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Zusammenfassung

Im Gegensatz zu den allgegenwértigen Cloud-basierten Losungen bietet die Telefonie-
Applikation GNUnet conversation vollstandig dezentrale, sichere Sprachkommunikation
und erschwert damit Masseniiberwachung. Das Ziel dieser Arbeit ist es zu erforschen,
warum GNUnet conversation unter typischen Internet-Bedingungen momentan mangel-
hafte Quality of Experience aufweist.

Nachdem Netzwerk-Shaping und die Initialisierung zweier isolierter GNUnet-Peers
automatisiert worden waren, wurden Latenzmessungen durchgefithrt. Mit emulierten
Netzwerk-Charakteristiken wurden Netzwerk- Kryptographie- und Audio-Codec-Latenzen
gemessen und die iibertragene Sprache aufgezeichnet.

Die Analyse der Messergebnisse und eine subjektive Beurteilung von Sprachaufnahmen
machten deutlich, dass in den meisten Szenarien extreme Ausreifler auftreten und die
QoE beeintriachtigen. Auflerdem wurde nachgewiesen, dass GNUnet conversation grofie
Latenzen verursacht, die den Rahmen in dem gute QoE moglich ist einschranken. In
der Messumgebung traten immer mindestens 23 ms Latenz auf, von der ein grofler Teil
durch Kryptographie entstand. Es konnte nachgewisen werden, dass eine Optimierung des
Verschliisselungs-Moduls und anderer Komponenten méoglich ist. SchlieBlich wurden die
Voraussetzungen, um gegenwartig gute QokE zu erreichen, bestimmt und Ideen fiir weitere
Nachforschungen prasentiert.






Abstract

In contrast to ubiquitous cloud-based solutions the telephony application GNUnet conver-
sation provides fully-decentralized, secure voice communication and thus impedes mass
surveillance. The aim of this thesis is to investigate why GNUnet conversation currently
provides poor Quality of Experience under typical wide area network conditions and to
propose optimization measures.

After network shaping and the initialization of two isolated GNUnet peers had been
automated, delay measurements were done. With emulated network characteristics net-
work delay, cryptography delays and audio codec delays were measured and transmitted
speech was recorded.

An analysis of the measurement results and a subjective assessment of the speech
recordings revealed that extreme outliers occur in most scenarios and impair QoE. More-
over it was shown that GNUnet conversation introduces a large delay that confines the
environment in which good QokE is possible. In the measurement environment at least 23
ms always ocurred of which large parts are were caused by cryptography. It was shown
that optimization in the cryptography part and other components are possible. Finally
the conditions for currently reaching good QoE were determined and ideas for further
investigations were presented.
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1 Introduction

In times of global bulk surveillance! voice communication is one of many surveillance tar-

gets[18]. This endangers the right to privacy[l] of individuals all over the world. Even
politicians are not safe from surveillance of their confidential communication[16][21]. En-
crypted voice communication can help protecting individual privacy and professional confi-
dentiality. Unfortunately most of the existing encrypted Voice over IP (VoIP) applications
employ a centralized infrastructure. This still allows bulk surveillance of metadata which,
compared with the communication contents, in many cases seems to be equally or more
suitable for gaining personal information[24]. In fully decentralized systems metadata do
not accumulate in a central database and are not controlled by organizations. Thus mass
surveillance is effectively impeded.

Skype has shown that voice communication over p2p networks is feasible and can pro-
vide good Quality of Experience (QoE). It never employed a fully distributed archi-
tecture though[2] and recently moved into the cloud[6]. GNUnet[10] is a p2p framework
which provides a secure internet stack for distributed applications. GNUnet’s protocol
stack works as an overlay on top of traditional transport protocols. In contrast to ubig-
uitous cloud-based solutions GNUnet provides fully decentralized services such as a de-
centralized public-key infrastructure[23], a decentralized routing protocol and end-to-end
encryption by default[22].

GNUnet conversation is an application that provides secure voice communication
in a fully decentralized way by employing GNUnet for routing and transport, hence it is a
Voice over GNUnet application. Making calls is already possible but the voice quality cur-
rently tends to be poor in wide-area networks. This bachelor thesis identifies the conditions
under which bad QoE occurs and examines possible causes. In a measurement environ-
ment of two virtual machines calls between two peers were made under different emulated
network conditions and the resulting audio recordings were evaluated. Delay measure-
ments were done. This allowed determining what shares different GNUnet components
have in the overall delay and pointing out opportunities for optimization. Furthermore a
minimum bandwidth of 200 Kbit/s was found to be required for good QoE.

The delay measurements were restricted to ongoing delays, that is delays that occur
during a call. Another type of delay, namely connection establishment delays, that is the
time difference from the initiation of a call and the beginning of audio transmission, is left
for future work.

