
Decentralized Authentication for Self-Sovereign

Identities using Name Systems (DASEIN)

Christian Grothoff Martin Schanzenbach Annett Laube
Emmanuel Benoist Pascal Mainini

October 21, 2018

ii

Abstract

The GNU Name System (GNS) is a fully decentralized public key infrastruc-
ture and name system with private information retrieval semantics. It serves a
holistic approach to interact seamlessly with IoT ecosystems and enables people
and their smart objects to prove their identity, membership and privileges —
compatible with existing technologies.

In this report we demonstrate how a wide range of private authentication and
identity management scenarios are addressed by GNS in a cost-efficient, usable
and secure manner. This simple, secure and privacy-friendly authentication
method is a significant breakthrough when cyber peace, privacy and liability
are the priorities for the benefit of a wide range of the population.

After an introduction to GNS itself, we show how GNS can be used to au-
thenticate servers, replacing the Domain Name System (DNS) and X.509 certifi-
cate authorities (CAs) with a more privacy-friendly but equally usable protocol
which is trustworthy, human-centric and includes group authentication. We also
built a demonstrator to highlight how GNS can be used in medical computing to
simplify privacy-sensitive data processing in the Swiss health-care system. Com-
bining GNS with attribute-based encryption, we created re:claim, a robust and
reliable OpenID Connect-compatible authorization system. It includes simple,
secure and privacy-friendly single sign-on to seamlessly share selected attributes
with Web services, cloud ecosystems. Further, we demonstrate how re:claim can
be used to solve the problem of addressing, authentication and data sharing for
IoT devices.

These applications are just the beginning for GNS; the versatility and ex-
tensibility of the protocol will lend itself to an even broader range of use-cases.

GNS is an open standard with a complete free software reference implemen-
tation created by the GNU project. It can therefore be easily audited, adapted,
enhanced, tailored, developed and/or integrated, as anyone is allowed to use
the core protocols and implementations free of charge, and to adopt them to
their needs under the terms of the GNU Affero General Public License, a free
software license approved by the Free Software Foundation.

Contents

1 Introduction 1

1.1 For users . 2

1.2 For things . 3

1.3 For organizations . 4

2 Technical background 7

2.1 The GNU Name System . 7

2.1.1 Names, zones and delegations 8

2.1.2 Records in GNS . 8

2.1.3 Query privacy . 9

2.1.4 Zone revocation . 10

2.1.5 Interaction with legacy DNS 11

2.2 The re:claim identity management system 12

2.2.1 Preliminaries . 12

2.2.2 Attribute storage . 13

2.2.3 Authorization . 14

2.2.4 Deletion . 16

2.2.5 Update . 16

2.2.6 Retrieval . 16

2.2.7 Revocation . 18

2.2.8 OpenID Connect . 18

2.2.9 Sensor data access authorization 21

2.3 Group policies through the use of ABD 21

2.3.1 Approach . 22

2.3.2 Authorization through policy evaluation 24

2.3.3 Revocation . 24

3 Usability 27

3.1 Network service authentication 27

3.2 IoT sensor data access authorization 28

3.3 End-user identity access authorization 31

3.4 Accident insurance claims in Switzerland 34

iii

iv CONTENTS

4 Reliability 39

4.1 DHT fundamentals . 39

4.2 DHT reliability measurements in EC2 40

4.3 Revocation reliability . 41

4.4 Completeness and robustness . 42

4.5 Maintenance . 42

4.6 Summary . 43

5 Security 45

5.1 Adversary model . 45

5.2 Security goals . 46

5.2.1 Availability . 46

5.2.2 Authenticity and integrity 47

5.2.3 Confidentiality . 47

5.2.4 Privacy . 48

5.3 Secure implementation . 48

5.4 Data flow . 49

5.5 Attack vectors and mitigations 50

5.5.1 Confirmation attack . 50

5.5.2 Revocation . 50

5.5.3 Deleting information . 50

5.5.4 DHT value manipulation 51

5.5.5 Identity theft . 51

5.5.6 Traffic amplification . 51

5.5.7 Quantum computing . 51

5.6 Secure key management . 52

5.7 Communication protocol security 52

5.8 Comparison . 52

6 Privacy and data protection 55

6.1 Pseudonyms and the right to be forgotten 56

6.1.1 Link to legal identities . 56

6.1.2 Certified attributes . 57

6.2 Privacy of record data . 57

6.2.1 Existence of zones . 57

6.2.2 Response privacy . 58

6.2.3 Query privacy . 58

6.2.4 Zone enumeration privacy 58

6.2.5 Revocation check privacy 58

6.3 Data protection by default . 59

6.4 Summary . 59

CONTENTS v

7 Applicability 61
7.1 Certified delivery . 61
7.2 Telephony . 62
7.3 Online social networking . 63
7.4 Tor hidden services . 63
7.5 Medical applications . 63
7.6 Summary . 63

8 Compatibility 65
8.1 Hardware requirements . 65
8.2 Operating systems . 66
8.3 Network technologies . 66
8.4 Application programming interfaces (APIs) 66

8.4.1 Interoperability with DNS resolution 66
8.4.2 APIs for new applications 67
8.4.3 Defining new record types 67

8.5 Summary . 68

9 Affordability 69
9.1 Deployment cost in EC2 . 69

9.1.1 Memory consumption for zone import 69
9.1.2 Compute time for zone import 70
9.1.3 Bandwidth consumption for DNS queries 70
9.1.4 DHT replication . 70
9.1.5 Total cost . 71

9.2 Licensing costs . 71
9.3 One-time costs . 72

9.3.1 Cheap integration . 72
9.3.2 Comprehensive integration 72

9.4 Summary . 72

10 Openness 73

A Appendix 75
A.1 Reproducing our EC2 setup . 75

A.1.1 Create a virtual private Cloud 75
A.1.2 Launching the RDS database 75
A.1.3 Preparing EC2 . 76
A.1.4 Launching DHT nodes . 76
A.1.5 Launching the DNS importer 77
A.1.6 End-user setup . 78

A.2 Usability Study: DNS vs. GNS 79
A.2.1 Instructions to participants 79
A.2.2 Self-reported participant demographics 79

A.3 Usability study: IoT . 79
A.3.1 Instructions to participants 79

vi CONTENTS

A.3.2 Self-reported participant demographics 81
A.4 Usability study: re:claim . 81

A.4.1 Instructions to participants 81
A.4.2 Self-reported participant demographics 83

A.5 Usability study: Accident insurance claims in Switzerland 83
A.5.1 Instructions to participants 84
A.5.2 Self-reported participant demographics 86

A.6 Cost study: EC2 billing . 86

Chapter 1

Introduction

Identity and access management (IAM) in today’s connected society is complex.
Each person needs to remember usernames and passwords for a variety of Web
sites or other on-line services. The rise of Internet of Things (IoT) will only
make this challenge harder, as authentification against IoT devices is even more
complex: How can a person address an IoT device? How can a device recog-
nize its owner? Today, for both questions, each and every device manufacturer
provides a different solution.

In this document, we present a general solution for managing identity of
users and devices in a connected world. We propose the use of the GNU Name
System (GNS) [43], which has been first developed as an alternative to the
Domain Name System (DNS) by the GNU project. While the DNS system
– the name system which Internet users are universally familiar with today –
suffers from a wide range of security, privacy and political issues, its usability
is the backbone of all Internet services today. GNS is designed to maintain
most of the user experience of DNS, while replacing the DNS protocol with a
more decentralized, more secure and privacy-preserving protocol. Furthermore,
instead of insisting on a zone tree, GNS relaxes the relationship between zones
to that of a directed graph, thereby making it possible for users to name objects
at zero registration cost.

In this report, we detail how to use GNS as the foundation for a broadly ap-
plicable authentication and identity management system. This includes use
cases for mutual authentication, authorization and (personal) data sharing.
With GNS, it is possible for users to manage identities, identity attributes and
credentials without the need for a centralized service provider. Users and ser-
vices can securely share attributes or credentials simply over the name system
in a secure, self-sovereign manner.

The structure of this report is designed to highlight the benefits of GNS-
based identity and access management:

• State of the art: In Chapter 2, we elaborate on the technical background
for GNS and the underlying network technology and cryptography. We

1

2 CHAPTER 1. INTRODUCTION

further show how state-of-the cryptography in the form of attribute-based
encryption (ABE) can be used to enhance the existing properties of GNS,
allowing users to securely and selectively share personal data.

• Usable: In Chapter 3, we demonstrate the usability of authentication
and authorization systems built on GNS in a variety of use cases includ-
ing network service authenticaion (Section 3.1), the Internet of Things
(Section 3.2), personal data sharing (Section 3.3) and health insurance
(Section 3.4).

• Reliable and secure: We evaluated the reliability of GNS, with a fo-
cus on the availability of the network protocol and present the results in
Chapter 4. In Chapter 5, we define the security properties and adversary
model of GNS, and Chapter 6 discusses GNS’s privacy properties.

• Versatile & compatible: We present a selection of use cases in Chap-
ter 7, and detail which existing technologies GNS is compatible with in
Chapter 8.

• Affordable and scalable: We performed a detailed cost evaluation and
including performance measurements of GNS operation in Chapter 9.

• Open: We show that the solution is unencumbered free and open source
software in Chapter 10.

In the remainder of this chapter, we give an overview over how the use
of GNS benefits users, things as well as organizations in identity and access
management by leveraging the unique properties of GNS.

1.1 For users

In GNS, identities are similar to subdomains in the DNS system. Owners of
subdomains have complete control over their domain namespace. Further, users
can delegate responsibility for parts of their namespace. For example, the re-
sponsible for the name ch (we call that person: owner) can delegate to another
identity (i.e. public key) for any label inside of the ch domain. They could add
bfh inside the ch domain for the BFH, creating bfh.ch. The resulting user ex-
perience is deliberatly similar to what DNS does, minimizing the learning curve
for users.

A major difference to DNS is that the structure of the names created by
GNS is not a tree, but a directed graph. The same public key may be referred
to as bfh, bfh.ch, or bfh.fr. It can also be referred to as bfh.musterman, if
it was added to the name space by the owner of musterman.

On most of the Internet applications (Web sites and/or smartphones apps)
the users need to register and to create a username and password. For unique-
ness purpose, Web sites often use email address as username. This has two
advantages: give a unique identifier, and propose a way to reset the password.
This gives also the opportunity to firms to contact prospects through email.

1.2. FOR THINGS 3

We propose to instead use GNS for authentication in Internet applications.
At the registration, users give a GNS identity (which is automatically unique).
They do not require any username, since they can login using the key pair: The
server sends a challenge encrypted with the public key, the user uses the private
key to solve the challenge.

Using GNS, we have created re:claim, an OpenID-compatible protocol that
allows users to selectively share attributes with Web sites. Users manage their
identities using namespaces and manage the respective attribute credentials as
records. The attribute value, for example an email address, is encrypted by the
user using a secret key and an attribute-based policy. The user authorizes a
requesting party to access a set of attribute values by issuing an ABE user key.
The user key contains the set of attribute names the requesting party requested
and allows decryption of the attribute record values. The use of ABE allows us
to enforce access control on attributes that are stored in a name system, where
neither the user nor a third party is able to enforce access control decisions. To
accelerate user acceptance of re:claim, we have also implemented an OpenID
Connect layer. This allows Web sites to use the standardized OpenID protocol
to interface with re:claim and request access to attributes. Further, users are
provided with a recognizable authorization flow that is already used in “Social
Login” systems provided by Facebook or Google.

This way, typing e-mail addresses, shipping addresses, phone numbers or
even passport numbers into forms again and again is a thing of the past! We
note that only explicitly authorized Web sites will have access to the attributes,
and that users can control which attribute(s) they want to share with which Web
sites. Users can keep their attributes up-to-date by editing the master version
which is stored on their own device(s). Users can revoke access to attributes
at any time. Web sites should not even have to store the attributes, as if they
still have access they can get the current information via a GNS lookup. This
way, Web sites do not have outdated information, do not unnecessarily store
private user data, and users have the convenience of not having to type in their
private data repeatedly. Section 2.2 includes a detailed technical presentation
of re:claim and in Section 3.3, we present a user survey of the re:claim system
that we used to improve the usability of the system.

1.2 For things

The user focused approach elaborated above can be extended to devices: The
user musterman wants to use the device camera. He will add the camera in his
name space and generate camera.musterman. The name camera.musterman

will be unique and refer explicitly to this very device. Technically, this name
will refer to a public key corresponding to the private key of the device. In
this way, the device is uniquely defined. The camera may have a sticker with a
QR-code for the owner to scan its public key.

The camera will then publish access information in a record set, typically
under the empty label (or @ in DNS bind notation). In this record set, it might

4 CHAPTER 1. INTRODUCTION

publish its IPv4 and IPv6 addresses (as A or AAAA records) as well as a PSK

record to identify its owner. This PSK record will refer to a shared key used
to identify the camera’s owner. Then the applications on the camera requiring
authentication of the user can use the shared key for access control. As long
as either the zone’s public key or the label are secret, publishing the record set
with the shared key in the GNS zone will maintain the confidentiality of the
shared key.

Going beyond the simple addressing use case, we have applied re:claim to
the Internet-of-Things (IoT) in an application involving controlled sharing of
sensor data. Our “thing” is a sensor board that allows its owner to share the
sensor data stream with requesting parties such as Web services. As with the
user-focused approach, we tested the IoT use case with users and present the
results in Section 3.2.

1.3 For organizations

In a normal PKI environment a central role is played by Certificate Authorities
(CA) that are needed to bind the identity of a person with the corresponding
public key. GNS is a decentralized system and does not inherently require to
have such authorities, but supports their existence.

When GNS is used without registration authorities, anybody can create a
zone and give it any nick name, say donaldtrump. So, there is no way to be
certain that this zone is the one of the president of the United States. While
anybody can claim any name, these claims also would not be visible to anyone
else!

Thus, to make the system more useful, there should be actors in GNS ecosys-
tem playing a role similar to Certificate Authorities (CAs). However, the central
role of CAs in the case of traditional X.509 PKI for DNS is problematic: if one
of the accepted CA’s delivers a certificate, it will be accepted by everybody.
Like DNSSEC — and unlike X.509 CAs — a CA in GNS can only certify names
directly under their name. Thus, users can always explicitly see which CAs they
trust for each lookup.

A university BFH may have a policy to accept as subdomain only staff
working for the university and whose identity has been verified by the university.
So hans musterman.bfh refers to a person whose identity is Hans Musterman
and works for the bfh. For students, the bfh may have created a separate zone,
student.bfh, allowing the university to certify Hans Musterman is a student
by creating hans musterman.student.bfh. Note that Hans Musterman may
be a student and staff at the same time, in which case both names would refer
to the same zone. Furthermore, BFH may itself be recognized as a university,
for example by being referenced from the edu zone as bfh.edu.

In the GNS system, DNS-style delegation can be equivalent to certification.
Unlike DNS, a user can select which actor is used to validate the identity of
which person. For instance a colleague working for the same firm thefirm

will be known as hans muster.thefirm, but for someone outside the firm,

1.3. FOR ORGANIZATIONS 5

which do not know the public key of the firm, the same individual might be
hans muster.thefirm.fr, where AFNIC verifies the public key of thefirm.
For people knowing hans muster as hansi from the sport club, they will use
the identity hansi.sportclub or hansi.sportclub.fr. All those identities
will be valid in a certain context. Hans Musterman may choose to have them
point to the same zone (thereby making it clear that they all refer to him),
or to separate zones which would allow him to separate his personal and his
professional life. This way, each person may have different identities in different
contexts. This solution is both better for security, since one do not need to
trust all certificates issued by all CA’s, and better for privacy, since one person
will have the possibility to use different identities (pseudonyms) for different
purposes.

GNS, inherited from its SDSI roots, also contains a natural mechanism for
managing groups: a zone maybe be used to define records that can be interpreted
as a group. Members are identified by following a namespace delegation chain
until the end of the chain. If the delegation labels are easily guessed, group
membership is public, and otherwise members can choose to prove membership
by disclosing the label of the respective record. Consider a classical use case
where a company wants to offer special prices on products to university and
school students. The company may define a record label “coupon” and delegate
it to all entities that are contained in the university and school student groups.
Group membership is then managed by the respective authorities (the schools)
and they care little about the offer by the company. However, through the use
of attribute delegation through the namespace, creating such a group policy is
trivial. We present the technical details of this approach in Section 2.3.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Technical background

2.1 The GNU Name System

This chapter presents the GNU Name System (GNS) [43], a censorship-resistant,
privacy-preserving and decentralized name system designed to provide a secure
alternative to DNS. As GNS can bind names to any kind of cryptographically
secured token, it can double in some respects as an alternative to some of today’s
public key infrastructures, in particular X.509 for the Web.

The foundation of the GNS system is a petname system [39], where each
individual user may freely and securely map names to values. In a petname
system, each user chooses a nickname as his preferred (but not necessarily glob-
ally unique) name. Upon introduction, users adopt the nickname by default as
a label to refer to a new acquaintance; however, they are free to select and as-
sign any petname of their choice in place of—or, in addition to—the nickname.
Petnames thus reflect the personal choice of the individual using a name, while
nicknames are the preferred name of the user that is being identified.

The second central idea is to provide users with the ability to securely del-
egate control over a subdomain to other users. This simple yet powerful mech-
anism is borrowed from the design of SDSI/SPKI [5]. With the combination of
petname system and delegation, GNS does not require nor depend on a central-
ized or trusted authority, making the system provider-independent. Decentral-
ization for the network layer is achieved by using a distributed hash table (DHT)
to enable the distribution and resolution of key-value mappings. In theory, any
DHT or even a blockchain can be used. However, depending on the properties
of the DHT in question, varying degrees of resilience will be the result. As such,
the choice of the DHT is crucial for the performance of the system. We evaluate
the performance properties of our DHT implementation in Chapter 4.

Finally, GNS is privacy-preserving since both key-value mappings as well
as queries and responses are encrypted such that an active and participating
adversary can at best perform a confirmation attack, and can otherwise only
learn the expiration time of a response. We revisit the privacy properties in

7

8 CHAPTER 2. TECHNICAL BACKGROUND

depth in Chapter 6 after studying the formal security properties in Chapter 5.

