot. We be-
lieve that our approach is necessary in a peer-to-peer system such as GNUnet, where high
latency is expected.

Other agreement protocols such as Paxos [Lam01, Lam06] favor consistency over progress,
which makes less suitable in environments where it is expected that a number of authori-
ties will temporarily fail to be available. We argue that our approach offers more simplicity,
at least compared to the notoriously complex Paxos protocol.

4.6.2 Roles

Our system has three roles:

Election Supervisor The election supervisor is identified by an ECDSA public key3. By
signing a description of the election (see below), the Election Supervisor attests that
he will accept the result of the election. The Election Supervisor is also responsible
for selecting the Election Authorities. No other trust is placed on the Supervisor

Election Authority The election authority is identified by an EdDSA public key4. An Au-
thority is responsible for collecting and verifying voters’ ballots, tallying the result
after the voting period, as well as providing audit data to third parties.

Voter A voter is identified by his ECDSA public key.

4.6.3 Voter Authentication

The election supervisor includes a signature on the list of eligible voters in the ballot de-
scription, and sends the list to all authorities on the election registration.

3 In GNUnet, each user pseudonym (called an ego) corresponds to an ECDSA key.
4 Each election authority corresponds to a GNUnet peer
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4.6.4 Ballot Issuing

The election supervisor initiates an election by writing the election data in a ballot file
(implemented as a GNUnet configuration file), signing it and registering it with the au-
thorities that should be responsible for the election. If an authority agrees to participate in
the election, it add its signature to the ballot form, and sends it back to the supervisor.

The initial ballot form contains the following information:

• The topic of the election.

• Available choices (e.g. candidates)

• List of Election Authorities used in the election

• The threshold k.

• Signed hash of the list of eligible voters

• A time interval for each of the election phases.

• The list of generators used for multi-choice elections.

• A signature on all items above.

The election phases are described by the following timestamps:

KEYGEN START Start of the distributed key generation

KEYGEN END Deadline for the distributed key generation

VOTE START Start of the vote submission period, where authorities accept ballots from
voters.

VOTE CLOSE End of the vote submission period. Once the vote submission period is over,
authorities immediately run the set reconciliation protocol on all received ballots.

CONCLUDE Deadline for the set reconciliation protocol and start of the cooperative decryp-
tion protocol for the product of encrypted votes.

TALLY Deadline for the cooperative decryption and start of the brute-force decryption of
the final tally.

QUERY Time when voters are allowed to ask for the final tally.

END Time when the authorities are allowed to delete all information about the election.

The election is only successful if at least k honest peers finish the respective protocols for
the deadlines KEYGEN START, CONCLUDE and TALLY.
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4.7 Performance Evaluation

Choices K Generation Verification
2 35 ms 23ms

10 131ms 115ms
100 1.17s 1.14s
1000 11.7s 11.5s

Table 4.1: Time required to generate and verify a ballot with our implementation, mea-
sured on an Intel i5 3.3 GHz CPU with OpenJDK7. Measurements are averaged
over 20 repetitions.

4.6.5 The Authority Service

An authority is started by running the voting-authority service on the respective
GNUnet peer. The service can be configured to only participate in elections requested by
specified supervisors. By default, registration requests from all supervisors are accepted.

Authorities communicate with the election authority and voters through GNUnet’s CADET
service [PG14].

4.6.6 Voting

After a voter receives a copy of the ballot file, he can amend it with his own encrypted
vote, including a signature and a zero-knowledge proof of the vote’s correctness. During
the vote submission interval of the election, the voter (or any other party that has the ballot
file) sends the amended ballot file to at least k authorities.

4.6.7 User Interface

While our voting implementation is mainly intended to be used as a library by other appli-
cations, we also provide a command line interface in the form of the gnunet-voting-ballot
application.

It serves four purposes:

• Signing and registering a ballot with the election authorities as a supervisor

• Encoding a vote as a voter

• Sending a complete ballot file (with the vote) to the Election Authorities

• Querying and verifying the result of an election.

4.7 Performance Evaluation

For K available choice and using 1024-bit Elgamal, the size of a vote is 480 +K · 512 bytes,
including the voter’s identity, an ECDSA signature, the encrypted choice and the proof of
validity.

Even with our unoptimized, pure Java implementation (i.e. not using any cryptographic
libraries other than java.math.BigInteger) the time to generate a vote (see table 4.1)
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is reasonable small and scales linearly with the number of available choices (due to the
size of the disjunctive proof of validity).

The tally authorities employ a naive brute-force algorithm to reconstruct the tally by try-
ing all

(n+1
K−1

)
possibilities, making the current implementation of the authorities infeasible

for large-scale elections, as one iteration of our brute-force algorithm takes approximately
40µs on our test machine (Intel i5 3.3 GHz CPU).
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5 Conclusion and Future Work

We described the design and implementation of the CDS voting scheme [CGS97] in GNUnet,
including a distributed key generation protocol. We showed that the cryptographic oper-
ations have acceptable execution time on modern computers for a moderate number of
authorities and voters.

The fully Byzantine fault tolerant implementation of the bulletin board, as well as an
investigation of the applicability of the PVSS voting scheme [Sch99] to elections with mul-
tiple choices remains future work.

Although the the mathematics behind the voting algorithm we implemented are not
easily understood by the average citizen, we believe that the availability of free software
implementations of voting systems is vital to allow the gradual transition to more secure
tools for democratic decision-making in online communities.

Surprisingly, even groups of knowledgeable professionals still advocate the use of black-
box voting system. The German Gesellschaft für Informatik 1, for example, approves the use
of Polyas [OKN+12, RJ07, MR+10], which uses centralized and proprietary components,
and only provides partial verifiability with a proposed modification [OKN+12].

The reason why these kind of voting systems are popular can probably be attributed to
their ease of deployment and use. We hope to address this issue by integrating our voting
implementation in the social networking components proposed for GNUnet [Tot13b]

1German Association for Informatics
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