Existing GNUnet services and command-line tools were modified and capabilities
for measuring different delays were implemented. Fully automated measurements were
achieved with an architecture comprising a measurement controller and multiple mea-
surement workers. This includes initializing the GNUnet peers running on the mea-
surement workers and network shaping.

Chapter 2 gives an introduction to QoE-related metrics and presents related work.
GNUnet’s architecture and basics of different GNUnet components relevant for the mea-
surements are described in Chapter 3. While Chapter 4 explains the measurement environ-
ment including the automated network shaping and topology establishment, and the audio
setup, Chapter 5 describes the tools used for the measurements. A detailed description of
the experiments and an evaluation of the measurement results can be found in Chapter
6. Finally Chapter 7 describes recommendation for optimizing Voice over GNUnet and
Chapter 8 summarizes the findings and presents a conclusion.

for an overview of revelations of surveillance programs since 2013 see http://projects.propublica.
org/nsa-grid/



2 QoE-related metrics

This chapter gives an overview on how QoE can be assessed and associates the methodology
of this thesis with the described methods (Sections 2.2 and 2.3). As QoE cannot be
measured directly, Quality of Service (QoS) metrics have to be used for the assessment.
Section 2.1 gives an introduction to those metrics.

2.1 QoS metrics

Examples of QoS metrics are delay, packet delay variation (PDV), bandwidth and
packet loss. This thesis focuses on delay.

As explained in the Chapter 1 the delays examined are ongoing delays after the connec-
tion is established (i.e. a call is active). These delays can have the components propagation
delay, processing delay and queueing delay (see e.g. [7]). Propagation delay is caused by
the limited speed a signal can propagate through fibers or wires. Processing delay may
be caused by “actual packetization, compression, and packet switching”[7]. For GNUnet
conversation processing delays are also caused by encryption and decryption as explained
in Section 3. Queueing delay is often caused by congestion. Generally all incoming or out-
going queues, which are used for several reasons (e.g. for jitter compensation as explained
in [13]) cause queueing delay.

2.2 Objective QoE assessment

QoE in voice applications can be assessed in different ways. As elaborated in [19], objective
quality assessment is possible by analyzing properties of the audio signal such as the peak-
signal-to-noise-ratio or by using standardized assessment models like the E-model [3] which
calculates a quality rating based on measured QoS metrics such as packet loss rate, and
delay.

Extensive objective quality assessment as defined in [19] was not done in the scope of
this thesis. Instead the QoS metric delay was assessed under different emulated network
shaping scenarios (described in Chapter 6). One requirement for satisfying QoE is a
sufficiently low mouth-to-ear delay, that is the time difference between the recording at the
sender’s microphone and the playback at the receiver’s speaker. I'TU-T Recommendation
G.114 states that for mouth-to-ear delays of less than 150 ms “most applications [...] will
experience essentially transparent interactivity”[13].

2.3 Subjective QoE Assessment

As explained in [19] subjective assessment requires user ratings of speech samples, either
absolute or in comparison to a reference speech recording. An example for absolute user
ratings is the Mean Opinion Score (MOS). Users are asked to rate a stimuli on the MOS
scale, that is from 1 (bad quality) to 5 (excellent quality)[14]. For a reliable assessment
?a balanced set of sufficient number of subjects that represent different level of expertise,
age groups and gender.”[19] are required.

User studies with multiple subjects were not done in the scope of this thesis. Instead
recordings of speech transmitted over GNUnet conversation under different network con-
ditions were examined for specific anomalies such as silence periods or similar artifacts.
This can give hints about the conditions under which good QoE can be achieved.



3 GNUnet Basics

This chapter provides an overview on the general modular architecture of GNUnet and
gives an introduction about the GNUnet modules relevant for the measurements described
in Section 6.

3.1 Peers and identities

GNUnet peers are addressed using peer IDs which are EADSA[4] public keys which are
also used for encryption and authentication. They are base32-encoded and 52 Bytes in
length. In additions applications can use identities which are defined by an ECDSA[15]
key pair. These are needed for signing messages or records of the GNU name system
(GNS) which is GNUnet’s replacement for DNS.

3.2 GNUnet Architecture overview

The GNUnet modules relevant for this thesis are TRANSPORT, which makes use of
the Automatic Transport Selection (ATS) module, CORE, Confidential Ad-Hoc
Decentralized End-to-End Transport (CADET) and CONVERSATION which
makes use the GNU Name System (GNS). Each module provides a service API? to
applications or other modules. This allows building a stacked architecture: Modules can
use the APIs to “build higher GNUnet layers on top of lower ones”[11]. Figure 1 shows
the service stack used by GNUnet conversation. The modules TRANSPORT, CORE,
CADET and CONVERSATION are described in more detail in the following sections.

application
CONVERSATION APl

CONVERSATION avs#i GNS

CADET API

CADET

CORE API

CORE

TRANSPORT API

TRANSPORT  aswi ATS

Figure 1: service modules relevant for GNUnet conversation: The application uses only
the CONVERSATION API which abstracts from the lower layer modules

GNUnet modules are are composed of a service which runs in a separate executable
and a client library implementing the service API. The inter-process communication used
between service and client part is expected to cause a small amount of delay.