2.1.1 Names, zones and delegations

GNS employs the same notion of names as SDSI/SPKI: principals are public
keys, and names are only valid in the local namespace defined by that key.
Namespaces constitute the zones in GNS: a zone is a public-private key pair and
a set of records. GNS records consist of a label, type, value and expiration time.
Labels have the same syntax as in DNS; they are equivalent to local identifiers
in SDSI/SPKI. Types and values extend concepts from DNS. In particular,
GNS uses a secure variant of “NS” records (“PKEY” records) to allow users to
delegate control over a subdomain to another user. Record validity is established
using signatures and controlled using expiration values. The plaintext records
of a zone are managed in a database on a machine under the control of the zone
owner.

Names in GNS consists of a sequence of labels, which identifies a delegation
path. We realize a petname system by having each user manage his own zones.
When used as a drop-in DNS resolver, the user’s zones augment or override
DNS TLDs. Publishing delegations in the DHT allows transitive resolution by
simply following the delegation chains. Records can be local or global, and global
records are made available to other users via a DHT. We note that even if a
record is “global”, its contents and existence are still only knowable to those
that know both the label and the zone under which the record is published.

GNS is privacy-preserving since queries and responses are encrypted such
that even an active and participating adversary can at best perform a confirma-
tion attack, and otherwise only learn the expiration time of a response. Note
that the queries and responses themselves are encrypted, not the connections
between a resolver and some authority. As all replies are not just encrypted but
also cryptographically signed, GNS provides integrity protection since peers in
the DHT cannot tamper with the results without immediate detection and data
origin authentication.

Due to the use of a DHT, GNS avoids DNS complications such as glue records
and out-of-bailiwick lookups. In GNS, the labels of a name correspond precisely
to the lookup sequence, making the complete trust path obvious to the user.
Finally, the use of a DHT to distribute records also makes it possible for GNS
authorities to operate zones without visible, attributable critical infrastructure
that could be used for targeted attacks.

2.1.2 Records in GNS

As GNS is intended to coexist with DNS, most DNS resource records from
[28, 41] (e. g., “A”, “MX”) are used with identical semantics and binary for-
mat in GNS. GNS defines various additional records to support GNS-specific
operations. These records have record type numbers larger than 216 to avoid
conflicts with DNS record types that might be introduced in the future. GNS
also introduces several new records:

2.1. THE GNU NAME SYSTEM 9

PKEY for delegation: “PKEY” records securely delegate control over a
subdomain to another zone. Repeated delegation allows GNS to achieve
transitivity of names. Secure delegation using “PKEY” records is central
to GNS; it replaces the tree structure of DNS with a directed graph.

NICK for nicknames: This record type is used to specify the desired nick-
name for a zone. The value of the record consists of a label with the
63-character limit from DNS. If a nickname is desired for a zone, the same
“NICK” record is added under each label of the respective zone; this en-
sures that the nickname is part of every response and thus no additional
lookup is required to obtain the nickname.

GNS2DNS: “GNS2DNS” records delegate resolution for a subdomain from
GNS to DNS.

Similar to “NS” records in DNS, the value in the “GNS2DNS” record
is the name of the subdomain in DNS. In addition to the “GNS2DNS”
record, the GNS zone must specify “A” or “AAAA” records under the
same GNS label which specifies the IP address of the DNS resolver to
contact for resolution (this is equivalent to the so-called glue records in
DNS). For example:

Name RR Type Value

Q: www.example.gnu A
A: example.gnu GNS2DNS example.com
A: example.gnu A 192.0.2.1
Q: www.example.com (DNS) A
A: www.example.com (DNS) A 192.0.2.2

Given the first response, the GNS system will synthesize the DNS name
“www.example.com” from the “GNS2DNS” record and the “www” re-
maining from the GNS name and send a DNS query to the DNS server
at 192.0.2.1 based on the glue information from the “A” record. The
resolution then continues using DNS. Note that this record type enables
delegation to DNS from within GNS. Naturally, GNS cannot secure the
DNS part of the resolution process.

These are all the special record types that GNS needs. GNS maximizes
compatibility with DNS by using the same length limits for labels and names,
and the same encoding rules for internationalized names as DNS.

2.1.3 Query privacy

To enable other users to look up records of a zone, all public records for a given
label are stored in a cryptographically signed block in the DHT. To maximize
user privacy when using the DHT to look up records, both queries and replies

10 CHAPTER 2. TECHNICAL BACKGROUND

are encrypted. Let x ∈ Zn be the ECDSA private key for a given zone and
P = xG the respective public key where G is the generator of the elliptic curve.
Let n := |G| and l ∈ Zn be a numeric representation of the label of a set of
records Rl,P . Using

h : = x · l mod n (2.1)

Ql,P : = H(hG) (2.2)

Bl,P : = Sh(EHKDF(l,P)Rl,P), hG (2.3)

GNS publishes Bl,P under Ql,P in the DHT, where Sh represents signing with
the private key h, HKDF is a hash-based key derivation function [19] and E rep-
resents symmetric encryption based on the derived key. Any peer can validate
the signature (using the public key hG) but not decrypt Bl,P without knowledge
of both l and P . Peers knowing l and P can calculate the query

Ql,P = H(lP) = H(lxG) = H(hG) (2.4)

to retrieve Bl,P and then decrypt Rl,P .

2.1.4 Zone revocation

In case a zone’s private key gets lost or compromised, it is important that
the key can be revoked. Whenever a user decides to revoke a zone key, other
users must be notified about the revocation. However, we cannot expect users
to explicitly query to check if a key has been revoked, as this increases their
latency (especially as reliably locating revocations may require a large timeout)
and bandwidth consumption for every zone access — just to guard against the
relatively rare event of a revoked key. Furthermore, issuing a query for zone
revocations would create the privacy issue of revealing that a user is interested
in a particular zone. Existing methods for revocation checks using certificate
revocation lists in X.509 have similar disadvantages in terms of bandwidth,
latency increase and privacy.

Instead of these traditional methods, GNS takes advantage of the P2P over-
lay below the DHT to distribute revocation information by flooding the network.
When a peer wants to publish a revocation notice, it simply forwards it to all
neighbors; all peers do the same when they receive previously unknown valid
revocation notices. However, this simple Byzantine fault-tolerant algorithm for
flooding in the P2P overlay could be used for denial of service attacks. Thus, to
ensure that peers cannot abuse this mechanism, GNS requires that revocations
include a revocation-specific proof of work. As revocations are expected to be
rare special events, it is acceptable to require an expensive computation by the
initiator. After that, all peers in the network will remember the revocation
forever (revocations are a few bytes, thus there should not be an issue with
storage).

In the case of peers joining the network or a fragmented overlay reconnecting,
revocations need to be exchanged between the previously separated parts of

2.1. THE GNU NAME SYSTEM 11

DNS

gnunet-zoneimport

import

namestore

export

namecache

pre-populates

zonemaster

notifies

gns

uses

dht

queries

dns2gns

lookup

gnunet-gns

lookup

libnss_gns

invokes

gnunet-gns-proxy

lookup

publishes

Figure 2.1: Data flow when importing legacy DNS records into GNS. Diamonds
are used as the shape for stateless processes, subsystems with storage use cir-
cles, and application-facing APIs are shaped as houses. The DHT is the only
component that typically involves communication over the network, all other
interactions in this figure are local.

the network to ensure that all peers have the complete revocation list. This
can be done using bandwidth proportional to the difference in the revocation
sets known to the respective peers using Eppstein’s efficient set reconciliation
method. [9] In effect, the bandwidth consumption for healing network partitions
or joining peers will then be almost the same as if the peers had always been
part of the network.

2.1.5 Interaction with legacy DNS

It is possible to import existing DNS zones into the GNU Name System. For
this, GNUnet includes the gnunet-zoneimport tool to monitor a DNS zone and
automatically import records into GNS.

As many DNS zone operators refuse to allow AFXR requests, the tool can
be given a list of DNS names to query, and then scans the entire zone, imports
the resulting records (in cleartext) into the GNS database (the “namestore”),
and then re-issues the queries to DNS whenever the original records are set to
expire. Figure 2.1.5 illustrates the resulting data flow.

Whenever records are stored in the namestore, the “zonemaster” service is
notified and performs the necessary cryptographic operations to publish the en-

12 CHAPTER 2. TECHNICAL BACKGROUND

crypted and signed records in the distributed hash table (DHT). This ultimately
makes the result available to all GNS resolvers.

Note that the namestore by default also populates the namecache. This pre-
population is cryptographically as expensive as the operation of the zonemaster.
Thus, on systems that only serve to import a large (millions of records) DNS
zone and that do not have a local GNS resolver in use, it is advisable to disable
the namecache.

2.2 The re:claim identity management system

To manage digital identity attributes, we propose the decentralized, OpenID
Connect compatible identity provider service re:claim [38]1. In re:claim, at-
tributes are stored as resource records in GNS and encrypted using ciphertext-
policy attribute-based encryption (CP-ABE) and stored in a namespace.

In the following, we discuss the technical details on how ABE is used in
combination with GNS and how it is leveraged to manage authorizations of
requesting parties to access attributes via the OpenID Connect protocol.

2.2.1 Preliminaries

Attribute-based encryption schemes come in the two main flavours of ciphertext-
policy ABE (CP-ABE) and key-policy ABE (KP-ABE). re:claim is built using
CP-ABE, but both variants can be considered equally suitable.

The basic idea behind re:claim is to combine GNS and CP-ABE to realize
a decentralized identity provider service. To understand the technical details of
re:claim, we define the high-level functions and procedures and objects for the
relevant components. Let an ABE scheme consist of the following functions:

SetupABE()→ (mskABE, pkABE)

KeygenABE(mskABE, A)→ skABE

EncABE(pkABE, pt, policy)→ ct

DecABE(skABE, ct)→ pt,

(2.5)

where mskABE is the master secret key, pkABE the public parameters key and
skABE a derived user key in the ABE scheme. A is a set of tags, or attribute
names that can be associated with a key skABE using the function KeygenABE().
policy describes the policy that is attached to a ciphertext ct. Finally, pt denotes
the plaintext message. For encryption and decryption we define the functions
EncABE() and DecABE(), respectively.

We define an identity attribute as follows:

attribute = (name, value, version) (2.6)

The name is an attribute identifier, such as “email”. An attribute also has
a value associated with it. The value may contain arbitrary data associated

1https://reclaim-identity.io

2.2. THE RE:CLAIM IDENTITY MANAGEMENT SYSTEM 13

with name such as “john@doe.com”. It may also contain more complex data
structures such as credentials issued by third parties. The details of attribute
values, however, are out of scope in our design. The attribute version is relevant
for revocation in the later sections of this chapter.

Further, let an identity provider (IdP) consist of the procedures:

Store(IDuser, attribute)

Delete(IDuser, attribute)

Authorize(IDuser, IDrp, attributes)→ ticket

Revoke(ticket)

Retrieve(IDrp, ticket)→ attributes

(2.7)

The procedures Store() and Delete() allow the user IDuser to manage at-
tributes. Authorize() is the procedures used to authorize a requesting party
IDrp to access a set of attributes. This access can be revoked using Revoke().
The requesting party can use the Retrieve() procedures to access attributes it
was granted access to.

The attributes specified in Authorize() and Retrieve() are a set of at-
tributes. A ticket is a handle of an authorization that is passed to the autho-
rized requesting party so it can access the shared attributes. We define a ticket
as follows:

ticket = (IDuser, IDrp, names, rnd) (2.8)

The ticket identities IDuser and IDrp identify the user that issued the ticket
and the requesting party, respectively. names is the list of attributes that
the requesting party is authorized to access and rnd is a random label under
which the user key skABE for the requesting party is stored encrypted in the
namespace of the identity. This ticket must be transferred in an initial out-
of-band authorization process and is used by the requesting party to retrieve
attribute data.

In the following, we always assume that given an identity, its public key pkuser
and the associated ABE key material can also be retrieved. If a procedure is
called by an identity, we also assume that we have access to the respective
private keys skuser, skrp and skABE. Before storing the first attribute, a user
must bootstrap an ABE system. In this process, the user creates an ABE
public parameters key pkABE and master secret key mskABE for one of their
namespaces by executing SetupABE().

2.2.2 Attribute storage

In re:claim, the encrypted value of an attribute is stored inside a resource record
R in the name system. By publishing the resource record under the attribute
name the user effectively issued an attribute to their identity.

First, we use the concatenation procedure Concat() to build the ABE policy
from the attribute name and version. The resulting policy can be interpreted

14 CHAPTER 2. TECHNICAL BACKGROUND

as “To decrypt the ciphertext, a key associated with a tag representing the
attribute in the respective version is required”. To create the record data that
is stored in the name system, we encrypt the attribute value using the ABE
encryption function EncABE(). The encrypted attribute value is published as
a record under the attribute name using the name system function Publish().
Figure 2.2 illustrates this process.

Figure 2.2: In re:claim, the identity attribute is encrypted using ABE before it
is stored in the users name space.

We note here that internally name systems distinguish between different
types of records. We therefore define the record type of records representing
identity attributes to be “ID ATTR”. The record type does not serve any specific
function except from allowing us to distinguish re:claim records from, e.g. IP
addresses. In our design, all attribute resource records must have this type set.

In our re:claim implementation, to store an attribute, the following command
is executed:

$ gnunet-reclaim -e johndoe -a email -V john@doe.com

2.2.3 Authorization

To authorize a requesting party to access a set of attributes, the user must
create an authorization-specific user secret key skABE using the ABE function
KeygenABE(). For skABE to be used to decrypt the respective attribute records
of the shared attributes it must be associated with a specific set of tags.

There are two ways an authorized party can learn skABE: Resolving it
through the name system or via an out-of-band exchange, for example using a
web-based authorization protocol. The latter is only possible in “synchronous”
use-cases, i.e. when user and authorized party are both online. In use-cases
where user or authorized party are offline, skABE must be exchanged via the
name system.

2.2. THE RE:CLAIM IDENTITY MANAGEMENT SYSTEM 15

First, we generate a set of tags that correspond to the respective encrypted
records the requesting party shall be authorized to access. After the skABE is
generated using the users’ mskABE, it is encrypted using the public key pkrp of
the requesting party. Then, a random label rnd is generated under which the
encrypted skABE is published in the user namespace as illustrated in figure 2.3.

Figure 2.3: To authorize a requesting party the user creates a new ABE user
key and stores it in the user name space.

The random label rnd, the user identity IDuser, the requesting party identity
IDrp and the attributes that the requesting party is authorized to access are
assembled into a ticket t. In Figure 2.4, we illustrate how this ticket is transferred
to the requesting party out of band using suitable protocols such as OpenID
Connect.

Figure 2.4: The label under which the ABE user key is stored is transferred out
of band to the requesting party.

Updates to skABE, made necessary for example due to revocations, are pub-
lished by the user and retrieved by the requesting party using the same random

16 CHAPTER 2. TECHNICAL BACKGROUND

label rnd. Similarly to attribute records, we define key records to have a unique
type of “ABE KEY”.

In our re:claim implementation, to authorize a requesting party IDrp to
access the attributes a0,a1,. . . ,an in a namespace of IDuser, the following com-
mand is executed:

$ gnunet-reclaim -e IDuser -i a1,a2,...,aN -rp IDrp

This command returns a string representing the ticket t that contains the label
rnd and other metadata.

2.2.4 Deletion

Removing attributes is not as simple as removing the respective records from
the namespace. First, the attribute record may still be resolvable in the name
system until the records expire and it is purged from the cache. Requesting
parties that are authorized to access this attribute then must be prohibited
from accessing any future incarnations of this attribute. This is important as to
not risk any unwanted side-effects where unauthorized parties may still be able
to decrypt the attribute. For this, the attribute tag version must be incremented
before a new attribute with the same name is issued. A re:claim implemenation
must keep track of this state by either keeping the attribute with an empty
placeholder value or by having a local database that contains the versioning
information.

The Delete() procedure starts off by de-publishing the respective attribute
record from the namespace and then incrementing the attribute version. After,
all authorized parties (i.e. all issued tickets) that have access to this attribute
are re-authorised to access all attributes they had access to before except for
the deleted attribute.

2.2.5 Update

When the user modifies the attribute value the respective record in the name
system must be updated accordingly. Naively, it is possible to simply combine
a Delete() and a Store() call. But since we defined the Delete() procedure
to increment the attribute version such an approach would require the user to
reissue all existing ABE keys to the relevant requesting parties. Consequently,
updating the attribute is simply a call to Store() after updating the attribute
value. This update will only take effect after the identity record expires and
only then will the updated value be resolvable by authorized parties. As the tag
used to encrypt the attribute does not change, previously authorized requesting
parties will be able to decrypt the updated record data with their existing keys.

2.2.6 Retrieval

To retrieve an attribute a of identity IDuser an authorized requesting party IDrp

must perform a lookup in the name system. The name to lookup is the attribute

2.2. THE RE:CLAIM IDENTITY MANAGEMENT SYSTEM 17

name, e.g. “email”. If the attribute exists, the response from the name system
will contain the encrypted attribute value record R. As elaborated above, skABE
contains a set of tags that allows it to be used in the decryption of all attribute
records that IDrp is authorized to access. To retrieve skABE, IDrp must first
resolve the key record under the name rnd in the identity namespace of IDuser

(Figure 2.5).

Figure 2.5: The requesting party retrieves the ABE user key from the name
system.

To do so, IDrp must have received the label rnd out-of-band in a ticket as
discussed in the previous section. Given skABE, the requesting party can decrypt
the attribute value using the CP-ABE decryption function DecABE().

Figure 2.6: The requesting party retrieves the requested identity attributes from
the name system and decrypts them using the ABE user key.

18 CHAPTER 2. TECHNICAL BACKGROUND

2.2.7 Revocation

We define revocation – as opposed to deletion – as the process to revoke access
of a specific requesting party to user attributes in re:claim. Revocation schemes
for ABE are often quite complex and inefficient. In our case we also have to
take into account user key distribution and name system properties.

In fact, the performance impact caused by cryptographic operations is not
as critical in our design for two reasons: First, regeneration of keys and re-
encryption can be done locally in the background after it is initiated by the user.
Second, from a requesting party point of view, even if access to a particular
attribute is revoked there was a time in past where access was granted. So,
revoking access on currently accessible data is not important in our design.

Revocation of access in re:claim is used to prevent the decryption of an
attribute record using a specific user key skABE of a requesting party. Any
attribute that the requesting party was authorized to access at any time in
the past was most likely already retrieved and possibly even persisted locally.
Consequently, it is not a goal to revoke access to the current attributes that
were already published. The primary goal is to prohibit a requesting party from
continuously accessing up-to-date attribute information in the future.

Our revocation scheme is enforced through attribute versioning. As elabo-
rated in the previous sections, an attribute record is encrypted using a tag that
is a concatenation of the attribute name and version. When access of a request-
ing party to an attribute is revoked, we simply increment the attribute version.
Then, we again publish the encrypted attribute value to the name system.

Any other requesting parties also authorized to access the same attribute
must be issued new user keys containing updated tags. The updated keys are
published under the same respective labels rnd and can be resolved if needed.
Using this approach we can limit the amount of re-generated user keys to the
number of requesting parties that share one or more attribute authorizations
with the requesting party that had its access revoked2. Another advantage of
this approach becomes evident when taking the first authorization of an RP
into account: Initially, it suffices to create a new user key with the current
attribute versions and transfer it to the RP. As the ciphertext does not need to
be updated in this case, the attribute records currently in the name system can
then instantly be decrypted by the RP.

2.2.8 OpenID Connect

Instead of inventing yet another authorization protocol for the Web, we built a
standard compliant OpenID Connect layer on top of our re:claim implementa-
tion. We use the objects and communication patterns defined in the standard
to piggyback the re:claim “Ticket” from the authorizing user to the requesting
party. Further, OpenID Connect already defines how and when user consent
must be provided and how identity attributes are encoded in objects and APIs.

2As opposed to re-bootstrapping the whole ABE scheme and issuing/publishing new keys
for all RPs

2.2. THE RE:CLAIM IDENTITY MANAGEMENT SYSTEM 19

In Figure 2.7, we illustrate how re:claim integrates into a standard OpenID
Connect Authorization Code Flow.

2
0

C
H
A
P
T
E
R

2.
T
E
C
H
N
IC

A
L
B
A
C
K
G
R
O
U
N
D

User agent

Alice

re:claim of user

OIDC IdP

GNS

Name System

re:claim of RP

OIDC IdP

Website

OIDC RP

0. Add email : alice@doe.com

Publish email : Remail1. Store()

2. Register at service

3a. AuthZ request redirect

3b. AuthZ request

Publish rnd : Rskrp4.

Authorize()

5a. AuthZ response redirect (ticket)

5b. AuthZ response (ticket)

6. Token request (ticket)

Resolve rnd
Rskrp

Resolve email
7.

Retrieve()
Remail

8. Token (incl. email)

msc OpenID Connect 1.0 Flow Integration

Figure 2.7: An example authorization and attribute retrieval performed through OpenID Connect (OIDC). Protocol steps
1,2,4,5 and 8 encompass the standard OIDC authorization code flow. Steps 3, 6 and 7 are interactions between the respective
local re:claim and GNS components.

2.3. GROUP POLICIES THROUGH THE USE OF ABD 21

2.2.9 Sensor data access authorization

Instead of user identity attributes, re:claim is also suitable for storing attributes
related to other, non-user entities such as IoT devices. Consider a sensor that
is associated with a namespace IDdev. The sensor can periodically publish
sensor data (e.g. temperature) to the namespace as re:claim attributes. A
webservice interested in sensor data, for example to engage in data analytics,
can use re:claim to request access to the data. However, there is no standardized
protocol for sharing sensor data from an IoT device like there is with OpenID
Connect and user data. For this reasonn, we have designed an authorization
process through the use of near field communication (NFC) that can be used by
a resource owner (the owner of a device or a technician) to authorize requesting
parties to access sensor data that is stored by the sensor in GNS through the
use of re:claim:

Initially, a requesting party such as a website requests permission from the
resource owner to access sensor data. This request is encoded in a QR code that
is displayed to the owner/technician. The resource owner uses a smartphone
running a dedicated re:claim app that is used to scan the QR code. The app
displays the requested attributes, the requesting party public key IDRP and
a ticket endpoint Eticket to the owner. At this point, the resource owner can
see in the app what data (attributes) the requesting party is requesting. If the
resource owner decides to consent to the authorization request, he initiates a
NFC protocol with the IoT device. The device receives the NFC authorization
request and generates a re:claim “ticket” as described in Section 2.2.3. The
sensor sends the re:claim“ticket” to the ticket endpoint Eticket, allowing the
requesting party to retrieve the sensor data.

2.3 Group policies through the use of ABD

When managing attributes and identities in a decentralized manner, the ques-
tion of attribute assertions and access control through attribute-based policies
needs to be addressed. Based on work by Li et al. [24, 25] on the topic of
attribute-based delegation (ABD), we created a system that allows to manage
and evaluate attributes through decentralized trust and assertion chains. In [37],
we show how the delegation paths of name systems can be used to represent the
various attribute-based delegation types as defined by Li et al. [26, 22]:

A.a←B (type1)

A.a←B.b (type2)

A.a←B.b.a (type3)

A.a←
n⋂

i=1

fi (type4)

22 CHAPTER 2. TECHNICAL BACKGROUND

Phone

Alice

IoT Device

Sensor

GNS

Name System

HTTP-Server

Website

Publish temp : Rtemp
1. Store()

2. Scan QR code

3a. QR Code

3b. NFC AuthZ request

Publish rnd : Rskrp4.

Authorize()

5a. AuthZ response (ticket)

5b. AuthZ response (ticket)

Resolve rnd
Rskrp

Resolve email
7.

Retrieve()
Remail

msc NFC Authorization

Figure 2.8: An example authorization and attribute retrieval performed through
NFC. ss the standard OIDC authorization code flow.

2.3.1 Approach

We introduce a special resource record type “ATTR” for attribute delegations
and modify the name system resolver logic to perform delegation chain discovery
for such records. Attribute delegations such as A.a← e as introduced above are
mapped into a namespace as follows: A is a namespace owned by an entity and
a is the name of a record in A. The value of the record contains e, the delegation
expression that defines the namespaces that a is delegated to. To support all
four kinds of attribute delegations, our record contains an appropriate data
structure to hold any attribute expression e in a delegation A.a← e.

Specifically, we define the value of an “ATTR” record to contain one or
more entries in a delegation set. A delegation set entry consists of a subject
namespace B as well as a set of attributes and is used to represent delegation
types 1-3. To model delegation types 1-3, a resource record contains a single
entry in the delegation set. A type 4 delegation record contains a delegation
set with n entries, each specifying the respective required delegation expression
A.a←

⋂n
i=1 fi.

While the type 4 delegation constitutes a logical “AND”, a logical “OR” is
not explicitly defined. However, the existence of multiple delegation records in
the same namespace under the same attribute a implicitly defines this case.

2.3. GROUP POLICIES THROUGH THE USE OF ABD 23

Delegation and chain discovery

To confirm that an issuer delegated an attribute a to an entity B, a delegation
chain must be discovered. A valid chain can be found if B holds a set of
credentials CA.a ∈ CB that allows one to build a delegation chain DA.a,B from
an issuer namespace A and attribute a to CA.a.

Finding a delegation chain can only be guaranteed if all attribute delega-
tions d ∈ DA.a,B are resolvable and B is in possession of an appropriate set of
credentials CA.a. We define the resolver function resolve(l, N, t) that is used
to resolve resource records of type t under the name l in the namespace N . A
call to resolve(a,A, “ATTR”) will return the resource records representing all
issued attribute delegations A.a ← e as delegation sets. Each expression e in
the delegation sets is checked against the issued attributes in the set of subject
credentials CB . If we have found a valid delegation chain from the original at-
tribute to a credential subset CA.a, we have verified that the attribute A.a is
delegated to B. Our algorithm is a combination between SDSI-style rewriting
and the backward resolution of a delegation graph in Li’s approach for RT0.
However, as we enforce issuer-side storage by defining delegations in the issuer
namespace, we do not require the more complex unified approach by Li that
uses backward and forward search of the delegation graph.

To resolve a delegation DA.a,B using a name system, the namespace of the
issuer and the attribute to look up must be known in advance. For an initial
attribute A.a the name to look up is a in the namespace A. We define A.a as the
root node and all resolved delegation expressions e found under A.a as children
of A.a in the delegation graph. From then on, we follow a rewrite-resolve-check
pattern until we can match a credential against a delegation subject.

If a resource record containing a delegation set with a single entry is resolved,
the expression e is of type 1-3. Otherwise, it is of type 4. In both cases, we use
SDSI-style rewriting rules [5]:

For a type 1-3 delegation e := B.b1.b2.b3...bn we perform a lookup query
using only the leftmost attribute b1 and we rewrite the resulting expressions
from a call to resolve(b1, B, “ATTR”) by appending b2 through bn. This leads
to a reduction of the original delegation expression if the query returns a type 1
delegation or an enlargement for a type 3 delegation. In the case of a type 2
delegation, the expression complexity does not change. For a type 4 delegation
e :=

⋂n
i=1 fi we process each fi like type 1-3. Rewriting a type 4 delegation set

is simply a matter of rewriting every delegation set entry individually.

The rewritten delegations are added as children of e in the delegation graph
and checked against the subject credentials. The process continues iteratively
until a matching set of credentials is found that allows us to backtrack the
delegation graph to A.a. When we backtrack the delegation graph and encounter
a node that holds a type 1-3 delegation, it is verified that the delegated attribute
has a path to a set of subject credentials and we can continue backtracking. If
we encounter a node representing a type 4 delegation, we have to make sure that
every fi in the node is satisfied by a set of credentials before we can continue.

24 CHAPTER 2. TECHNICAL BACKGROUND

2.3.2 Authorization through policy evaluation

We define a resource r to be protected by a policy P that specifies a set of
attributes. A verifier V can perform attribute-based authorization of a subject
that requests access to r. To do so, the verifier initially retrieves P by querying
a policy storage. We define the attribute issuer for all attributes x ∈ P to be the
verifier V . The verifier is initially unaware as to which credentials the subject
must provide to satisfy P . At the same time, the subject is initially not aware
of what attributes are required by P to access r. Our simple authorization
protocol with delegation chain discovery is illustrated in Figure 2.9.

(1) The subject S tries to access the resource r.

(2) To retrieve the access policy P for the resource r, V uses a function
getPolicy. Afterwards, V sends a response containing the policy P .

(3) S uses a function collect that finds subsets CV.x of the subjects credentials
CS that satisfy the attributes x ∈ P . S sends the set CP :=

⋃
x∈P CV.x

to the verifier.

(4) We define a function verify that uses delegation chain discovery to verify
that a delegation chain D exists for a set of credentials to an attribute. V
uses this function to confirm that a delegation chain DV.x can be found
for all x ∈ P using CP . Access is granted only if all delegation chains can
be found.

Figure 2.9: Authorization with delegation chain discovery.

2.3.3 Revocation

Revocation of a delegation is achieved by having the respective issuer revoke
the attribute name that points to it in the name system. A name in the name
system can only be resolved if it exists and is not expired. Attribute delegations
must be treated in the same fashion. Whenever an issuer wants to remove an

2.3. GROUP POLICIES THROUGH THE USE OF ABD 25

attribute delegation, he must delete the respective records from his namespace.
It is also important that attribute delegations must have a set expiration date.
Distributed name systems tend to cache records in the network until they expire.
Even if a record is deleted by the namespace owner, it might still linger until
caches are purged or the record has expired.

26 CHAPTER 2. TECHNICAL BACKGROUND

Chapter 3

Usability

In this chapter we present the results of four usability studies involving the use
of the GNU Name System (GNS) for various scenarios in different application
domains.

3.1 Network service authentication

To demonstrate usability of GNS for network service authentication, we setup
GNS as a replacement for DNS. As GNS provides authenticated replies, using
GNS instead of DNS allows for the secure and authenticated distribution of
IP addresses as well as associated X.509 public keys or certificates via TLSA
records [17], thereby obsoleting the existing certificate authorities (CAs) and
replacing them with GNS zones that are limited to certify services within their
respective domain. In addition to addressing the lack of end-to-end security in
DNSSEC, the use of GNS instead of DNS also provides significantly improved
query privacy over DNSSEC or even DNS-over-TLS.

The ideal outcome of the experiment would be that users cannot really tell
the two setups apart, as today DNS is definitively usable and thus an indis-
tinguishable experience is the best we can hope for — while of course under
the hood providing better security and privacy. Objectively the setup with the
GNS resolution has to be slightly slower, not so much because of the name
resolution itself, but because gnunet-gns-proxy implements an HTTPS man-
in-the-middle proxy that verifies the TLS certificates against the information in
GNS and then creates a valid certificate on the fly for the browser using its own
CA. In an ideal deployment, GNS name resolution would be integrated dirctly
with the browser and thus not incur this significant overhead.

The usability study used two notebooks with identical hardware both run-
ning a minimal installation of Ubuntu with a Firefox browser. System A is
simply this trivial setup. On system B we additionally configured a GNUnet
peer. First of all, the peer was configured to only connect to the testbed DHT
we deployed in EC2 using the “xt” transport plugin and http://h2020xt1.

27

28 CHAPTER 3. USABILITY

gnunet.org:1080 and http://h2020xt2.gnunet.org:1080 for the “hostlist”
option to bootstrap. GNUnet was also allowed to use “unlimited” bandwidth.
Finally, the AUTOSTART option for gnunet-gns-proxy must be set. GNS is
by default already setup to resolve .fr via the DHT. In EC2, two “t2.medium”
hosts were constantly iterating over the 5 million records of “.fr” to keep the
DHT content current. Firefox was configured to connect to the network via the
gnunet-gns-proxy and to resolve DNS queries over this SOCKS5 proxy. The
proxy’s certificate was imported into the browser’s CA root set.

Users were then asked to use both machines and to access various sites
including in particular domains in .fr.1 Afterwards, they were given a survey
asking them to compare their browsing experience as well as some background
about themselves. Users were not informed which system is using DNS or GNS,
and also not told that the difference between the system was in the way they
did name resolution. Table 3.1 summarizes the results on the comparison.

Table 3.1: Survey responses comparing DNS (A) and GNS (B) when browsing
the Internet. Scores ranking from “System (A)” via 3 (“neither”) to 5 for
“System (B)”.

Question 1 2 3 4 5 AVG ± STDDEV

Which system was faster? 8 0 10 3 8 3.03 ± 1.52
Which system was more fun to
use?

7 1 16 4 3 2.83 ± 1.21

Which system do you believe
provided better security?

4 2 20 3 2 2.86 ± 0.98

Which system do you believe
provided better privacy?

3 1 22 3 2 3 ± 0.89

Which system performed more
reliably?

9 0 15 2 4 2.73 ± 1.34

We note that the participants had no information about the actual implica-
tions of using DNS vs. GNS on security and privacy based on the instructions.
The goal of the usability study was after all to detect subjective differences.
Table 3.1 summarizes the results from the survey. The results show that users
have a hard time telling the difference between DNS and GNS. As DNS is used
by billions of Internet users every day, this implies that GNS is clearly usable
for name resolution without any further training of end-users.

3.2 IoT sensor data access authorization

We demonstrate the feasability of GNS as a suitable authentication and autho-
rization system for the Internet of Things (IoT) through the use of re:claim. We

1Detailed instructions and demographic data on the participants is Appendix A.2.

3.2. IOT SENSOR DATA ACCESS AUTHORIZATION 29

have conducted a usability experiment that involves a user acting as a techni-
cian, a webservice that is capable of processing and analizing sensor data and a
device that has various sensors attached to it.

The device is generating a constant stream of sensor data and is storing it
in re:claim as attribute data. In addition to the sensors, the device also features
an NFC interface that allows a technician to trigger a re:claim authorization
procedure. The technician is equipped with a mobile phone which is running a
re:claim mobile application.

In our study, the technician is tasked to authorize the webservice to access
the sensor data that is generated by the device and stored in GNS.

Figure 3.1: Our IoT prototype. The prototype is built using a Raspberry Pi
3B. Attached to the Pi are a NFC shield used for the NFC authorization flow
and a BME280 Sensor used to collect data.

To do so, the technician first accesses the website of the webservice.

Figure 3.2: The website QR code is scanned using the reclaim app.

The website will display a QR code and tell the technician to scan the

30 CHAPTER 3. USABILITY

QR code using the re:claim app. Using the re:claim app, the technician must
scan the QR code. After having scanned the QR code, the app displays which
attributes the webservice is requesting. In our setup, the attributes are tem-
perature, pressure as well as altitude. We assume that the technician consents
to this authorization request by bringing the phone in close proximity to the
device.

Figure 3.3: The scanned entry is selected to initiate the NFC authorization flow
with the device.

After a final confirmation dialog, the phone transfers the information re-
quired by the device to execute a re:claim authorization procedure. Finally, the
app receives a re:claim ticket from the device and transfers it to the webservice.
The webservice in turn processes the ticket and retrieves the attributes from
re:claim and GNS. The sensor data is then displayed to the technician on the
website without further interaction to indicate the successful authorization.

Figure 3.4: After a successful authorization, the website is triggered to retrieve
and display the sensor data.

In conclusion to the test our users/technicians were asked to evaluate their
experience using a standardized questionnaire including a system usability scale

3.3. END-USER IDENTITY ACCESS AUTHORIZATION 31

(SUS). The wide-spread nature of the SUS scope allows us to use the resulting
SUS score to judge the usability compared to existing, similar systems. Fig-
ure 3.5 shows a box plot of our collected SUS scores. The median SUS score is
above 80 points indicating that the usability of our system compared to other
systems [1] is well above average. In fact, it is above 80,3% which groups it in
the top 10% of all scores collected in [1].

●

●

●60

80

100

re:claimID re:claimIoT

usecase

S
U

S

usecase

re:claimID

re:claimIoT

Figure 3.5: SUS scores for the re:claim use cases. The re:claimID bar reflect
the results from the user authorization study. The re:claimIoT bar reflect the
results from the sensor data access authorization study.

3.3 End-user identity access authorization

We propose to use or re:claim system as a drop-in replacement for current,
so-called “social login” systems built using OpenID Connect. The most widely
spread implementations and providers for social logins are Google and Facebook.
Especially smaller websites and services rely on the identity provider services
of those offerings to outsource identity management. This includes necessities
such as authentication and personal data storage. Authentication is a critical
security property difficult to get right and personal data storage can prove to

32 CHAPTER 3. USABILITY

be a liability as loss of this data can have severe legal consequences.
Our aim is to provide a social login component that behaves similarly to

existing solutions. This is why we build an OpenID Connect layer on top of
re:claim and we demonstrate that our implementation satisfies usability require-
ments. The respective components in re:claim are compliant with the OpenID
Connect standard specification and can thus be integrated by websites and ser-
vices following the respective integration guides for the protocol.