3.3 The TRANSPORT service module

TRANSPORT is the lowest GNUnet layer and is able to use several protocols as an under-
lying transport mechanism. While in this bachelor thesis the focus is on TCP and UDP,
TRANSPORT may also send packets directly over WLAN or even use HTTP as trans-
port protocol. The TRANSPORT service provides a plugin API to add new underlying
transport mechanisms. TRANSPORT’s functionality includes choosing the best-suited
transport mechanism, receiving and validating information about other peers from the

2All GNUnet APIs are documented in https://gnunet .org/doxygen/modules.html



network (so-called HELLO messages, which contain the IP addresses of a peer) and es-
tablishing connections to known peers. Clients using the TRANSPORT API (the CORE
service is usually the only client) are notified about newly established or lost connections.

The TRANSPORT service delegates the decision which transport mechanism to use
to a GNUnet module called Automatic Transport Selection (ATS). It informs ATS about
available addresses and ATS determines the best-suited transport mechanism by collecting
performance characteristics, e.g. by measuring throughput and delay. This means that
ATS may decide to switch to another mechanism whenever it detects performance changes.
For measurements this is not wanted and thus this behaviour has to be disabled in the
TRANSPORT configuration.

3.4 The CORE service module

The CORE service uses the TRANSPORT service trough the TRANSPORT API and adds
security properties (e.g. authentication and confidentiality) to the insecure communication
provided by TRANSPORT. The cryptographic functions used are based on those used by
Off-the-Record messaging (OTR)3.

3.4.1 OTR cryptography

OTR was designed to be used on top of messaging protocols like XMPP and provides
authentication and confidentiality with forward-secrecy. GNUnet uses it already on the
CORE layer which is analog to the link layer in the OSI model.

By default the TRANSPORT service establishes communication channels to all peers it
knows and provides message queues to the CORE service. The CORE service is then able
to performs elliptic curve Diffie-Hellman key exchange (ECDHE) using the Curve25519
curve. Once the session key is exchanged, CORE uses that key to encrypt all outgoing
packets with both 256bit AES and TWOFISH.

OTR provides forward-security by periodic re-keyings, that is performing ECDHE after
a defined amount of time. GNUnet CORE performs these re-keyings after 12 hours.

3.5 The CADET service module

While the CORE service provides secure link-layer communication between two peers the
CADET service provides end-to-end encrypted communication using the double ratchet
algorithm described in Section 3.5.2. An introduction to CADET and its terminology is
given in Section 3.5.1.

3.5.1 CADET: routing, transport, security

CADET finds routes to an other peer using the set of known peers stored in the PEER_
STORE and DHT lookups. The DHT used by GNUnet is R*N[9]. Figure 2 shows a CADET
tunnel which provides end-to-end encrypted authenticated communication between two
peers. A tunnel can be used by different applications, each opening a channel to the target
application on the peer at the tunnel end-point. Like TCP and UDP flows, channels are
identified by a port. If multiple connections (which are established by the TRANSPORT
layer) exist, data sent through the tunnel is multiplexed over multiple routes so that
compromised or malicious peers along a route don’t see all packets.

3https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html



mmmm Unencrypted user data channels
—— Encrypted redundant connections

------ Backup paths for new connections

Figure 2: CADET architecture, source: [22]

3.5.2 Double ratchet cryptography

The double ratchet algorithm [17] (previously known as the Axolotl ratchet) is a cryp-
tographic protocol designed to provide end-to-end encryption to asynchronous messaging
applications. Among other properties it provides forward security without the need of
frequent re-keying (hence it is suitable for asynchronous communication) and break-in
recovery.

Forward security is provided by making sure every message is encrypted with a unique
message key that can be deleted after encryption or decryption. The message keys are
the output of one of two ratchets (the term ratchet describes the process of deriving keys
for encrypting and decrypting in parallel using a key derivation function (KDF)). This
ratchet is called the symmetric key ratchet. An attacker who learns a secret key used in
the KDF at some point cannot decrypt previously intercepted messages, thus the algorithm
is forward-secure.

Break-in recovery is provided by combining the symmetric ratchet with a second
ratchet, called the Diffie-Hellman ratchet. The key pair used in the symmetric ratchet
is replaced regularly with the output of a Diffie-Hellman key exchange. An attacker who
learns a key used in the KDF and uses same symmetric ratchet as sender and receiver can
only decrypt intercepted messages until the next re-keying (Diffie-Hellman ratchet step).