The user experience, however, is not defined in the specification and thus we
designed a user experience that presents the user with a website that requests
access to personal information from the user by initiating an OpenID Connect
flow. We prepare a laptop for our user that is running the webpage as well
as a local re:claim instance. The user is initially presented with a webpage in
the browser that allows him to login using either Google, Facebook or re:claim.
Using an guidance sheet, the user is instructed to login using the re:claim option:

Figure 3.6: The demo website asking the user to login.

After the user clicks on the login button, the are redirected to the re:claim
OpenID Connect identity provider. At this point, the personal data requested
by the website is displayed. In this case, the website requests the user’s full
name and email address.

Initially, the user does not have any identities in their re:claim system so the
first step is to create a new identity. The user interface guides the user through
this process.

Figure 3.7: Initially, the user is asked to add their first identity.

3.3. END-USER IDENTITY ACCESS AUTHORIZATION 33

After the user creates an identity, they have the option to provision it with
personal data. The attributes requested by the website are preallocated to save
the user from manually entering them.

Figure 3.8: The user is asked to add the requested attributes after adding a new
identity.

The user has the option to create any number of identities at this point and
edit them to their needs. Once the user is finished, they can choose an identity
they wish to share personal data from.

Figure 3.9: The main re:claim user interface listing all available user identities.

The user is the redirected to the requesting website according to the OpenID
Connecto protocol.

The website is provided with the OpenID Connect specific “authorization
code” that represents the user consent to access their personal data. The au-
thorization is further used by the website to show that it is authorized to access
this data to their local re:claim OpenID Connect instance. By exchanging the
authorization code – which is used to a piggyback re:claim ticket – the website

34 CHAPTER 3. USABILITY

Figure 3.10: After selecting an identity to login, the user is redirected to the
requesting party and is logged in after the website has verified the re:claim
ticket.

can retrieve the personal data that the user has chosen to share. Finally, the
user will be presented by a welcome webpage displaying the successful login and
the personal data that the user now has shared with the website.

After the test, the users are asked to fill in a survey including a standard-
ized system usability scale (SUS) and further questions to evaluate key usability
indicators. The wide-spread nature of the SUS scope allows us to use the re-
sulting SUS score to judge the usability compared to existing, similar systems.
Figure 3.5 shows a box plot of our collected SUS scores. The median SUS score
is above 90 points indicating that the usability of our system compared to other
systems [1] is well above average. In fact, it is well above 80,3% which groups
it in the top 10% of all scores collected in [1].

3.4 Accident insurance claims in Switzerland

In e-health, high-quality healthcare requires efficient and reliable access to per-
sonal data. The access of patients’ data is essential to ensure the smooth func-
tioning of many clinical and administrative processes. The data involved are to
a large extent sensitive, since they contain personal data of patients including
medical data. Key issues in e-health are the distributed ownership and location
of the patients’ data. The data are created and maintained by different ac-
tors and then distributed via the patient to other health professionals. Today’s
solutions include either a central storage of the patients’ data, often named elec-
tronic patient record (EHR), or the involvement of patients, who must bridge
the gap between independent systems and pass the data itself (by phone, email
or letter). A new method of secure, but simple access to these sensible data for
health professionals under the condition that they are involved in the treatment
of a patient is needed.

Initial situation

The accident insurance claims are regulated by the Federal Law on Accident
Insurance (Bundesgesetz über die Unfallversicherung, UVG)[8]. Accident insur-
ance is compulsory for all employees and unemployed persons. All others, like
self-employed persons, can have a private accident insurance.

3.4. ACCIDENT INSURANCE CLAIMS IN SWITZERLAND 35

Figure 3.11: Initial situation: the patient transmits the accident claim number
to the health professionals.

• Case 1: Compulsory accident insurance
Following an accident an employee must notify their employer without
delay. The employer must in turn notify the insurance company immedi-
ately. The employee subsequently receives a form that must be completed
truthfully by the employee or by the treating physician, and then sent
without delay to the insurance company.

• Case 2: Private accident insurance
The insurance company is informed directly by the casualty.

In both cases the insurances company will issue a claim number for the casu-
alty; this can take several days. The claim number is needed to file the costs for
medical treatments with the insurance company. This a manual process driven
by the casualty: they must transmit actively by phone or in person the received
claim number to all medical institutions (doctors, hospitals, therapists, labora-
tories, etc.) and pharmacists, see Fig. 3.4. If the casualty fails in transmitting
the claim numbers to all involved parties, the incidental costs will be claimed
to their private health insurances.

All health professionals and medical institutions need the accident claim
number for accounting. If the accident claim number of a patients is not cor-
rectly entered in the accounting systems in time, the invoices are sent to the
health insurance and must be reposted afterwards.

Target situation

As above described, the process of transmitting the accident claim number is
today a purely manual process. The GNS allows for the first time to design an
electronic process, shown in Fig. 3.4. The patient, formerly main responsible
in the process, has now only to initialize the process by inventing a keyword
and giving it to their employer or private accident insurance and to all health
professionals during the visit. This enables on one side the insurance to issue

36 CHAPTER 3. USABILITY

Figure 3.12: Target process: the health professionals get the accident claim
number from GNS.

an accident claim number for the patient and on this other side it allows the
automatic retrieval from the health professional side.

1. A person, later called patient, has an accident. This patient receives an
emergency treatment. They authorize the emergency physician to access
their EHR (in the EHR, the physician finds the public key, e.g. P023245

for the patients’ GNS zone). The patient has not yet contacted their em-
ployer or accident insurance, therefore the accident claim number is not
yet available. The patients provides instead a keyword, e.g. ”BikeAcci-
dent” to the physician, that allows the physician’s system to query for the
accident claim number later.

2. The patient informs their employer as requested by law. In the form
they have to fill out they note the keyword they chose for the acci-
dent. The EHR zone of the patient (in our example P023245) includes
a delegation to the zone of their employer (e.g. PKEY=E123456 under
employer.P023245)

3. The employer transmits the received information about the accident, in-
cluding the keyword, to its accident insurance company. The employer
also has an entry in its zone related to the its accident insurance (e.g.
PKEY=I34567 under accident-insurance.E123456).

4. The accident insurance company decides about the case and issues an
accident claim number for the patient, when the case was accepted. The
number is stored in the GNS zone of the accident insurance company
under a label identifying the patient and the keyword (e.g. BikeAccident-
P023245.I34567).

5. The emergency physician and all health professionals involved in treat-
ments related to the accident can now automatically retrieve the accident
claim number from the GNS (e.g. by resolving

BikeAccident-P023245.accident-insurance-employer.P023245

) and claim their costs to the right insurance company. Note that the
clinical staff does not need to be able to compose the above name, as with

3.4. ACCIDENT INSURANCE CLAIMS IN SWITZERLAND 37

appropriate standardization the path can be automatically generated by
the software from just the keyword and the EHR. In any case, the patient
and employer are not involved anymore.

Usability test

As the patient has only to initialize the process and is later not any more
involved, for the usability study, we focused on health professionals and the
process of getting the accident claim number into the clinical information system
(CIS). The prototype showed a rudimentary CIS allowing to create a new case for
a patient that needs treatment after an accident.2 This special set-up requires
a certain process knowledge of the test participants, therefor we invited mainly
persons with medical background or with knowledge about the Swiss health
system.

The survey was filled out by 44 persons. According to the self reported
professional context 25 persons belong to the main target group of health pro-
fessionals and medical informatics specialists. Received SUS scores for all users
and for the main target group are shown in Table 3.2.

The results are quite promising for further development of the new process.
The majority of users felt confident and liked the new automatic process. The
prototypical implementation of our CIS led to some cutbacks in the evaluation.
For some it was difficult to separate the presented user interface from the process
to test. Another point that influenced the evaluation was the point that not
all invited users were previously familiar with the existing process for accident
claims.

During the tests, we got valuable feedback how to enhance the process and
how to improve usability further. The first point was the unnoticed appearance
of the accident claim number issued by the insurance. Some users would like
to have an explicit notification (pop-up, email, SMS) to be better informed.
Other users wished to have more information from the insurance company, e.g.
current address of the patient, more information about the accident. Pursuing
such ideas will be limited by applicable data protection and privacy laws in the
medical sector.

2Detailed instructions and demographic data on the participants are in Appendix A.5

38 CHAPTER 3. USABILITY

Question
SUS Score

All users Main target
group

(As health professional) I think that I would like to
use this system frequently.

4.16 4.00

I found the system (the process of getting the acci-
dent claim number) unnecessarily complex.

1.75 1.92

I thought (the part of) the system (where the acci-
dent claim number is retrieved) was easy to use.

4.32 4.4

I think that I would need the support of a technical
person to be able to use this system.

1.68 1.76

I found the retrieving of the accident claim number
in this system was well integrated.

4.41 4.28

I thought there was too much inconsistency in this
system.

1.70 1.84

I would imagine that most people would learn to use
the new process very quickly.

4.57 4.52

I found the new process for the accident claim num-
ber very cumbersome to use.

1.89 1.96

I felt very confident using the system. 4.14 4.04
I needed to learn a lot of things before I could get
going with this system.

1.70 1.68

Sum 30.33 30.4
Total SUS 75.82 76.00
Rating good good

Table 3.2: SUS score for different user groups

Chapter 4

Reliability

Aside from a few cryptographic attack vectors, the reliability of the GNU Name
System (GNS) is largely dependent on the availability and performance of
the underlying distributed hash table (DHT). While the design of GNS does
not mandate a particular DHT, our implementation uses the Byzantine fault-
tolerant R5N DHT [12] of GNUnet1. Thus, in this section we are focusing on
reporting results from a set of controlled reliability experiments we performed
on the R5N DHT using the Amazone Elastic Cloud (EC2).

In terms of impact of DHT failures on the GNS authentication solution, if a
DHT lookup fails to return a result in a timely fashion, GNS fails to obtain the
required credentials which will result in a false rejection. As our measurements
show, the exact rate will depend on the effect of caching and the characteristics
of the DHT infrastructure. We note that it is never possible that lookup failures
will grant users access that should not have access. Thus, the false acceptance
rate (FAR) of GNS is always zero assuming users have sufficiently protected
their key material.2

4.1 DHT fundamentals

As mentioned, all public GNS data encrypted and published via a DHT. A
DHT is typically created using a network of peers cooperating to maintain a
shared data store. Anyone can store a PUT(key, value) in the network and
retrieve the value based on the key GET(key). There are different possible
implementations of a DHT for GNS. Our implementation uses the “Random
Recursive Routing for Restricted-Route Networks” (R5N) implementation [12].

In R5N , the PUT operation stores data on a randomized subset of the
participants to the network. PUTs are repeated at a certain frequency to refresh
the data and keep it available despite churn. GET is also non-deterministic and

1https://gnunet.org/
2We are not aware of a study providing reliable data on key missmanagement by users that

would be meaningful for the broad range of use-cases we consider.

39

40 CHAPTER 4. RELIABILITY

searches the information in some nodes. If the information is not found, the
node is expected to repeat the GET to access the information. Both GET and
PUT operations are randomized and thus may take somewhat different paths
each time. Consequently, adversaries have difficulties to block all the operations
on a particular (key, value) pair.

GNS values are accepted for storage by the network if they are crypto-
graphically signed with the private key corresponding to the key. This pre-
vents anyone other than the zone’s owner from publishing values under that
key. We note that since the signing key is derived from the zone’s key pair, it is
not possible to deduce the zone from the key or value. In GNS, values cannot
exceed 64kb in size, thereby limiting attacks involving large transmissions of
invalid values.

4.2 DHT reliability measurements in EC2

As described in Section 9.1.4, we configured a DHT replication factor of 10
for our EC2 setup. Thus, while peers dropping out of the network will always
impact overall performance, the content would only be expected to become
unavailable if all 10 replicas become unreachalbe.

We experimentally assessed the DHT performance as follows. After import-
ing the five million records of “.fr” into GNS, we setup three clients that would
query the DHT provided by EC2. As GNS caches results, we partitioned the
“.fr” names into five groups of one millon entries each: the first group is queried
by each client, groups two to four only by one of the clients, and group five by
none of the clients.

We then measured query performance for queries in each group under three
scenarios: (1) Normal business, where the EC2 DHT is fully operational. (2)
Massive outage, where we reduced the EC2 DHT by one third, removing all
nodes in the nearest zone (Frankfurt), leaving only Ohio and Seoul. Measure-
ments are performed from Biel (Switzerland), so turning off Frankfurt also dis-
ables all of the nearby caches and as a result significantly increases network
latency. (3) Churn, where two of the DHT peers were turned off for two hours
(and their caches purged), in a round-robin fashion iterating over all 24 peers
in 24h. This results both in an average capacity loss of 10% as well as quite
catastrophic data loss as the longest-running peers with the best-performing
data sets of the DHT are lost. We also note that the two systems performing
the data import each take 48h to import the entire data set from DNS.

We used a DHT with 24 “t2.micro” peers (5 replicas, 5 million records, 1
million records per peer). All three clients were configured to issue a fresh query
every 250 ms, thereby simulating the load of 1.000 users.3 When the DHT did
not respond after 120 seconds, we considered a query as failed. For the successful
queries, we report the median query latency.

Table 4.1 summarizes the results.

3The DHT could have handled a higher load, but then the client’s (non-SSD) harddrives
could have become the bottleneck as the clients check the local cache before asking the network.

4.3. REVOCATION RELIABILITY 41

(1) normal (2) Frankfurt down (3) churn

Group 1 (shared) 605 ms / 97% 2730 ms / 84% 14 s / 73%
Group 2 772 ms / 86% 2946 ms / 84% 20 s / 71%
Group 3 771 ms / 86% 2942 ms / 84% 20 s / 71%
Group 4 760 ms / 86% 2920 ms / 84% 19 s / 71%

Table 4.1: Performance and reliability measurements; we provide the reliability
as a percentage, and the median latency.

We note that for scenario (1) we are operating the DHT deliberately at
capacity to arrive at low cost estimates. Higher reliability and lower latencies
could be achieved by providing additional capacity and servers closer to the
clients. Scenario (2) demonstrates what happens if a significant amount of
capacity is lost. We expected slightly lower reliability numbers for Group 2–
4, and cannot quite explain the lack of a performance drop there. Scenario
(3) highlights the importance of populated caches. It demonstrates that long-
running systems with caches are critical for latency and reliability; thus, stable
peers with large caches can substantially improve performance, assuming records
have commensurate lifetimes.

Lagging behind DNS

The import of DNS records into GNS in our implementation comes with some
lag, as we do not have direct access to the raw data of “.fr” and thus must rely
on periodically crawling the zone. However, we did collect more comprehensive
data on “.se” (as this zone does support AFXR). [34] Out of approximately 10
million records, “.se” has 20,000 glue records, 4.5 million “NS” records, and more
than 5.7 million records relating to DNSSEC (DS, RRSIC and NSEC). Looking
at the churn rate, changes to RRSIG records completely dominate with 912k
changes per day on average in the first 6 weeks of May and June 2018. In
constrast, on a typical day, less than a dozen glue records and the combined
number of changes to NS, DS or NSEC records is less than 10,000.

Overall, over 95% of all changes to the “.se” zone apply only to DNSSEC,
which is an area of DNS that is completely replaced by conversion to GNS,
eliminating the causes for the high churn rate by design. The remaining relevant
churn rate is about 4000 records per day, or 0.04%. Thus, with a typical lag of
about two days, using GNS instead of DNS today would result in a failure rate
of about 0.1% from GNS being out of date. We note that this problem would no
longer apply once DNS registrars directly export their data into GNS, instead
of us crawling DNS to obtain it.

4.3 Revocation reliability

GNS uses a flooding mechanism to spread revocation notices. Basically, when a
peer receives a fresh revocation, it immediately sends it to all of its neighbors.

42 CHAPTER 4. RELIABILITY

When peers connect, they use difference digests [9]. to efficiently reconcile
revocation lists.

As a result, revocations are communicated at basically lightspeed (plus ≈
100k cycles for signature verification at each hop) on the shortest available
network path from the source of the revocation to all systems.

Thus, revocation reliability is basically 100%. The system is furthermore
highly efficient for checking if a key has been revoked, as this is a simple local
lookup. The system is also extremely efficient in the absence of revocations, as
in that case it imposes virtually zero overhead.

However, actual revocations are costly, as all peers have to be informed,
requiring O(|E|) bandwidth for |E| edges in the network. GNS limits the po-
tential for abuse of the revocation mechanism by requiring the revocation notice
to include a proof-of-work token.

4.4 Completeness and robustness

DHTs by design deal with peers joining and leaving the network, including
without warning. [31] Combined with data replication, DHTs can be very robust
against partial failures. GNUnet’s R5N DHT [12] is furthermore designed to be
tolerant against Byzantine failures. As a result, performance merely degrades
if the resources available to malicious participants increases. [11]

Most importantly, the use of a DHT encourages the creation of a desirable
game theoretic equilibrium as it provides a Commons. Nodes participating in
the GNS DHT obliviously provide a service to all users. As a result, all users
suffer if there is an outage. Thus, assuming GNS is widely used, it would only
be a target for virtual terrorists, but not for larger rational state actors as those
would also undermine name resolution of their allies and themselves.

We note that solutions that are not adequately decentralized and where in-
frastructure can be attributed to particular user groups does not share this game
theoretic drive towards cyberpeace. As long as infrastructure can be attributed
to serve a particular group, there will be incentives for other groups to attack
it. What really minimizes the incentive to attack is our unique combination of
a fully decentralized database with GNS, which keeps the infrastructure itself
in the dark about which users it is serving.

4.5 Maintenance

The DHT implementation continuously exports performance metrics during op-
eration, allowing administrators to monitor network performance. This can be
used to provision additional network resources under conditions of high load.
As the DHT operates as a peer-to-peer network, managing nodes that join or
leave the network (also called churn) is part of the core protocol.

GNUnet uses a modern software development process including static analy-
sis, regression testing, performance regression testing and continuous integration

4.6. SUMMARY 43

Table 4.2: Reliability comparison.

Technology Dece
ntra

lize
d

Self-
organizin

g

Byzantin
e fault-t

olera
nt

Commons for cyberp
eace

DNSSEC 3 7 7 7

X.509 CAs 3 7 7 7

verimi.de 7 7 7 7

id4me.org 3 7 7 7

keyp.io 3 3 3 3

miracl.com 3 7 3 7

DecentID[15] 3 3 3 3

fidoalliance.org 3 7 7 7

GNS+re:claim 3 3 3 3

to minimize the possibility that software updates break critical features.
A significant disadvantage of using a peer-to-peer network is that incompat-

ible protocol changes theoretically require scheduled maintenance to avoid frag-
menting the network by protocol version. If necessary, a possible work-around
would be to operate two DHTs in parallel for a while. However, in general
we expect protocol versioning to allow us to migrate to new protocol versions
without a flag day (NCP/TCP) or parallel production networks (IPv4/IPv6).

4.6 Summary

Table 4.2 compares the reliability properties of GNS with those of major com-
petitors. We consider whether the infrastructure is fully decentralized (no sin-
gle points of failure), self-organizing (no social engineering attacks), Byzantine
fault-tolerante (some operators may be malicious), creates a Commons for cy-
berpeace (does not allow attackers to exclude themselves from being harmed).

44 CHAPTER 4. RELIABILITY

Chapter 5

Security

In this chapter, we discuss the security properties of GNS. We initially define
the adversary model under which GNS is designed to be used and elaborate on
the used cryptographic primitives in the GNS implementation. Based on the
adversary model we then give an overview of possible attack vectors and how
they are mitigated using the security properties of the design and implementa-
tion of GNS. Finally, we briefly compare how similar technologies relate to GNS
with respect to their security properties.

5.1 Adversary model

The GNS adversary model includes attackers with the resources and powers
of a nation state willing and trying to limit the access of users to information
without causing excessive damage to its own economy. The goal of the adversary
is to force name resolution to change in the respective name system, by either
making the resolution fail or by changing the value to which an existing name 1

maps.
We allow the adversary to participate in any role in the name system. This

implicitly excludes the existance of a global trusted third party. In addition,
the adversary is allowed to assume multiple identities. We impose no bound
on the fraction of collaborating malicious participants, and we assume that the
adversary can take control of names using judicial and executive powers (for
example by confiscating names or forcing third parties to misdirect users to
adversary-controlled impostor sites). Computationally, the adversary is allowed
to have more resources than all benign users combined.

The adversary may directly compromise the computers of individual users;
for the security of the system as a whole, we only require that the impact of
such attacks remains localized. The rationale for being able to make such an
assumption is that the economic and political cost of such tailored methods is
very high, even for a state actor. Similarly, the adversary cannot prevent the

1which is not originally under the control of the adversary itself

45

46 CHAPTER 5. SECURITY

use of cryptography, free software, or encrypted network communication. The
adversary is assumed to be unable to break cryptographic primitives. As far as
network communication is concerned, we assume that communication between
benign participants generally passes unhindered by the adversary.

We note that as more states and big operators use GNS for managing their
identity systems, the fewer state actors there will be that might be willing to
attack it: as participants in the DHT cannot know which requests serve which
users, a denial of service (DoS) attack would indiscriminately destroy the service
for everybody. Thus, the privacy features of GNS make a key contribution
towards cyberpeace.

5.2 Security goals

In this section we discuss the security goals that GNS and re:claim aim to
satisfy. In the following, we present the respective cryptographic algorithms
and architectural design choices that allow GNS.

5.2.1 Availability

By not relying on a centralized service that serves user attributes and allows the
user to manage authorizations, our system provides high availability guarantees
especially in the face of powerful attackers such as nation states that may utilise
“lawful” interception techniques. One major drawback of decentralized services
with peer-to-peer connectivity is the possiblity of high user churn, which could
potentially render identity attributes unavailable. This would be problematic
in use cases such as the social network provider, as the user attributes must
be accessible by requesting parties even if the user is not online. To solve this
problem, our design is based on decentralizing the service that allows users to
manage identities and selectively share attributes. This is achieved through the
use of GNS where the user acts as the main authority over the data.

As GNS is built on top of the R5N [12] DHT. R5N is designed to perform well
in restricted-route environments with malicious participants. re:claim directly
benefits from the strong security guarantees of R5N , such as high resilience and
censorship-resistance. Records are replicated and stored redundantly in R5N
under a key that is generated by hashing the namespace public key with the
query name. Further, GNS is a petname system where users register names
in their own local namespace. This is unlike DNS, for example, since DNS
has a global unique root zone managed by a single organization that delegates
sub-hierarchies to other organizations. The petname approach mitigates the
name squatting problem where attackers register names in bulk before legitimate
users.

5.2. SECURITY GOALS 47

5.2.2 Authenticity and integrity

Data stored in GNS is signned using the user’s private key, ensurign data authen-
ticity. Other name systems, such as DNSSEC or Namecoin, sign either whole
namespaces or single resource records. In GNS, record sets are aggregated by la-
bel and signed using a key derived from the namespace private key before being
published in the DHT. The DHT has a built-in signature verification ensuring
that only valid results are cached and returned.

For the asymmetric cryptography, GNS uses elliptic curve cryptography [6]
for which efficient implementations exist even for embedded systems [16]. Specif-
ically, we use the ECDSA signature scheme with Curve25519 [43] in our imple-
mentation. The public key is used to identify zones, where the private key is
used to sign the published values including the delegation of subdomains. If
desired, the private key can also be used to prove the ownership of one iden-
tity. The security proof thus directly follows from the security of the underlying
signature scheme.2

The underlying security assumption for GNS is the Elliptic curve discrete
logarithm problem (ECDLP). We settled on Curve25519 as it is designed to
minimize security risks from the implementation while also achieving good per-
formance properties. Curve25519 is based on the equation y2 = x3+486662x2+x
using the modulus p = 2255−19. According to SafeCurves3 it is one of the curves
having the properties required for Elliptic Curves Cryptography (ECC). Today,
no effective attack is known on Curve25519 elliptic curve cryptography.

5.2.3 Confidentiality

Data stored in the DHT is encrypted using AES and Twofish using indepen-
dent, HKDF-derived [19] IVs and symmetric encryption secrets. The use of
independent IVs and encryption secrets ensures that the security is additive:
the adversary has to break both AES and Twofish.

To generally ensure confidentiality of attributes in re:claim, we propose to
encrypt them using ABE before they are stored in the name system. Through
the ABE-layer of re:claim, requesting parties are issued user keys that only
allow decryption of those attribute subsets that they are authorized to access.
We propose to boostrap an ABE system for every identity. This means that
every user acts as its own, individual key authority, giving him full and exclusive
authority over all user keys and attributes. This achieves both, confidentiality
of user attributes in the otherwise public namespace of the name system, and
fine-grained access control of requesting parties to these attributes. Revocation
of access rights to attributes is achieved by the creation of new keys, deletion
of the existing attributes and publication of re-encrypted attributes over the
name system. A further advantage of enforcing access rights cryptographically
through ABE rather than traditionally through a central trusted IdP is that

2The additional multiplication of both the private and public keys with another scalar for
privacy obviously does not affect the security properties.

3https://safecurves.cr.yp.to/

48 CHAPTER 5. SECURITY

individually encrypted attributes profit from the caching implemented in most
name systems and significantly reduce network overhead for the retrieval of
attributes (even to zero, if the cache is local).

5.2.4 Privacy

We argue that in centralized authentication and authorization services, an at-
tacker can coerce the service provider and then has knowledge over all connec-
tions between users and requesting parties. The attacker can learn, for exam-
ple, which services the user accesses over time. GNS mitigates this issue by
protectinng the confidentiality of queries and responses as well as metadata.

GNS uses asymmetric cryptography for storing keys and signing the dele-
gations. Each user generates one or many public private key pairs. The keys
are used for signing all the values inserted inside the distributed hash table
(DHT). Both queries and replies inside the DHT are encrypted, so as to ensure
that they cannot be linked to the zone. We discuss details in Section 6.2. The
user querying the DHT uses an encrypted query key in such a way that the
nodes that store the respective value are able to verify and provide – but not
decrypt (!) – the answer. Thus, GNS implements a form of private information
retrieval, where even the nodes in the P2P network that observe the request
it is not disclosed what the person is looking for. Only nodes that are able to
guess the query key are able to confirm that a query is for a specific piece of
data (this attack is discussed further in Section 5.5.1). Furthermore, since data
is replicated in the network, nobody ought to be able to monitor and or control
all the queries.

Due to the use of a DHT, all GNS queries go to the same fully decentral-
ized and shared global infrastructure instead of operator-specific servers. This
provides censorship-resistance and makes it impossible to target a zone-specific
server because all machines in the DHT are jointly responsible for all zones —
and censorship by the peers is also infeasible, as the key-value pairs do not reveal
which zone they belong to.

For re:claim, we note that as our attacker is able to coerce participants into
submission of data this approach does not protect against the case where an
authorized third party is attacked. However, unlike an IdP, an authorized third
party typically has limited access to the attribute data of a user, and furthemore
cannot observe access patterns of other services.

5.3 Secure implementation

Our implementation was assessed using static analysis available from gcc, clang,
CodeSonar and Coverity. Aside from issues identified as false-positives, the logic
related to GNS is free of defects that could be found via these static analysis
tools. We have also run the code using dynamic instrumentation, using both
valgrind as well as address sanitizer and undefined behavior instrumentations
available from gcc/clang. Again, to the best of our knowledge no defects re-

5.4. DATA FLOW 49

main. We also used lcov to assess our test case code coverage, and while some
error paths are not covered, almost all of the interesting code paths are covered
by our tests. Finally, our releases are cryptographically signed and developers
must cryptographically sign every commit, and every change is automatically
sent to a public mailinglist for public review.

The cryptographic primitives used are from libgcrypt, a widely audited free
software cryptographic library which is also used by GnuPG. We use its pseudo-
random number generator, Curve25519 (256 bits), AES-256, Twofish and SHA-
512 implementations. Curve25519 has (roughly) a security level of 128 bits, thus
our overall security level from the various primitives should also be 128 bit.

5.4 Data flow

Figure 5.1 illustrates the data flow in the system. Users maintain their zone
data locally in their database. Records that other users may use are encrypted
(not shown) and published in the DHT (step 0). Other users that know both the
public key and the label (i.e. by starting with data in their own local database,
steps 1–3) can query the DHT (step 4–5), verify the signature (not shown) and
decrypt the record (not shown). Access to the DHT could be performed over
an anonymous channel to ensure that the DHT is completely oblivious to who
is using the infrastructure.

www.bob.gnu ?1

Bob
Alice

DHT

'bob'?23 PKEY 8FS7!

8FS7-www?4

A 5.6.7.8!5

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

Figure 5.1: Data flow in the GNU Name System.

50 CHAPTER 5. SECURITY

5.5 Attack vectors and mitigations

In terms of resistance to denial-of-service attacks, our reliability experiments
have shown that even a deployment that is utilized at capacity does not suffer
from catastrophic failure when exposed to churn or downtime affecting 30% of
peers (Section 4.2). In this section we focus the discussion on further attack
vectors.

5.5.1 Confirmation attack

Given GNS’s cryptographic approach, an adversary can only perform a confir-
mation attack; if the adversary knows both the public key of the zone and the
specific label, they can perform the same calculations as a peer performing a
lookup and, in this specific case, gain full knowledge about the query and the
response. As the DHT records are public, this attack cannot be prevented. To
rule out this attack, private information retrieval would be necessary, but result
in linear retrieval costs [32] and thus a system that would be unable to store
the large number of records required of practical solutions.

However, we note that users can use passwords for labels or secret public
keys4 to restrict access to zone information to authorized parties. The presented
scheme ensures that an adversary that is unable to guess both the zone’s public
key and the label cannot determine the label, zone or record data.

5.5.2 Revocation

Another attack vector might be to compromise a user’s private key, for example
via malware on the target system. While GNS cannot prevent this, it does
ensure that the user can limit the damage as soon as the compromise has been
detected by revoking the old key.

The GNS zone revocation mechanism is rather hard to disrupt for an ad-
versary. The adversary would have to be able to block the flood traffic on all
paths between the victim and the origin of the revocation. Thus, our revocation
mechanism is not only decentralized and privacy-preserving, but also much more
robust compared to standard practice in the X.509 PKI today, where blocking
of access to certificate revocation lists is an easy way for an adversary to render
revocations ineffective. [27]. This has forced vendors to include lists of revoked
certificates with software updates. [20].

5.5.3 Deleting information

The system is also safe against deleting of information and therefore censorship.
Each information being replicated at r semi-random locations, where r is typi-
cally in the range of dozens or possibly hundreds (depending on the size of the
network) of peers. It is thus not possible for one actor (or even for a group of

4Public keys need not be public! This is a case where common nomenclature creates false
associations that are hard to break.

5.5. ATTACK VECTORS AND MITIGATIONS 51

actors or a state) to remove all the occurrences of a given key-value pair. Since
the peers storing the information are randomly chosen, the probability is small
(1
3r) that even a state controlling 1

3 of the nodes would have all the replicas of
one key-value pair.

5.5.4 DHT value manipulation

The system is resistant against value spoofing, as it is not possible to change
the information in a value in the DHT without siging it. There can not be
done unless the attacker has access to the private key of the victim. As long
as private keys remain secret, it is not possible to propagate any information in
the DHT that is not correctly signed and comes with a valid expiration date.
The expiration date ensures that peers do not propagate expired information,
and thus also prevents an adversary from replaying stale data.

5.5.5 Identity theft

One of the major problems for authentication systems is identity theft. This
occurs when someone can impersonate someone else. For instance if Alice is
normally controlling a device Dave, and Bob wants to impersonate Alice to
control Dave. Dave will use a challenge response to test if Alice has the secret
key corresponding to her identity. Therefore, as long as the key of Alice remains
secret, Bob has no possibility to solve the challenge and can not take the place
of Alice.

Real-life identity theft typically involves the adversary obtaining sensitive
attribute data of the victim. With GNS and re:claim, users can share attributes
with services in a controlled way: the service only receives access to the at-
tributes it requires, as approved by the user. Furthermore, unlike with other
solutions, there is no central identity provider, and thus no place from where
“all” attributes of many users are stored. As a result, GNS minimizes the
chances of sensitive attributes being disclosed to an adversary.

5.5.6 Traffic amplification

GNS records are about as compact as those of DNSCurve. However, there is no
real potential for traffic amplification as the DHT relies on secure connections
with a proper handshake that prevents spoofing attacks. The DHT connections
are long-lived, limiting the performance impact of the cryptographic handshake
compared to DNS-over-TLS.

5.5.7 Quantum computing

GNS is based on Curve25519. If quantum computers of sufficient size are ever
created, GNS and many other deployed public key systems would be broken as
well [4, Table 1]. Today, it is unclear whether a post-quantum cryptosystem
with adequate semantics and performance exists. [4]

52 CHAPTER 5. SECURITY

5.6 Secure key management

User will need to generate and manage their keys using a software or hardware
vault. GNS is an open system, so many different vaults can be implemented,
providing different graphic user interfaces (GUIs), for example those tailored to
address specific disabilities.

Existing GNS vault implementations can use Postgres, MySQL, Sqlite or flat-
file databases to store zone data, and zones can be manipulated via command-
line, browser or Gtk+-based user interfaces.

5.7 Communication protocol security

GNS itself does not mandate any particular communication protocol, as it fo-
cuses on making key material and credentials available to the applications. We
expect GNS to be frequently used in combination with TLS which has been
implemented by supporting TLSA records in GNS. TLS v1.3 has undergone
extensive security evaluations from the community [35].

More importantly, GNS can be used with a wide range of “legacy” authen-
tication protocols, such as HTTP basic authentication (basically username and
password). While such solutions may be vulnerable to well-known attacks, this
is simply a fundamental trade-off between backwards-compatibility and secu-
rity: GNS can help secure addressing and provide public keys or pre-shared
keys, but the communication protocol using these keys may ultimately limit the
security of the overall solution.

5.8 Comparison

Table 5.1 compares the security properties of GNS with those of major com-
petitors. We provide the minimum number of bits of security guaranteed by the
protocol design for end-to-end security; if various standards-compatible settings
exist, we report the weakest setting. We also reviewed whether the design or
protocol has been published in appropriate academic security conferences and
whether it uses common state-of-the-art cryptography, that is neither exotic
primitives nor “broken” primitives are acceptable. Finally, we review whether
the system architecture distributes risks, that is whether security failures of
individual providers or users have a localized security impact.

5.8. COMPARISON 53

Table 5.1: Security comparison. TLS is used to indicate that theoretically weak
TLS cipher suites (including the NULL cipher according to the TLS standard)
could be used. Also, we consider TLS 1.2 to be borderline “state-of-the-art” as
it will be obsolete soon with TLS 1.3.

Technology Guarantee
d minimum end-to

-en
d sec

urity
lev

el

Asse
ssm

ent in publish
ed

academ
ic res

earch

Uses
sta

te-o
f-th

e-a
rt cry

ptography

Distr
ibuted

risk
fro

m failures

DNSSEC 0 bits 3 7 3

X.509 CAs 0 bits 3 3 7

verimi.de TLS 3[2] TLS 1.2 7

id4me.org TLS 3[2] TLS 1.2 3

keyp.io unspec. 7 unspec. 3

miracl.com unspec. 3 3 3

DecentID[15] unspec. 3 unspec. 3

fidoalliance.org TLS 3[2] TLS 1.? 3

GNS+re:claim 128 bits 3 3 3

54 CHAPTER 5. SECURITY

Chapter 6

Privacy and data protection

The right to privacy is one of the Human Rights protected by the European
Convention on Human Rights [29, Article 8]. It is also protected by various
national legislation and at the level of the European Union by the General Data
Protection Regulation (GDPR) [10].

The main privacy objectives required by the European GDPR are the follow-
ing [10]: Data must be collected for a specific purpose, collection must be trans-
parent, and the collected data must contain only the minimal data necessary for
the purpose. The data must be stored for no longer time than necessary. The
persons collecting data must provide technical and organisational safeguards for
security and the data must be accurate and allow users to correct inaccuracies.

While one cannot technically ensure that data requested is only used for the
specified purpose or that companies only request the minimal data necessary,
GNS can help address the other concerns: GNS and re:claim empower users
to choose when disclose what private information, and if they choose to do so,
make it convenient to keep the shared information current, and also to later
revoke access.

GNS has been designed to minimize information leakage and preserve pri-
vacy for users publishing as well as for users retrieving information. Most im-
portantly, whereas most identity systems will require some kind of trusted iden-
tification service, in GNS, we have a totally decentralized infrastructure that is
oblivious to the operations performed by its users.