The symmetric ratchet uses a HMAC-based KDF* for key derivation and CADET uses
the resulting message keys are used for encrypting each outgoing message with both 256
bit AES and 256 bit TWOFISH, both in the Cypher feedback (CFB) mode of operation
(defined in [8]). For both AES and TWOFISH the same cryptographic operations are
used for both encryption and decrypting and thus in theory both cause the same delay.
As the decryption for the CFB mode of operation is parallelizable but encryption is not
(see [5]), encryption will probably take longer in practice. The double ratchet algorithm
adds another factor that might influence the encryption/decryption time ratio. For an
encrypted message multiple decryption attempts and thus increase the decryption time.
The reason is that message keys may be skipped so that the receiver has to derive a new

“http://wuw.rfc-editor.org/rfc/rfc5869.txt



message key and try decryption again.

Both peers can initiate a re-keying, that is a Diffie-Hellman ratchet step, after the first
message has been sent. As soon as a peer learns about the other party’s new public key,
it also performs the ratchet step. The re-keying period CADET uses is configurable. By
default CADET performs a re-keying after 1 hour no matter how many messages were
sent. If messages are sent a re-keying is performed after 64 messages have been sent.
For key exchange CADET uses ephemeral elliptic curve Diffie-Hellman (ECDHE) with a
Curve25519 elliptic curve.

3.6 The CONVERSATION service module

The CONVERSATION service uses the CADET API to create a CADET channel when a
call is started. In the original CONVERSATION implementation two CADET channel ex-
isted, one for audio data and the other for control packets. In the current implementation
only one CADET channel is used for both audio data and control packets. As control traf-
fic has to be sent reliably the channel is created with the GNUNET_CADET _OPTION_RELIABLE
option which means that CADET’s flow control and congestion control are activated. Re-
liable transmission of audio data is not needed because due to the low-latency requirement
it does not make sense to wait for lost packets to be retransmitted before decoding. In
order to eliminate this unnecessary overhead it is planned to allow a per-packet reliabil-
ity switch in the future. Control packets would still be transmitted reliably while audio
packets would not.

3.6.1 Audio encoding/decoding

For audio encoding and decoding in CONVERSATION the libopus implementation of
the OPUS codec[26] is used. As it is possible to determine the language spoken in the
encrypted conversation when using variable bit rates[28], CONVERSATION uses a fixed
bit rate (resulting from fixed a sample rate of 48000 Bit/second and a single channel).
Another codec parameter is a maximum size for an encoded payload of 1024 Byte. This
does not mean that in calls this packet size is reached. See Section 5.1 for more information
about the packet sizes. In order to abstract from the codec implementation, generic
libraries exist for audio recording and playback: the MICROPHONE library® and the
SPEAKER library 6. When a microphone or a speaker instance is enabled, a helper, that
is a separate executable is started. The microphone helper outputs audio obtained from
a Pulseaudio source to stdout in the OGG format which is then read and routed to the
microphone implementation by the GNUnet HELPER library. The speaker helper reads
OGG audio from stdin and sends it to a Pulseaudio sink. This helper architecture is
relevant for the measurement method as described in Section 5.1.1.

*https://gnunet.org/doxygen/d5/d5c/group__microphone.html
Shttps://gnunet.org/doxygen/d4/d62/group__speaker.html



4 Methodology

This section gives an overview on the measurement methodology. Starting with a de-
scription of the virtual machines (Section 4.1) the measurement scripts are then described
(Section 4.2. The Sections 4.3 and 4.4 describe how different network properties were emu-
lated and how different network topologies were established. The audio setup is explained
in Section 4.5.

4.1 The virtual machines

Overall 20 virtual machines were available. The used virtualization technology was KVM.
All machines had a virtual dual-core AMD CPU and 1 GB of RAM. The AES hardware
acceleration of the host’s CPU was delegated to the guests. The operating system on all
guests was Debian 8 (jessie).

4.2 Measurement automation

Below the virtual machines conducting the experiments described in the previous section
are referred to as measurement workers, the machine initiating the experiments and col-
lecting the measurements is referred to as measurement controller. For automating the
measurements two Python scripts were written: the measurement worker script (mw.py)
and the measurement controller script (mc.py). Usage information can be found in Ap-
pendix B.

On all workers the directory environment is present which contains the worker script,
GNUnet configuration files (e.g. for using only TCP or only UDP as underlying transport
protocols) and other scripts, of which some are called by the worker script. E.g. there are
scripts for initializing the virtual machine, reinstalling GNUnet and initializing Pulseaudio.

The experiment specifications used by both controller and workers are written in
YAML. The specification files only have to be stored on the controller, the controller
script takes care of sending it to the workers. Listing 1 shows an example experiment
specification. It contains the topology of the worker peers (in this thesis only directly
connected peers have been used), the network shaping parameters and parameters for the
measurements, e.g. the count of RT'T measurements. mw4 and mw$ are worker IDs which
reference information stored in a separate file (config.yaml). It contains information such
as a worker’s IP addresses and SSH ports.