The system design empowers the user: Each user is at the center of the
decision making about who is granted access to their private data. Most impor-
tantly, users have tools for creating as many pseudonyms as needed, and can
thus limit how collected data can be linked. Whereas centralized system based
on a public key infrastructure (PKI) will require everybody to trust the same
set of certificate authorities (CAs), in GNS, every actor can select which third
parties are trusted.

55

56 CHAPTER 6. PRIVACY AND DATA PROTECTION

6.1 Pseudonyms and the right to be forgotten

A key approach users have to protect privacy is to create separate identities to
separate the different traces of their activities on the Internet. For example,
recent studies have shown that many teenagers maintain multiple accounts on
certain online platforms [30]. The use of pseudonyms is also the only practical
approach to realize the right to be forgotten, as rarely users will want to delete
all traces of their electronic lives.

GNS offers the possibility for users to separate their traces by allowing users
to generate as many pseudonyms as they want. This includes the possibility
to use each pseudonym only once. This makes it more difficult to link the
information associated with the same person across activities. This principle is
quite similar to the system used for transactions on Bitcoin where fresh wallet
addresses can be used to make it harder to link wallets to users. The same
is possible with GNS: one may not know which pseudonym belongs to which
person, and moreover, even if one pseudonym is linked to a particular identity,
GNS allows users to keep their different pseudonyms unlinkable.

Naturally, in practice GNS cannot fully solve the problem of partial iden-
tities [40] where people use some kind of unique identifier (first and last name
for instance) across their activities. In this case, it may still be possible to link
the partial identities. However, GNS identifies pseudonyms by a public key and
not by a username. This helps eliminate at least one commonly used unique
identifier.

6.1.1 Link to legal identities

For many actions, pseudonymity is useful. In most of the use cases, the on-
line service does not need to know what is the real identity of the person using
this service. This can be the case for ordering music on a streaming service,
ordering goods from a ecommerce web site or visiting an email service. But
in some cases, the possibility to link a pseudonym with the legal identity is
necessary for accountability issues. If a problem occurs, in some cases it should
be possible to access the legal identity of one client.

For example, we could imagine that states may want to have a means to ac-
cess the identity of persons receiving parcels in packstations or pickup stations
(as discussed in Section 7.1). They may fear that people will order drugs on the
Darknet and receive their illicit goods this way. This use-case can be addressed
with the creation of some agencies that are charged with certifying pseudonyms.
Those agencies would know the link between the pseudonym and the legal iden-
tity of the person. They maintain accounts for people they identified and offer
them the opportunity to create any number of certified pseudonyms.

For instance, Mr John Smith is identified by the agency “myagency”. He
receives an account. When he wants a parcel to be delivered he generates a new
zone entry johndoe1234.myagency, that is linked with the ego’s public key.
The ego can then be used to receive the packet. The item is sent to a nearby
packstation, to the ego certified by the record johndoe1234.myagency. Neither

6.2. PRIVACY OF RECORD DATA 57

the e-commerce site, nor the delivering firm have an idea of the identity of their
client. The client can access his packet without any other information using his
private key. But in case of problems, the police may ask “myagency” to disclose
the legal identity corresponding to the ego johndoe1234.myagency. Since the
users may use many agencies, nobody can easily link all the egos of one person.
The agencies do not have any information on what the person did with the
given ego, since the record is in the DHT and the agency is not informed about
services using it.

The system offers law enforcement access to the identity of an ego in case
of illegal behaviour, while people can remain anonymous as long as they behave
legally. The users retain the opportunity to use as many identities as desired.
They can also use different agencies to get more independent identities.

6.1.2 Certified attributes

One can also imagine that some of the agencies decide to certify that a person
is over 18 and to provide a special type of pseudonyms to the user with this age.
For example, persons above the age of 18 may have the possibility to create
identities like asdf2343eef.over18.myagency.

Instead of using GNS zones, certification providers could also provide users
with signatures using attribute-based credentials [36] which can then be shared
as GNS records. Our re:claim uses this style of sharing attributes as GNS
records, which is appropriate in cases where attributes express more than a
simple set membership.

IT services requiring that users are over 18 will decide which agencies they
trust for the verification of the age, then they will accept all users whose identity
is provided by those agencies. The services will still not have any possibilty to
learn the legal identity of the users visiting their sites. Neither will have the
certification agency the possibility to check the use of the certificate it provided.

6.2 Privacy of record data

In addition to users being able to create any number of GNS zones to use as
unlinkable pseudonyms, GNS also protects the actual data stored within each
zone. We will now focus on these privacy properties offered by GNS.

6.2.1 Existence of zones

To begin with, the mere existence of a zone is never implicitly disclosed. In
GNS, records under label l in zone Z = zG are stored under the DHT key

Ql,Z := H(lZ) (6.1)

and signed by the public key lZ (see Section 2.1.3). Thus, peers in the DHT
would have to solve the Elliptic curve discrete logarithm problem to derive the

58 CHAPTER 6. PRIVACY AND DATA PROTECTION

zone Z from lZ. For appropriate curves (like GNS’s choice of Curve25519) this
problem is untractably hard today.

Naturally, the public key of a zone will have to be explicitly disclosed to other
parties that should have (read-only) access to the zone. But this disclosure itself
can usually happen via GNS records, which themselves are again confidential.

6.2.2 Response privacy

GNS responses Bl,Z from zone Z published under label l containing GNS records
Rl,Z are symmetrically encrypted:

Bl,P := EHKDF(l,Z)Rl,Z), lZ (6.2)

Assuming the cryptographic hash function (for GNS, SHA-512) used by HKDF
is sufficiently strong, the shared secret HKDF (l, Z) can be assumed to be
random in the random oracle model as long as either l or Z are secret. As
discussed in Section 6.2.1, Z is never implicitly disclosed by GNS and thus may
act as a shared secret between the zone’s owner and services trying to resolve
records in the zone. Similarly, the label l may be chosen to be a high-entropy
password. Assuming the hash function can be modeled as a random oracle,
decrypting Bl,P requires access to both Z and l, allowing users to use either or
both for access control. Naturally, it is also possible to use well-known values
for both to publish records that should simply be public.

6.2.3 Query privacy

For records that are not published under such well-known 〈l, Z〉 names, GNS also
achieves query privacy: given H(lZ) (the query) or even lZ from the answer, it
is not possible to compute l or Z: Given just l or just Z, computing the other
would require solving the discrete logarithm problem. Given neither l or Z, the
problem is even unsolvable as for any Z ′ in the group there exists is a solution
l′ such that lZ = l′Z ′.

6.2.4 Zone enumeration privacy

As without knowing the label l and the zone Z it is not possible to derive
the query H(lZ), it is also not possible to enumerate all records in a zone
without brute-force guessing of all labels. Like with the original DNS (and
unlike DNSSEC with NSEC3 records [21]), brute-force zone enumeration would
require an infeasibly large number of queries to the DHT.

6.2.5 Revocation check privacy

Revoking a zone’s public key in GNS discloses the (former!) zone’s existence to
the world, but only at the time where it is explicitly no longer in use. Publishing
the revocation information globally via the flooding mechanism used by GNS

6.3. DATA PROTECTION BY DEFAULT 59

has a significant advantage to privacy as well. Protocols like the online certifi-
cate status protocol (OCSP) [7] disclose to OCSP servers whenever a user wants
to check whether a zone key has been revoked. As checking for revocations is a
common step just before using information from a zone, this is a privacy night-
mare. With GNS-style revocation, checking whether a key has been revoked is
a cheap and local operation which thus does not leak any information to other
parties.

6.3 Data protection by default

Finally, we should point out that our reference implementation does not collect
any data. In particular, our software does not report personal information nor
telemetry data back to us. The software is available from a global pool of FTP
mirrors, thus we do not even obtain download statistics. However, our system
uses a privacy-preserving and Byzantine fault-tolerant method to obtain a global
estimate on the total number of peers that are online [13].

Privacy-by-default is also implemented in the user interface. In particular,
even for records the user creates locally, the user must explicitly consent to
publish them to the world (and then share the zone’s public key and label to
make them effectively available). If the user enters record information but does
not check the “public” box, even the encrypted record data is not shared in the
DHT.

Our main project Website does not use any tracking, does not include any
third party resources, requires TLS with a strong ciphersuite and is pinned to
use TLS-only by major browsers. It also works well even if the user disables
JavaScript. Software releases are signed using GnuPG keys verified by the well-
known GNU project. System documentation is provided as a manual that is
part of the main download. Thus, users can access the documentation for the
system locally without leaving further traces of what manual pages they are
reading on the Internet.

6.4 Summary

Table 6.1 compares the privacy properties of GNS with those of major competi-
tors. Zone privacy is about the system not disclosing to unauthorized parties
the existence of accounts, records or attributes in the absence of requests. A
solution achieves private information retrieval if even during an access to infor-
mation systems facilitating the access cannot identify which information unit
was accessed. Selective attribute sharing implies that the user can precisely
control which attributes (or records) are shared with which parties. Revoca-
tion means that the current implementation allows the user to securely revoke
access to attributes or accounts / pseudonyms. Revocation does does not re-
quire retroactively removing data that was already shared with others, only
preventing future access to the attribute or account.

60 CHAPTER 6. PRIVACY AND DATA PROTECTION

Table 6.1: Privacy comparison.

Technology Zone privacy
(ex

iste
nce

of rec
ords)

Private inform
ation ret

riev
al

Selec
tive attri

bute sharin
g

Revocation

DNS 3 7 7 3

DNSSEC 7 7 7 3

X.509 CAs 7[18] 7 7 3

openid.net 3 7 3 3

verimi.de ? 7 3 3

id4me.org 7 7 3 7

keyp.io 7 7 7 ?
miracl.com 7 7 7 7

DecentID[15] 7 7 3 7

fidoalliance.org 3 7 7 3

GNS+re:claim 3 3 3 3

Chapter 7

Applicability

The usability studies from Chapter 3 demonstrate the applicability of our au-
thentication solution for use-cases across a wide range of sectors including
health, telecommunications (DNS), government (Reclaim identity management),
and the Internet of Things (IoT).

Existing business models can typically continue in the context of GNS de-
ployments. For example, just like we have DNS registries today, in the future
we can have GNS registries. However, a crucial difference is that with GNS
security and privacy of the customers would be significantly improved.

Beyond the use-cases where we have performed usability studies, we are
working on using GNS in various other applications. This section introduces
some of them.

7.1 Certified delivery

Delivery of goods generally requires disclosing one’s postal address. The address
may later be missused for sending advertisement or to attack privacy of the
persons. The delivery at home is also problematic if nobody is at home when
delivery person comes to bring the parcel. That is the reason why some firms
have developed new system for delivering parcels out of home: Pickup-station
from the French “La Poste”1.

We can use GNS to secure delivery of goods to the right person. A user
would provide a Web site with access to selected attributes of their GNS zone.
For shipping, they might share the location of a pickup station close to their
home. In order to collect the parcel, the client goes to the station, where the
package is. The user enters the GNS identity used for ordering and then the
station starts a challenge response with the smart phone of the user containing
the chosen key.

As a result, the delivery happens without disclosing private data to the store,
preventing the firms from sending unsolicited mail while also assuring the firm

1See https://www.pickup.fr/relais/pickup-station.sls

61

62 CHAPTER 7. APPLICABILITY

that parcel was delivered correctly.

If law enforcement agencies need to control the delivery of goods to prevent
people to receive illegal products using this system, this can also be solved using
CAs that certify GNS identities. Suppose such an agency is named agency.
Then a user Anna Muster, could create an account at the agency. To get an
account she needs to show a real ID and to prove her legal identity. Then
she can create a master account anna muster.master.agency, which will only
be used to identify her to the agency system. This login will then be used to
certify a fresh identity each time a private login is needed. For instance, if Anna
Muster buys a sex toy and wants them to be delivered, she could create ask
agency to certify a fresh identity: 1238dijnciuwejniu9.agency. This identity
is only linkable to the legal identity of Anna Muster by agency. In case of
prosecution, law enforcement can thus identify and convinct. However, outside
of this legitimate use-case, the one-time pseudonym can not be linked to her.

7.2 Telephony

GNUnet uses the GNU Name System as a PKI for P2P voice conversations. Ex-
isting P2P voice applications, such as Skype, typically use a centralized service
for user authentication. This is highly problematic as this is one place where
attacks can be mounted against the system, from denying access to intercep-
tion and impersonation. One alternative is the use of X.509 client certificates
for users, which is, for example, supported by Mumble2. However, the use of
certificate authorities (CAs) in X.509 allows a large number of CAs to act as
trusted third parties, with the weakest CA determining the security of the sys-
tem. Furthermore, the cost of certification or the desire to use pseudonyms
drive users to use self-signed certificates, which provide no more than TOFU
security.

GNUnet includes a simple conversation service which uses GNS and GNUnet’s
implementation of the Signal protocol [33] to establish a secure connection be-
tween the participants. GNS “PHONE” records contain the public key of a
peer and an integer specifying the line under which a user application realizes
a phone service for incoming calls. A call can then be made by specifying the
GNS name that resolves to the “PHONE” record. The connection to the target
peer is then secured using ECDHE and AES using the public key of the target
peer. The caller signs the call request with his zone key. The callee performs
a reverse lookup against the caller’s public key to determine the caller id. If
the caller’s public key is not in the callee’s zone, a name is generated from the
public key instead.

2http://mumble.sourceforge.net/

7.3. ONLINE SOCIAL NETWORKING 63

7.3 Online social networking

The SecuShare project3 is building a decentralized P2P social networking ap-
plication [42] by combining the PSYC multicast protocol with the GNU Name
System. GNS zones are used to identify participants. Name resolution is used to
address objects published by participants, such as their profiles, communication
channels and rooms enabling group communication.

The GNS zone of a user also corresponds to their address book, associating
names of other users with their zones via PKEY records. SecuShare’s imple-
mentation is still experimental, but the applicability of GNS to represent the
social graph for online social networking applications is clearly demonstrated by
the SecuShare design.

7.4 Tor hidden services

GNS can also be used to assign more memorable names for privacy-sensitive
applications. Specifically, the Tor project is discussing the possibility of using
GNS to provide memorable names for its “.onion” services.4

7.5 Medical applications

Finally, BFH is working on a project with Ypsomed AG, a major industry
player in the health sector that is considering the use of the GNU Name System
for management of private health data and optimize treatments. The Ypsomed
Group is a leading developer and manufacturer of injection and infusion systems
for self-medication. Patient privacy and data integrity are critical for Ypsomed,
and the company is interested in the ability of GNS to provide a mechanism for
secure and private asynchronous data exchange between the various actors in
the Ypsomed value chain.

7.6 Summary

Table 7.1 compares the application domains of GNS with those of major com-
petitors. We say a technology enables Internet service addressing if it can be
used to obtain network routing information for Internet services. We say it pro-
vides service authentication if it can be used establish a secure channel where
the service is authenticated. We say it can be used for Internet-of-things mutual
authentication if it is suitable for mutually authenticated access to personal de-
vices of end-users. We say it supports single sign-on (SSO) with attribute shar-
ing if end-users can use the technolology to (easily) authenticate themselves and
provide attribute data to network services.

3https://secushare.org/
4https://trac.torproject.org/projects/tor/wiki/doc/OnionServiceNamingSystems

and https://blog.torproject.org/cooking-onions-names-your-onions

64 CHAPTER 7. APPLICABILITY

Table 7.1: Applicability comparison.

Technology Inter
net ser

vice
addres

sin
g

Inter
net ser

vice
authentica

tion

IoT mutual authentica
tion

Single sign-on attri
bute sharin

g

DNS 3 7 7 7

DNSSEC 3 3 7 3

X.509 CAs 7 3 7 7

openid.net 7 7 7 3

verimi.de 7 7 7 3

id4me.org 7 7 7 3

keyp.io 7 7 7 3

miracl.com 7 7 3 3

DecentID[15] 7 7 7 3

fidoalliance.org 7 7 3 7

GNS+re:claim 3 3 3 3

Chapter 8

Compatibility

In this section we will explain what protocols, hardware and software our solu-
tion is compatible with, as well as how new systems can be integrated with our
solution.

To begin with, the GNS Socks5 proxy is compatible to RFC 1928 [23], the
DNS-to-GNS proxy is (largely) binary compatibile with RFC 1035 [28] and
applicable subsequent DNS extensions, and re:claim is compatible with the
OpenID Connect standard.

GNS assumes that the user is in control of their own hardware and the
private keys entrusted to it. How the user secures their hardware or their local
login process is thus orthogonal to GNS. Users are free to use any conceivable
multi-factor authentication (HSM, biometrics, passwords) for this process.

8.1 Hardware requirements

Hardware requirements for using the GNU Name System are pretty low. GNUnet,
including the GNU Name System, has been packaged for LEDE (previously
known as OpenWRT)1 which is a distribution focusing on low-end hardware
such as SoHo routers and NAT boxes.

On LEDE, GNUnet with GNS is known to run fine on systems with a total of
64 MB of RAM. The GNUnet packages require a total of 8 MB ROM. GNUnet
requires a 32-bit CPU and has been running on Sparc, Intel/AMD, ARM and
MIPS processors in the past.2 Even a low-end Cortex-M4 is adequate to handle
the most expensive cryptographic operations of the GNU Name System (EdDSA
verification) in about 1.2 million cycles [16]

1https://github.com/openwrt/packages/tree/master/net/gnunet/files
2Our Sparc is currently not operational.

65

66 CHAPTER 8. COMPATIBILITY

8.2 Operating systems

GNUnet includes an operating system abstraction layer with provisions for run-
ning on Windows, Solaris, OS X and GNU/Linux.

For tight integration with the operating system’s name resolution, plugins
to integrate with the Windows and GNU libc name resolution processes exist.

The community is working on a port to Android/iOS.

8.3 Network technologies

GNUnet typically operates on top of TCP/IP. However, GNUnet can also di-
rectly run over WLAN. The community is working on having peers communicate
directly over BLE without TCP/IP.

8.4 Application programming interfaces (APIs)

Applications can use the GNU Name System for name resolution in various
ways. This section presents the existing set of mechanisms.

8.4.1 Interoperability with DNS resolution

To integrate with DNS, the GNS implementation needs to intercept all DNS
queries for zones configured by the user to use GNS, and to inject appropriate
responses. Furthermore, other TLDs should then be forwarded to the traditional
DNS system. Our current implementation provides three alternative methods
to do so:

• On GNU systems, a plugin for the name services switch (NSS) [14] in
GNU libc can be used to answer GNS queries before a DNS request is
ever created. Mechanisms similar to NSS exist for other platforms; we
also have an equivalent plugin working on Microsoft Windows.

• The resolver configuration (usually /etc/resolv.conf) can be changed to
point to an IP address (i.e. 127.0.0.1) with a modified DNS resolver. We
have implemented a DNS-to-GNS gateway which resolves names in GNS
zones internally, and acts as a simple proxy for all other TLDs, passing
those requests to an actual DNS server.

• Browsers can be configured to use an HTTP SOCKS Proxy and delegate
name resolution to the proxy. In this case, our gnunet-gns-proxy per-
forms GNS (or DNS) name resolution, and generates X.509 certificates on
the fly if TLSA-based validation of the TLS connection succeeded.

The NSS-based approach has the key advantage that it allows GNS to learn
the identity of the user that issued the query. As a result, it can fully person-
alize the GNS lookup on a per-user basis for multi-user systems. A potential

8.4. APPLICATION PROGRAMMING INTERFACES (APIS) 67

disadvantage is that some applications may bypass the operating system and
directly contact a DNS resolver. Here, the network-level approaches can provide
an alternative.

The DNS-to-GNS proxy is useful to allow legacy systems to access the GNS
distributed database without installing GNS or changing their system configu-
ration.

8.4.2 APIs for new applications

libgnunetgns provides a C API for name resolution using the GNU Name
System. Clients first connect to the GNS service using GNUNET GNS connect().
They can then perform lookups using GNUNET GNS lookup() or cancel pending
lookups using GNUNET GNS lookup cancel(). Once finished, clients disconnect
using GNUNET GNS disconnect().

Instead of using libgnunetgns, it is also possible to connect to the GNU
Name System service using TCP (on loopback) or using a UNIX domain socket
(UDS). The TCP/UDS protocol consists of only two messages, the LOOKUP mes-
sage and the LOOKUP RESULT. Each LOOKUP message contains a unique 32-bit
identifier, which will be included in the corresponding response. Thus, clients
can send many lookup requests in parallel and receive responses out-of-order.
A LOOKUP request also includes the public key of the GNS zone, the desired
record type and a few flags. Finally, the LOOKUP message includes the name
to be resolved. The response includes the number of records and the records
themselves in a well-defined serialization format.

Finally, GNUnet includes a command-line tool gnunet-gns which allows
users and applications to resolve names in a way that is equivalent to what
nslookup or dig offer for DNS.

8.4.3 Defining new record types

The libgnunetgnsrecord library is used to manipulate GNS records (in plain-
text or in their encrypted format). Applications mostly interact with libgnunetgnsrecord

by using the functions to convert GNS record values to strings or vice-versa, or
to lookup a GNS record type number by name (or vice-versa). The library also
provides various other functions that are mostly used internally within GNS,
such as converting keys to names, checking for expiration, encrypting GNS
records to GNS blocks, verifying GNS block signatures and decrypting GNS
records from GNS blocks.

To define a new GNS record type, one needs to write (or extend) a plugin for
libgnunetgnsrecord. The plugin needs to implement the gnunet gnsrecord plugin.h

API which stipendulates the existence of four basic functions that are needed by
GNSRECORD to convert typenames and values of the respective record type
to strings (and back).

The libgnunetgnsrecord library will then locate, load and query the ap-
propriate plugin. Which plugin is appropriate is determined by the record type.

68 CHAPTER 8. COMPATIBILITY

Table 8.1: Compatibility comparison.
Technology DNS LDAP X.509 OpenID

DNSSEC 3 7 3[3] 7

X.509 CAs 7 7 3 7

verimi.de 7 7 7 3

id4me.org 3 7 3 3

keyp.io 7 3 7 3

miracl.com 7 7 ? 3

DecentID[15] 7 7 7 7

fidoalliance.org 7 3 3 3

GNS+re:claim 3 7 3 3

The libgnunetgnsrecord library loads all block plugins that are installed at
the local peer and forwards the application request to the plugins.

Record types should be below 216 if the respective record type is binary-
compatible to a DNS record type managed by the respective Internet Assigned
Numbers Authority (IANA) registry. Record types above 216 should be used
for GNU Name System-specific records. The range above 216 is managed by the
GNUnet Assigned Numbers Authority (GANA).

8.5 Summary

Table 8.1 compares the compatibility properties of GNS with those of major
competitors. We say a technology is compatible with DNS if it can be used to
resolve domain names like DNS does. We say a technology is compatible with
LDAP if it can use LDAP directories. We say a technology is compatible with
X.509 if it can be used to securely obtain X.509 certificates. Solutions that
we consider compatible with OpenID Connect must implement (at least) the
OpenID Connect Core specification 3.

3https://openid.net/specs/openid-connect-core-1_0.html

Chapter 9

Affordability

To estimate the cost of the solution, we consider the three main cost cate-
gories: operating expenses for the infrastructure, licensing costs and one-time
integration costs. To estimate operating expenses, we deployed the system for
a few months in Amazons EC2 cloud. Amazon offers detailed billing, allowing
a comprehensive assessment of commercial deployment costs. We note that our
deployment used expensive “on-demand” resources, a permanent deployment
on dedicated systems should thus be even cheaper in the long run.

9.1 Deployment cost in EC2

We investigated the cost of deploying the service in the Amazon EC2 cloud.
For most of our use cases, the number of records stored as well as the number
of queries made by the applications in our limited deployments is very small,
making useful measurements difficult. However, the use case involving the re-
placement of DNS is different, as large data sets exist in the form of more-or-less
public DNS zone files. Thus, the DNS use case makes for a good case study for
what it would cost to deploy GNS at scale.

To evaluate the cost of large-scale GNS deployments, we we imported the
entire “.fr” TLD from AFNIC into the DHT.

9.1.1 Memory consumption for zone import

Our importer requires a bit above 1 GB RAM to keep a list of the 5 million
domain names, their respective expiration times and associated data structures
in a heap (sorted by expiration time). While memory consumption could be
reduced by using the database for this, this would double the number of queries
to the database which is not a reasonable trade-off in this case.

69

70 CHAPTER 9. AFFORDABILITY

9.1.2 Compute time for zone import

The GNU Name System cryptography consumed most of the CPU load. It
takes about 576 CPU credits to derive the key material and to re-sign all 5
million records.1 Given a typical expiration time of 48h for records in the “.fr”
zone, approximately 12 CPU credits/hour would thus be (barely) sufficient to
maintain the signed zone.

Thus, at a minimum, maintaining the “.fr” zone in the GNU Name System
requires a dedicated t2.small instance (which also includes a sufficient amount
of RAM). The annual cost of a t2.small instance at Amazon is (at the time of
writing) ≈ e 100.

In practice, this is a bit low as the CPU would be at 100% load and may not
fully keep up with the zone’s changes. Furthermore, some redundancy would
likely be good to cover outages. Thus, we ran our actual experiments on two
t2.medium instances, which cost e 200 annually.

9.1.3 Bandwidth consumption for DNS queries

We note that the bandwidth consumption of the import process is minimal,
as 24-48 DNS queries and responses per second (with typically a few hundred
bytes) barely registers on modern networks.

Furthermore, assuming a DNS registry were to publish their data directly
into GNS – which would mirror the other use cases – this limited amount of
bandwidth would not even be needed.

9.1.4 DHT replication

As the DNS data is being imported, the GNU Name System’s zonemaster pro-
cess begins to publish the encrypted and signed blocks with GNS record sets
in the DHT. This is a continuous process, with the zonemaster re-publishing
records periodically as well as whenever they change. The various peers pro-
viding the DHT service cache the blocks that fall into their range, and route
queries and responses for DHT clients.

All DHT peers have the same configuration (modulo private keys and IP
addresses that identify the machine), thus if some peers become unavailable,
others take over without the service being interrupted. However, if too many
peers leave the network too quickly, some cached records may be lost and become
unavailable until the zonemaster republishes the records.

We have configured the DHT template to fit the requirements of a “t2.micro”
instance (1 GB RAM) so that users can run it for “free” for the first year as
part of in Amazon’s “Free tier”. Of the 1 GB RAM, we reserved 500 MB for
the DHT to cache results in RAM, thereby eliminating the need for most disk
IO. At 500 MB most peers can cache about a million GNU Name System record

1We estimated the total time for all 5 million records by extrapolating the velocity observed
for a smaller record set on a t2.micro instance.

9.2. LICENSING COSTS 71

sets, as the cryptographic overheads add about 200 bytes to the few hundred
bytes compared to the original DNS data.

Running a “t2.micro” instance for one year costs about EUR 50. Each in-
stance holds roughly one million records. Realistically, we would want 10 repli-
cas per record across the world for increased reliability, thus the computational
cost would be EUR 500 per million records annually.

9.1.5 Total cost

For our actual experiments, we used 24 “t2.micro” instances (in three regions)
for the DHT and two “t2.medium” instances with one “t2.micro” RDS database
each for the DNS import logic. This setup would cost approximately USD 3600
annually, for approximately 5 million records at the reported performance and
reliability figures.

Suppose the average user will publish fewer than 50 records in their zones.
Even if records are published for self-hosted network services, medical data,
references to other entity’s zones, and credentials for IoT devices, 50 should
still be sufficiently high on average for a while. Then, the annual publishing
cost per user is roughly e 3600·50

5000000 — or 3 cents — based on the data collected in
Section 9.1.2.

Next, suppose each user performs 1000 lookups each day. While this number
may seem high for typical authentication problems, it becomes more realistic
if we include assume GNS is queried instead of DNS. 1000 lookups multiplied
by 50000 bits per lookup (5000 bits payload, multiplied by 10 for DHT internal
hops allowing for ≈ 210 peers in the EC2 DHT) is 18 GBit of traffic per year,
costing an additional 18 cents per user annually.

Consequently, to operate the DHT infrastructure to support the retrieval
operations would cost approximately 21 cents per user annually. Appendix A.6
includes the EC2 billing we received from Amazon.

For comparisson, easydns.com offers DNS “pro” services at USD 55/year
for 5 million queries per month (this is for service providers, not end-users).2

This is 156 times the number of queries we estimated above that a normal user
would make, and our cost calculation scaled to the query rate “pro” users of
EasyDNS are allowed would thus be e 31. Thus, operating costs for the GNS
infrastructure are comparable to those of DNS.

9.2 Licensing costs

The entire software is available for free as free and open source software from
https://gnunet.org/. Users are not expected to pay any royalties. Further-
more, the community provides support via an IRC channel (freenode.org#
gnunet) and a public mailinglist (gnunet-developers@gnu.org).

2https://easydns.com/pricing

72 CHAPTER 9. AFFORDABILITY

9.3 One-time costs

The primary one-time costs for the system are the initial integration costs for
applications, as well as configuration and installation. We cannot precisely
estimate these costs, as they differ widely between applications as well as in-
dividuals or organizations. However, will try to point out key aspects of the
existing implementation that should make this process feasible.

9.3.1 Cheap integration

The GNU Name System includes a SOCKS proxy which enables HTTP(S)-based
applications to use GNS for lookups and TLSA-based X.509-validation without
modifications. The GNU Name System also includes plugins into Windows
and GNU/Linux name resolution processes (such as GNU libc’s NSS) to enable
migration from DNS to GNS for applications using the operating systems’ stub
resolver. Finally, GNS includes a DNS server which answers queries via GNS
for GNS-enabled zones, and otherwise forwards to DNS.

9.3.2 Comprehensive integration

Applications that want to make use of advanced GNS features, including new
record types, attribute-based encryption or simply the assurance that GNS was
used instead of DNS, need to use GNS via the respective API. GNS provides a
simple C API, a stream protocol (TCP or UNIX domain socket), a REST API
and a command-line tool for resolution. Bindings for some popular languages
(such as Python) have also been written (by third parties). For new record
types, the main work is to implement functions for the conversion from the
binary value to human-readable text and vice-versa.

Further, GNS and re:claim expose REST APIs which allows for a technology-
independent integration.

9.4 Summary

Annual operating costs for the system are estimated to cost at best a few cents
per user, comparable to those of today’s DNS infrastructure cost. Migration
costs will depend on the application, ranging from relatively simple installation
for systems where compatibility to existing protocols is achieved (DNS, OpenID)
to more comprehensive re-development. There is cost for licensing.

Chapter 10

Openness

The GNU Name System and all applications and components included in this
reported are publicly available as free and open source software under the GNU
Affero General Public License (v3+).

We are not aware of any patent claims against the design or implementation,
and the consortium also does not hold any patents on the system.

The protocols are documented in a manual that is available under the GNU
Free Documentation license at https://docs.gnunet.org/. Academic publi-
cations on the GNU Name System, the R5N DHT and re:claim are available
from the bibliography hosted at https://gnunet.org/.

The reference implementation is publicly available in Git repositories hosted
at https://git.gnunet.org/. The cryptographic protocols and primitives
were developed outside the US and thus do not fall under any export restrictions
that we are aware of. GNUnet binary packages exist for a range of free software
distributions.

In conclusion, we believe the project has done everything possible to provide
the most open, freely available authentication system.

Summary

Table 10.1 compares the openness properties of GNS with those of major com-
petitors. We consider a technology open if the protocol specification is freely
available and unencumbered by restrictive copyrights or patents. If the spec-
ifications for accessing a service based on the technology are freely available,
the technology has an open API. If implementations of all critical components
are available as open source software we say it has an open reference implemen-
tation (even if such an implementation is not provided by the standardization
body itself, if one exists). Finally, the design is gatekeeper-less if there is no
entity that has a priviledged position (such as ICANN with DNS) to set rules
for using the system (this excludes entities that define the protocol as required
for interoperability).

73

74 CHAPTER 10. OPENNESS

Table 10.1: Openness comparison.

Technology Open
sta

ndard

Open
API

Open
refe

ren
ce

implem
entation

Gatek
eep

er-l
ess

desig
n

DNSSEC 3 3 3 7

X.509 CAs 3 3 3 7

verimi.de 3 7 7 7

id4me.org 3 3 3 3

keyp.io 7 7 7 7

miracl.com 7 7 7 7

DecentID[15] 7 3 ? 3

fidoalliance.org 3 3 3 3

GNS+re:claim 3 3 3 3

Appendix A

Appendix

This appendix provides auxiliary information about the experiments.

A.1 Reproducing our EC2 setup

To ensure reproducability, we performed various experiments for the reliability
(Chapter 4) and affordability studies (Chapter 9) using Amazon Web Services,
specifically EC2 (computation) and RDS (database). We have published the
respective virtual machine images, thus with the following instructions anybody
should be able to reproduce our results.

A.1.1 Create a virtual private Cloud

First, go to the “VPC Dashboard”, select “VPC Dashboard” and then “Start
VPC Wizard”. Select “VPC with a Single Public Subnet”. Use “dht” for the
“VPC name” and enable an “Amazon provided IPv6 CIDR block” and “Specify
a custom IPv6 CIDR”. Leave the other settings unchanged.

Next, select “Subnets” and select “Public subnet” using the “Subnet ac-
tions”, enable auto-assignment of public IPv4 and IPv6 addresses. Then create
another subnet, “intranet-1”, using “10.0.1.0/24” for the IPv4 CIDR block and
“01” for the custom IPv6 CIDR. Create a second subnet “intranet-2” using
“10.0.2.0/24” and “02” respectively. Make sure you specify different availability
zones for both.

A.1.2 Launching the RDS database

Go via “Services” to the “RDS” dashboard. Click on “Instances” and then
“Launch DB instance”. Select “PostgreSQL”. For “DB engine version”, use
“PostgreSQL 10.3-R1”. Use a “db.t2.micro” instance. Leave the storage at the
20 GiB default. Set the DB instance identifier to “namestore”, the “Master
username” to “gnunet1” and the “Master password” to “password1”. On the

75

76 APPENDIX A. APPENDIX

next screen, select the “dht” VPC. Use “gnunet” for the database name. Set
the backup to 0 days (no backup). Leave the other settings unchanged.

A.1.3 Preparing EC2

Now go via “Services” to the “EC2” dashboard. Click on “Security Groups”.
You should see two groups, the “default” group for your VPC and the “rds-
launch-wizard”. Set the name of the “default” group to “dht” and the “rds-
launch-wizard” to “db”. Select the “dht” security group, and edit the “inbound”
rules to allow TCP port 1080 and 2087 from anywhere, and SSH from your own
system, and DNS (UDP) from anywhere. Select the “db” security group, and
edit the “inbound” rules to allow “Postgres” from the “dht” security group.

Next, to to “Key Pairs” and “Create Key Pair”. Follow the instructions and
download your SSH private key. Store it in a safe location. You will need to
pass the respective filename to ssh commands using the -i option when logging
into your instances.

A.1.4 Launching DHT nodes

In the “EC2” dashboard, select “Instances” and then “Launch Instance”. Select
the “GNUnet DHT” community AMI1 and use a “t2.micro” instance. Select
“Next: Configure Instance Details”. You can now specify the number of DHT
nodes to launch. For “Network”, use the “dht” VPC. Selec the “public” subnet.
Leave the other settings unchanged.

Do not change anything on the “Add Storage” or “Add Tags” screens.
On the “Configure Security Group” screen, select “Select and existing secu-

rity group” and then select the “default” group of your VPC.
After selecting “launch”, pick the key pair you created earlier from the list.
Now go to “Instances” and select the instance you just created. Change

the name to “DHT-X” (vary X based on the number of instances you created).
Lookup the “IPv4 public IP” in the table and use the value in $IP below. Then
type:

$ ssh -i my-key ubuntu@$IP

to login to the system. There, use sudo bash to become “root”. Then enter

ip addr add $IP dev eth0

to add the public IP address to the network interface of your system. Finally,
use

su - gnunet

$ gnunet-arm -s

to launch the peer.

1Owner should be 756606553745, available in Ohio, Frankfurt and Seoul

A.1. REPRODUCING OUR EC2 SETUP 77

A.1.5 Launching the DNS importer

In the “EC2” dashboard, select “Instances” and then “Launch Instance”. Select
the “GNUnet-FR-importer” community AMI2 and use a “t2.medium” instance.
Select “Next: Configure Instance Details”. using the “dht” VPC. You should
probably only launch a single instance. For “Network”, use the “dht” VPC and
for “Subnet” the “public subnet”. Enable auto-assignment of public IPv4 and
IPv6 addresses. Leave the other settings unchanged.