The procedure of an experiment is as follows:

1. The controller script reads an experiment specification file, extracts information
about the workers involved: the worker initiating the measurements and the target
worker (e.g. where an echo service for round-trip time measurements is to be run).
SSH connections to the obtained workers are established.

2. GNUnet is started on all workers using a remote procedure call to init-gnunet.
Which configuration file is used depends on which transport protocol was specified
when starting the controller script. The call returns information about the started
peer: a GNUnet HELLO message (see Section 3.3), the peer ID and the conversation
address (see Section 5.1.1).

3. The obtained information is distributed to all involved peers using a remote proce-
dure call to set-workers.
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4. The experiment is initialized on all workers (using the experiment --init RPC).
The worker script does the network shaping (as described in Section 4.3, introduces
neighbour peers using HELLO messages (and thus establishes the topology (as de-
scribed in Section 4.4), initializes the Pulseaudio sources and sinks (see Section 4.5)
and starts command-line tools in listening or echo mode.

5. The experiment is conducted (using the experiment RPC). On the worker side this
includes starting tcpdump, starting audio playback and audio recording (if conver-
sation is involved). Once finished the RPC returns the measurement values and the
controller stores them to the results directory.

6. The controller fetches additional files, i.e. tcpdump output and the audio recording.

7. GNUnet is stopped on all workers using the RPC shutdown-gnunet.

worker: mwé
topology: [[mw4, mw5]]
shaping:-

links: [[mw4, mw5], [mw5, mw4]l]
parameters:
latency._ms: 80
bandwidth_kbps: 100000
measurements:-

type: conversation_delay_ping
target: mwb
count: 1000-

type: conversation_delay_call
target: mwb
count: 1000

Listing 1: specification of experiment cv_delay_3: topology: mw4 (measuring worker),
mwb (target worker), network shaping: 80 ms delay, 100 Mbit/s bandwidth,
measurements: delay measurements using ping method and call method (see Section
5.1.2), 1000 measurement values each

4.3 Network shaping

The effects of multiple network properties which were not inherently present in the envi-
ronment were to be examined. E.g. the latency between the virtual machines was very
low because all VMs were on the same physical host machine. Section 6.1.2 shows that it
was below 1 ms. Realistic latencies up to 300ms were to be measured, so they had to be
emulated.

For emulating delay, delay variation, bandwidth, and packet loss the network emulator
netem[12], which is included in the Linux kernel, was used. It allows to define filter rules for
specific hosts. The measurement worker script extracts the network shaping parameters
from the specification file and configures netem accordingly. Netem configuration was
done using the tc command line tool from the iproute2 package’. Examples of how tc was
used can be found in the following Sections 4.3.1 and 4.3.2.

"https://wiki.linuxfoundation.org/networking/iproute2
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4.3.1 Delay and delay variation

Delay and delay variation (often called jitter) can be emulated within the same netem filter
rule. Because multiple filter rules were to be applied first a classful queueing discipline
(qdisc) had to be created. qdisc is the term that describes a scheduler in the Linux traffic
control system®. qdiscs are responsible for applying traffic shaping rules to packets. The
prio qdisc was chosen as it allows multiple filters per traffic shaping rule by creating a
class (in the example in Listing 2 the class is 1:1) and assigning filter rules to it. The
example shows the tc usage for configuring a one-way delay of 60ms £ 10ms. tc employs
a normal distribution with a mean u = 60ms and a standard deviation ¢ = 10ms to vary
the delay, so that 68.27% of the emulated delay values are within the standard deviation.
Calculating the actual delays for emulation is done by the netem kernel component?.

tc gdisc add dev ethO root handle 1: prio

tc qdisc add dev ethO parent 1:1 handle 10: netem delay 60ms 10ms

tc filter add dev ethO protocol ip parent 1: prio 1 u32 match ip dst\
130.149.221.140 flowid 1:1

tc filter add dev ethO protocol ipv6 parent 1: prio 2 u32 match ipv6 dst\
2001:638:809:££f14:130:149:221:140 flowid 1:1

tc filter add dev ethO protocol ipv6 parent 1: prio 2 u32 match ipv6 dst\
fe80::6011:7aff:feb1:3c9b

Listing 2: tc usage for emulating a delay of 60 ms with a delay variation of 10 ms. Line
1: add qdisc 1, line 2: add network shaping rule to the queueing discipline, lines 3-5:
apply network shaping to packets destinated to the target peer’s IP addresses.

4.3.2 Packet loss and low bandwidth

Like delay and delay variation also packet loss and low bandwidth can be emulated using
netem. All network properties to be emulated have to be added to the same queuing
discipline in the same call so that the filters for specifying the target IP addresses have
to be added only once. Listing 3 shows a tc call for adding delay, delay variation, packet
loss and low bandwidth.

tc qdisc add dev ethO parent 1:1 handle 10: netem delay 60ms 10ms loss 1% rate
200kbit

Listing 3: tc usage for emulating a delay of 60 ms, a delay variation of 10 ms, a packet
loss rate of 1% and a bandwidth of 200 kbps. The network shaping is added to an existing
qdisc 1.