Do not change anything on the “Add Storage” or “Add Tags” screens.
On the “Configure Security Group” screen, select “Select and existing secu-

rity group” and then select both the “default” and “rds-launch-wizard” groups.
After selecting “launch”, pick the key pair you created earlier from the list.
Now go to “Instances” and select the instance you just created. Change the

name to “DNS-importer”. Lookup the “IPv4 public IP” in the table and use

$ ssh -i my-key ubuntu@$IP

to login to the system. There, use sudo bash to become “root”. Then enter

ip addr add $IP dev eth0

to add the public IP address to the network interface of your system.
Next, use psql to verify that you can connect to the RDS. For this, look

in the RDS console for the DNS name under “endpoint”. It should be some-
thing like “namestore.XXXXX.YYYY.rds.amazonaws.com”. Using this value
for “$HOST”, type

screen

su - gnunet

$ psql postgres://gnunet1:password1@$HOST/gnunet

If this succeeds, configure GNUnet to use this database and launch the peer
using:

$ gnunet-config -s namestore-postgres -o config \

-V "postgres://gnunet1:password1@$HOST/gnunet"

$ gnunet-arm -s

Use “ctrl-a c” to create another root shell. In it, download the DNS zone from
AFNIC and prepare the GNS zones:

su - gnunet

$./convert.sh YYYYMM # replace by year and month after 15th

$ gnunet-identity C fr # create TLDs we wish to support

$ gnunet-identity C asso.fr # the FR zone includes these also

$ gnunet-identity C com.fr

$ gnunet-identity C gouv.fr

$ gnunet-identity C nom.fr

2Only available in Ohio.

78 APPENDIX A. APPENDIX

$ gnunet-identity C presse.fr

$ gnunet-identity C tm.fr

$ gnunet-identity -d # display result, note the public keys

The value of the public key listed under “.fr” must be added in the GNUnet
configuration file in section “[gns]” under the key “.fr”. Now we need to link
the “.fr” GNS zone to the other GNS zones we created, and then import the
DNS zone into GNS:3

$ gnunet-namestore -a -z fr -t PKEY -n asso -e never -p \

-V NB8B975VVYRMA9E4TR7KYQRAG09HTAP9X06M0BQ2TKP1V7WBTC80

$ gnunet-namestore -a -z fr -t PKEY -n presse -e never -p \

-V FNGGR7EWTV6DQ7EK5JP6RJZT1TCYRSFV3WWHBDF6K7365GYJ1REG

$ gnunet-namestore -a -z fr -t PKEY -n gouv -e never -p \

-V JXY38SC0C5M4XF1ZX9S5N2X4KKRS6RPT35M5YG8AGGWDCY4B3ZC0

$ gnunet-namestore -a -z fr -t PKEY -n com -e never -p \

-V ABY9KZZRF42M1SCHP4SKZVCN4M4BYNZTEY198RZ5T31WYVX431PG

$ gnunet-namestore -a -z fr -t PKEY -n nom -e never -p \

-V Q57SMV4ES4JAXPHDE6T9JABSA7W5S841EA30DJ6NG2RW3QDBWH7G

$ gnunet-namestore -a -z fr -t PKEY -n tm -e never -p \

-V FKWHH6AFRXQ7S0DNBWG0XFDG2S2YVR66AS38R6S3BTCYGQXD0T10

$ gnunet-zoneimport -m "14 days" \

-s 12000000 194.0.9.1 < fr-names-YYYYMM.txt

Finally, you can create a third shell with “CTRL-a c” and watch the progress
using:

su - gnunet

$ gnunet-statistics -s zoneimport

$ gnunet-statistics -s namestore

$ gnunet-statistics -s zonemaster

$ gnunet-statistics -s zonemaster-mon

Logout using “ctrl-a d” followed by pressing “ctrl d” twice.

A.1.6 End-user setup

The public keys shown by “gnunet-identity -d” must be added to the configu-
ration files of users that are to use this peer’s version of “.fr” using commands
like:

$ gnunet-config -s gns -o .fr -V $ZONEKEY # do not use this here

For our usability experiments, we provided users where the key material for “.fr”
was already present on their system, as we will generally ship such key material
with the distribution, similar to how modern operating systems include a default
set of certificate authorities.

3Note that below we provide the public keys we used in our experiments.

A.2. USABILITY STUDY: DNS VS. GNS 79

A.2 Usability Study: DNS vs. GNS

A.2.1 Instructions to participants

The instructions given to the participants were the following:

Welcome to our private browsing study!

In this study, you will be given access to two computers running a
browser. We ask you to use and compare both systems for 4-5
minutes each. Note that the systems are labeled with PC A and PC
B, you do not have to use them in this order.

You should use the systems as you would usually use a browser to
surf the Internet. However, please browse some French Web sites,
such as lemonde. fr , liberation. fr or lefigaro. fr .

After browsing using both computers, please go to https: // surveys.

bfh. ch/ index. php/ 851916? lang= en to complete the survey.

Thank you for your participation.

A.2.2 Self-reported participant demographics

Out of 33 participants, we had 25 men, 3 women and 5 who refused to answer.
The self-reported age groups of the participants were 11 in 18–24, 14 in 25–34,
33 in 35–44, 1 in 45–54, 2 in 55–64 and 1 older than 65. In terms of education,
1 reported no degree, 10 reported a high school graduate degree, 6 professional
training, 1 secondary school, 3 a Bachelor, 8 a Master, and 2 a Doctorate.

A.3 Usability study: IoT

A.3.1 Instructions to participants

The instructions given to the participants were the following:

Welcome to our Internet-of-Things (IoT) Authentication Study!

In this study you will use a new innovative decentralized service
“re:claim” IoT. It allows you to securely share access to your Things
sensor data. You can authorize a Web site that requests sensor data
by using the re:claim App.

The sensor data of your Thing is encrypted and stored in a decen-
tralized network. When you choose to authorize a webpage to access
the data, the service will be given the key to decrypt:

80 APPENDIX A. APPENDIX

2. Authorize and get key

1. E
ncry

pt and sto
re

4. Resolve and decrypt

Decentralized Storage

Sensor Website

3. Transfer key

The advantage of using re:claim IoT is that you do not have to
provide direct connectivity to your Thing. Furthermore, if the sen-
sor data ever changes, the updated data will then be automatically
shared with all of the services that you previously authorized.

In this study we want to evaluate the usability of such an autho-
rization process. You are asked to perform an authorization for our
demo webpage. The webpage will ask you to authorize it to access
a specific set of sensor data: Temperature, altitude and atmospheric
pressure. To do so, please follow the steps on the next page.

A.4. USABILITY STUDY: RE:CLAIM 81

1. Access http://localhost:4200 in your browser

2. Open the App “re:claim” on your phone.

3. Tap on the “Scan QR Code” to start the authorization
process.

4. Scan the QR code displayed on the webpage.

5. Tap on the “re:claim” icon at the right side of the “Sensors
Central” item in the App.

6. Align the displayed icon on the phone with the icon on
the sensor AND when prompted tap the screen.

The webpage should now display receive the authorization and dis-
play the sensor data.

After completing the experiment, please complete a short survey:

https://surveys.bfh.ch/index.php/898722?lang=en

Thank you for your participation!

A.3.2 Self-reported participant demographics

A.4 Usability study: re:claim

A.4.1 Instructions to participants

The instructions given to the participants were the following:

Welcome to our User Authentication Study!

In this study you will use a new innovative decentralized authentica-
tion service “re:claim”. The service functions just like other popular
so-called “Social Logins” such as “Login with Google” or “Login
with Facebook”. It allows you to create profiles using nicknames
(pseudonyms). You can log in and log out and the information of
your profile (attributes) will stay and be provided to the Web site.

However, the underpinnings of the re:claim service are different from
login services like Google or Facebook in that it is completely under
the users – your – control. Your pseudonymous identities and asso-
ciated attributes of your profiles are only stored on your computer.
When you choose to authorize a webpage to access your attributes,
it will be encrypted and stored in a decentralized network so the
service can access it even when you are offline:

82 APPENDIX A. APPENDIX

2. Authorize and transfer key

1. E
ncry

pt and sto
re

3. Resolve and decrypt

Decentralized Storage

User Website

The advantage of using this service is that you do not have to re-
enter attributes for every service. Furthermore, if your attributes
ever change, you can change them on your computer. The updated
attributes will then be automatically shared with all of the services
that you previously authorized just like with conventional profiles.
Finally, you can choose to maintain many pseudonyms instead of
being tied to one identity.

In this study you must perform such an authorization for our demo
webpage at https://example.io. The webpage will ask you to
login and authorize it to access a specific set of identity attributes:
Your full name and email address. To do so, please follow the steps
on the next page.

1. Access https://example.io in your browser

2. Click on “re:claim” to login. At this point you will be redi-
rected to your local identity service

3. Click on “Add identity” to add a pseudonym.

4. Enter a username and click “Save”.

5. Before you can use the pseudonym, you need to fill in the at-
tributes requested by the webpage. The attributes used in this
example are “email” and “full name”.

6. Add an email address for “email”, e.g. “john@doe.com”.

7. Add a name for “full name”, e.g. “John Doe”.

8. Click on “Save”.

9. You may now create additional pseudonyms or attributes.

A.5. USABILITY STUDY: ACCIDENT INSURANCE CLAIMS IN SWITZERLAND83

10. Finally, click “Authorize” to select which pseudonym to use
and finish the login.

Your browser should now be redirected back to the webpage https:

//example.io and you should be greeted with your entered name
and email address.

After completing the experiment, please complete a short survey:

https://surveys.bfh.ch/index.php/617286?lang=en

Thank you for your participation!

A.4.2 Self-reported participant demographics

A.5 Usability study: Accident insurance claims
in Switzerland

•

•

•

•

84 APPENDIX A. APPENDIX

A.5.1 Instructions to participants

86 APPENDIX A. APPENDIX

A.5.2 Self-reported participant demographics

Out of 44 participants, we had 24 women, 19 men and 1 who refused to answer.
The self-reported age groups of the participants were 19 in 18–24, 16 in 25–34, 4
in 35–44, 3 in 45–54, 2 in 55–64. In terms of education, 1 reported a secondary
school degree, 11 reported a high school graduate degree, 8 professional training,
14 a Bachelor, 6 a Master, and 4 a Doctorate. The professional background was
divided in 4 groups: Computer Science 15 persons, Health informatics 5 persons,
Health professionals 20 persons, Others 4 persons.

A.6 Cost study: EC2 billing

A.6. COST STUDY: EC2 BILLING 87

Figure A.1: Amazon invoice for a month of operating the infrastructure for
publishing 5 million DNS records in 24 DHT peers (from two import systems
iterating over the zone every 48h).

88 APPENDIX A. APPENDIX

Bibliography

[1] https://measuringu.com/sus/, August 2018.

[2] Furkan Alaca and Paul C. van Oorscht. Comparative analysis and frame-
work evaluating web single sign-on systems. https://arxiv.org/pdf/

1805.00094.pdf, May 2018.

[3] R. Barnes. Use Cases and Requirements for DNS-Based Authentication of
Named Entities (DANE). RFC 6394 (Informational), October 2011.

[4] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography-dealing
with the fallout of physics success. IACR Cryptology ePrint Archive,
2017:314, 2017.

[5] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander
Morcos, and Ronald L Rivest. Certificate chain discovery in spki/sdsi.
Journal of Computer security, 9(4):285–322, 2001.

[6] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja
Lange, Kim Nguyen, and Frederik Vercauteren. Handbook of elliptic and
hyperelliptic curve cryptography. CRC press, 2005.

[7] A. Deacon and R. Hurst. The Lightweight Online Certificate Status Proto-
col (OCSP) Profile for High-Volume Environments. RFC 5019 (Proposed
Standard), September 2007.

[8] Bundesversammlung der Schweizerischen Eidgenossenschaft. Bundesge-
setz über die unfallversicherung (uvg). https://www.admin.ch/opc/de/

classified-compilation/19810038/index.html, September 2017.

[9] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese.
What’s the difference?: efficient set reconciliation without prior context.
In Proceedings of the ACM SIGCOMM 2011 conference, SIGCOMM ’11,
page 218–229, New York, NY, USA, 2011. ACM, ACM.

[10] Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation), May
2016.

89

90 BIBLIOGRAPHY

[11] Nathan Evans. Methods for Secure Decentralized Routing in Open Net-
works. PhD thesis, Technische Universität München, 2011.

[12] Nathan Evans and Christian Grothoff. R5n: Randomized recursive routing
for restricted-route networks. In 5th International Conference on Network
and System Security, pages 316–321, Milan, Italy, 2011. IEEE.

[13] Nathan S. Evans, Bart Polot, and Christian Grothoff. Efficient and secure
decentralized network size estimation. In 11th International IFIP TC 6 Net-
working Conference, volume 7289 of LNCS, pages 304–317. IFIP, Springer
Verlag, 2012.

[14] Free Software Foundation. The GNU C Library - System Databases and
Name Service Switch. http://goo.gl/gQY0w.

[15] Sebastian Friebe, Ingo Sobik, and Martina Zitterbart. Decentid: Decentral-
ized and privacy-preserving identity storage system using smart contracts.
In 17th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, pages 37–42, 2018.

[16] Hayato Fujii and Diego F. Aranha. Curve25519 for the cortex-m4 and
beyond. In LatinCrypt, 2017.

[17] P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698 (Proposed Standard), August 2012. Updated by RFCs 7218, 7671.

[18] Google Inc. Certificate transparency. https://www.

certificate-transparency.org/, 2018.

[19] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key
Derivation Function (HKDF). RFC 5869 (Informational), May 2010.

[20] Adam Langley. Revocation checking and chrome’s crl.
http://www.imperialviolet.org/2012/02/05/crlsets.html, February 2012.

[21] B. Laurie, G. Sisson, R. Arends, and D. Blacka. DNS Security (DNSSEC)
Hashed Authenticated Denial of Existence. RFC 5155 (Proposed Stan-
dard), March 2008. Updated by RFCs 6840, 6944.

[22] Adam J Lee. Towards practical and secure decentralized attribute-based
authorization systems. ProQuest, 2008.

[23] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS
Protocol Version 5. RFC 1928 (Proposed Standard), March 1996.

[24] Ninghui Li, Benjamin N Grosof, and Joan Feigenbaum. Delegation logic:
A logic-based approach to distributed authorization. ACM Transactions
on Information and System Security (TISSEC), 6(1):128–171, 2003.

BIBLIOGRAPHY 91

[25] Ninghui Li and John C Mitchell. Rt: A role-based trust-management frame-
work. In DARPA Information Survivability Conference and Exposition,
2003. Proceedings, volume 1, pages 201–212. IEEE, 2003.

[26] Ninghui Li, John C Mitchell, and William H Winsborough. Design of a
role-based trust-management framework. In Security and Privacy, 2002.
Proceedings. 2002 IEEE Symposium on, pages 114–130. IEEE, 2002.

[27] Netcraft Ltd. How certificate revocation (doesn’t) work in practice. Blog
entry at Netcraft blog: http://news.netcraft.com/archives/2013/05/

13/how-certificate-revocation-doesnt-work-in-practice.html,
May 2013.

[28] P.V. Mockapetris. Domain names - implementation and specification. RFC
1035 (Internet Standard), November 1987. Updated by RFCs 1101, 1183,
1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2673,
2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604, 7766.

[29] Council of Europe. Convention for the protection of human rights and fun-
damental freedoms (european convention on human rights, as amended)
(echr). https://www.echr.coe.int/Documents/Convention_ENG.pdf,
1950.

[30] Joanne Orlando. How teens use fake instagram accounts to re-
lieve the pressure of perfection. http://theconversation.com/

how-teens-use-fake-instagram-accounts-to-relieve-the-pressure-of-perfection-92105,
March 2018.

[31] Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Ylianttila. Perfor-
mance evaluation of a kademlia-based communication-oriented p2p system
under churn. Comput. Netw., 54:689–705, April 2010.

[32] Ginger Perng, Michael K. Reiter, and Chenxi Wang. Censorship resistance
revisited. In Information Hiding, 7th International Workshop, IH 2005,
Barcelona, Spain, June 6-8, 2005, Revised Selected Papers, pages 62–76,
2005.

[33] Bart Polot and Christian Grothoff. Cadet: Confidential ad-hoc decentral-
ized end-to-end transport. In IEEE/IFIP Annual Mediterranean Ad Hoc
Networking Workshop (MedHocNet), 2014.

[34] Samuel Pulfer. Tld analyse – analyse über die zeitliche veränderung der
records einer tld am beispiel schweden. Available upon request, June 2018.

[35] E. Rescorla. The transport layer security (tls) protocol version 1.3. draft-
ietf-tls-tls13-latest, March 2018.

92 BIBLIOGRAPHY

[36] Ahmad Sabouri, Ioannis Krontiris, and Kai Rannenberg. Attribute-based
credentials for trust (abc4trust). In Simone Fischer-Hübner, Sokratis Kat-
sikas, and Gerald Quirchmayr, editors, Trust, Privacy and Security in Dig-
ital Business, pages 218–219, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg.

[37] M. Schanzenbach, C. Banse, and J. Schütte. Practical decentralized
attribute-based delegation using secure name systems. In 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), pages 244–251, Aug
2018.

[38] M. Schanzenbach, G. Bramm, and J. Schütte. reclaimid: Secure, self-
sovereign identities using name systems and attribute-based encryption. In
2018 17th IEEE International Conference On Trust, Security And Privacy
In Computing And Communications/ 12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE), pages 946–
957, Aug 2018.

[39] Marc Stiegler. An introduction to petname systems. http://www.

skyhunter.com/marcs/petnames/IntroPetNames.html, February 2005.

[40] Jose M. Such, Agustin Espinosa, Ana Garcia-Fornes, and Vicent Botti.
Partial identities as a foundation for trust and reputation. Engineering
Applications of Artificial Intelligence, 24(7):1128–1136, 2011. Infrastruc-
tures and Tools for Multiagent Systems.

[41] S. Thomson, C. Huitema, V. Ksinant, and M. Souissi. DNS Extensions to
Support IP Version 6. RFC 3596 (Draft Standard), October 2003.

[42] Gabor X Toth. Design of a social messaging system using stateful multicast.
Master’s, University of Amsterdam, Amsterdam, 2013.

[43] Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. A
censorship-resistant, privacy-enhancing and fully decentralized name sys-
tem. In 13th International Conference on Cryptology and Network Security
(CANS 2014), pages 127–142, 2014.