4.4 Establishing the topology

Although the specification format described in Section 4.2 allows specifying arbitrary
topologies, the only topology the Python scripts are known to work with and that was
used for measurements in this thesis is a direct connection between two GNUnet peers.
In order to isolate the peers it was necessary to disable GNUnet’s automatic learning of
other peers. By default a GNUnet peer learns about new peers in four different ways[27]:

e peer information bundled with the software package

e UDP neighbour discovery in a LAN (IPv4 broadcast, IPv6 multicast)

Shttp://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html

9tc passes a CDF (cumulative distribution function) table to netem which is “generated as part of the
iproute2 compilation and placed in /usr/lib/tc”[20], netem then uses it to calculate the pseudo-randomly
distributed delays for emulation (see function tabledist in net/sched/sch neten.c, linux kernel 3.16]25])

11
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e topology gossiping (already connected peers send information about other peers)

e the HOSTLIST service (getting peer information from bootstrap servers)

Using bundled peer information was disabled using the USE_INCLUDED HELLOS = NO
configuration option in the peerinfo section. By default peers introduce themselves to
their network by sending UDP packets to the IPv4 broadcast or IPv6 multicast addresses.
This UDP neighbour discovery can be disabled using the BROADCAST = NO option in the
transport-udp section. Topology gossiping is sending peer information to already con-
nected peers (TOPOLOGY service). There are also bootstrap servers which provide lists
of peers as HTTP download (HOSTLIST service). Both mechanisms can be disabled by
not starting the respective service. The complete GNUnet configuration file used for all
experiments can be found in Appendix A.

After these mechanisms were disabled the link between the two peers was established
by exchanging peer information out-of-band, that is passing GNUnet HELLO URLSs (see
Section 3.3) to the gnunet-peerinfo command-line tool.

4.5 Audio setup

For providing virtual recording and playback devices on the virtual machines the Pulseau-
dio commandline tools were used. Listing 4 shows the initialization procedure for both
a virtual microphone and a virtual speaker. After (re)starting the Pulseaudio daemon
two null sinks are created. Pulseaudio sinks have monitors which can be used as sources.
Thus the output sink is configured as the default sink for applications playing audio and
the monitor of the input sink is configured as the default source for applications recording
audio.

pulseaudio --kill

pulseaudio --start

pactl load-module module-null-sink sink_name=input
pactl load-module module-null-sink sink_name=output
pactl set-default-sink output

pactl set-default-source input.monitor

Listing 4: Audio initialization on the virtual machines

For audio playback and recording the commandline tools paplay and parecord which
are installed with pulseadio were used. Listing 5 shows the commands used.

paplay --device=input $AUDIO_FILE
parecord --device=output.monitor --file-format=wav > $RECORD_FILE

Listing 5: Playback with paplay and recording with parecord

4.6 Verifying the setup

tcpdump records were stored for all experiments as mentioned in Section 4.2. Randomly
chosen records were analyzed in Wireshark in order to verify that the automatic GNUnet
configuration for exclusively using UDP or TCP worked: By checking in Wireshark that
either only UDP or only TCP packets were sent between the involved machines, it was
confirmed that the configuration scripts were working correctly.

Ping!? and iperf!! were used to check that the network shaping was in effect for ran-
domly chosen experiments. Ping provides statistics about RT'T, the RTT’s standard de-
viation and packet loss while iperv allows bandwidth measurements.

Ohttps://wiki.linuxfoundation.org/networking/iputils
Yhttps://iperf.fr
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After the experiment was initialized (that is network shaping was done) a ping and
ping6 (for ICMPv6) measurement with default parameters was performed between the
involved worker machines. The measured RTT and packet loss were compared to the
emulated delay (which was expected to be half the measured RTT) and packet loss. In
order to verify the emulated delay variance, that is the emulated delay’s standard deviation
(see Section 4.3.1), it has to be considered that the RTT’s standard deviation measured
with ping contains the standard deviations of two one-way delays (referred to as o and
02) because delay was emulated in both directions. As the emulation is symmetrical, we
assume o1 = o9 and thus the measured RTT’s standard deviation and the emulated delay
variation are expected to differ by a factor of v/2:

ORTT = \/0'%4-0'% (1&)
=4/2-0% (1b)
1
&~ 01 = ——=O0ORTT (1C)
V2

The RTTs, RTT standard deviations and the packet loss rates measured with ping
complied with the emulated delays, delay variations and packet loss rates. Thus a func-
tional shaping of these network properties can be assumed.

For verifying that the bandwidth emulations were in effect, the bandwidth was mea-
sured with iperf for the network shapings of randomly chosen experiments. iperf was
started in server mode on one peer and in client mode on the other peer. It then trans-
fers data for a specified amount of time and the server reports the measured bandwidth in
specified intervals. Measurements were done for the IPv4 and IPv6 addresses (for IPv6 the
-V option has to be specified) and using both TCP and UDP in separated measurements.
Listing 6 shows an example for measuring bandwidth over TCP using IPv4.

iperf -s -i 10 -p 9999
iperf -c 172.29.0.5 -p 9999 -t 60

Listing 6: measuring bandwidth with iperf using TCP. Line 1: start iperf in server mode
(measured bandwidths are reported in intervals of 10 s), line 2: start iperf in client mode
(stop sending traffic after 60 s)

For measuring bandwidths over UDP a bit rate for sending traffic has to be specified.
As UDP does not provide congestion control, packets will be dropped if this rate is higher
than the available bandwidth. Thus if the client sends with a bit rates higher than the
expected bandwidth, the server is expected to measure the maximum available bandwidth.
For all iperf measurements over UDP 110% of the expected bandwidth was specified at the
client. Listing 7 shows an example of such a measurement for an expected bandwidth of 200
kbps. The bandwidth measured at the server was around 194 kbps which is approximately
the emulated value.

iperf -s -i 10 -u -p 9999
iperf -c 172.29.0.5 -p 9999 -u -t 60 -b 220K

Listing 7: measuring bandwidth with iperf using UDP. Line 1: start iperf in server mode
(measured bandwidths are reported in intervals of 10 s), line 2: start iperf in client mode
(for expected bandwidth + 10%; stop sending traffic after 60 s)

The bandwidths measurements using iperf showed the expected results which indicates
that bandwidths were shaped correctly.
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5 Measurement tools

For measuring several GNUnet command line tools and GNUnet services had to be mod-
ified. Section 5.1 describes these changes. Section 5.3 gives an overview on the sizes used
for the ping packets.

5.1 GNUnet command line tools

For most GNUnet modules command-line tools exist for testing, scripting and also mea-
surement purposes. The naming convention for these tools is gnunet-<module name>.
For instance the command-line tool gnunet-cadet provides information about CADET
tunnels and can also be used to establish an end-to-end encrypted connection (by running
gnunet-cadet <peer id> <port>) to a listening GNUnet peer (that is gnunet-cadet
-0 <port> was run). Data to transmit is read from stdin and output to stdout at the
receiver, very similar to a telnet client.

All relevant command-line tools were extended to support RTT measurements. Also
some of the services had to be modified to allow service-internal delay measurements
such as encryption delay. All modifications made to the GNUnet source code can be
found in the improving-conversation branch in the official GNUnet git repository!?.
The modifications to the GNUnet command-line tools and services are described in the
sections 5.1.1 through 5.1.5. The measured values are printed to stdout or written to CSV
files. See Appendix C for details.

5.1.1 gnunet-conversation

gnunet-conversation is the only one of the discussed command-line tools that is inter-
active. Once started it can be controlled with these commands:

Command | Description

/help lists available commands or prints help about a specific command
/address prints own conversation address

/call initiate call using GNS address of a peer

/accept accept incoming call on specific line

/suspend suspend active call

/resume resume incoming call on specific line or resume outgoing call
/cancel reject incoming call or terminate active call

/status print information about available lines, current calls etc

/quit quit the application

The /address command prints an address that is used internally to initiate a call.
It consists of two base32-encoded strings: the peer ID which is 52 bytes in length and
a 102 characters long string containing the phone line (port equivalent) where gnunet-
conversation is listening, and the CADET port. In mainline GNUnet this address can
be used for debugging but not as an argument to the /call command. Instead it is ex-
pected to make calls using a GNS!? address (which has the form username.gnu). Users
are expected to store a PHONE record in their GNS zone using the gnunet-namestore

2https://gnunet.org/git/gnunet.git/
13GNU name system, see https://gnunet.org/gns-implementation
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command-line tool or the GUI application gnunet-namestore-gtk'*. gnunet-conversation
then passes the given GNS address to the GNS service which resolves it to a conversation
address. In order to avoid this procedure each time a CONVERSATION delay mea-
surement is initialized the implementation of the /call command was extended. Now it
accepts conversation addresses directly besides GNS addresses (the distinction is done by
checking for a GNS ending, that is .gns or .zkey).

An echo service and RTT measurements were added to gnunet-conversation. The
packets used for RT'T measurements are referred to as GNUnet echo requests as they have
the same role as ICMP Echo Requests. The echo requests contains an identifier and dummy
data, so that the average size of CONVERSATION audio packets is met (see Section 5.3).
The echo service sends copies of these packets back and thus these are referred to as
GNUnet echo responses. The echo service can be activated with the -e command line
option and the RTT measurement functionality comprise three command line options: -r
for activating it (it will begin when a call starts), -n for specifying the number of RTT
measurements to be done and -w for specifying a timeout for each RT'T measurement. See
Appendix D for documentation about the existing and newly implemented command line
options. Measured RTT values are logged to a file in the CSV format (see Appendix C
for details about output files).

If RTT measurements were activated when gnunet-conversation was started and a
call starts (that is it has been accepted by the receiver; it does not matter which side
has initiated the call) the current time is stored and the first GNUnet echo request is
sent. GNUnet echo requests include the timestamp, too. It is used as an identifier for
sorting out delayed GNUnet echo responses. If the identifier of an incoming GNUnet
echo response matches the last GNUnet echo request, the time since sending it is logged
and the measurement counter is increased. If a timeout was specified and the timeout
value is reached, an invalid value (-1) is logged. Lost packets are not considered for the
measurement counter, so that after an experiment has finished successfully, the number
of walid values in the output file equals the specified count (-n option).

GNUnet echo requests are sent in fixed time intervals in order to minimize effects
of different bandwidth usage for different emulated delays (currently the interval is hard-
coded as 300 ms, which is at least 100 ms greater than the RT'T caused by delay emulation).
This means, when an echo response is received, the task for sending the next GNUnet echo
request is scheduled to be executed after 300ms — RTT.

Due to the codec abstraction used in the conversation API the audio data is not pro-
cessed in the source code of gnunet-conversation, but inside the MICROPHONE library'®
and the SPEAKER library'. This made it necessary for both the echo service and the
RTT measurement implementations to create dummy microphone and dummy speaker
types and functions. For the echo service the dummy speaker copies all incoming payload
data into the dummy microphone by calling the handler for recorded audio data. For
sending GNUnet echo requests the handler for enabling the dummy microphone does not
enable the hardware microphone but instead schedules a task for sending a GNUnet echo
request.

5.1.2 CONVERSATION service and audio helpers

Delays were measured not only by sending GNUnet echo requests containing dummy data
(referred to as ping method) but also by sending GNUnet echo requests containing actual

Y“for a detailed tutorial on how to use gnunet-conversation see https://gnunet.org/first-steps-using-
gnunet-conversation

15see https://gnunet.org/doxygen/d5/d5c/group__microphone.html

Sseehttps://gnunet.org/doxygen/d4/d62/group__speaker.html
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audio data during a call (referred to as call method). The call method differs from the ping
method in that audio packets are sent as they are generated by the microphone whereas
the ping method sends GNUnet echo requests in a fixed interval. This results in a higher
packet rate for the call method.

For the RTT measurements the called gnunet-conversation instance has to be operated
with an enabled echo service (the same one used for the ping method). As the echo
service was implemented using a dummy microphone and dummy speaker, no encoding
and decoding happens on the target peer. In order to be able to nevertheless measure
RTT, encoding delay and decoding delay in the same run, both the encoding delay and
the decoding delay were measured on the peer that initiated the call. Figure 3 illustrates
this setup.

CONVERSATION (caller) CONVERSATION (callee)

round-trip time

Microphone Speaker 3 Echo service
2. 4. :
record-helper playback-helper

encoding delay decoding delay (

A A

Figure 3: Setup of of the call method: 1. recording playback from input sink monitor, 2.
encoding audio data; measuring encoding delay, 3. sending encoded data and receiving
reply from echo service; measuring RTT time, 4. decoding audio data; measuring decoding
delay, 5. playback to output sink

For implementing the call method the CONVERSATION service had to be modified.
Extending the CONVERSATION API was avoided and thus measuring delay using the call
method and measuring encoding/decoding delay happens during every call and cannot be
switched on or off from the command line. Instead both measurements can be disabled at
compile time if #define MEASURE DELAY 1 is removed from conversation.h. In function
transmit_call audio() (conversation_api_call.c) before passing the audio data to
the cadet service using a GNUnet message a timestamp is included into that message.
When a packet that was sent back by the other peer’s echo service is handled by function
handle_call_audio(), the included timestamp is unpacked and the time difference is
logged to a CSV file.

As described in Section 3.6.1 audio encoding and decoding, that is calling the libo-
pus API, happens in extra helper binaries. For measuring the encode delay the execu-
tion time of the opus_encode_float () function was measured in gnunet-helper-audio-
record. c, for measuring decode delay it is the function ogg_demux_and decode () function
in gnunet-helper-audio-playback.c. The audio codec delay measurements, like the
cryptography delay measurements described in Section 5.1.4, were done using the GNUNET_
TIME_absolute_get_duration() function from GNUnet’s TIME library. The measured
values of both the encoding and decoding measurements are written to separate CSV files.

5.1.3 gnunet-cadet, gnunet-core and gnunet-transport

Like for gnunet-conversation RTT measurements and an echo service were implemented
in gnunet-cadet, gnunet-core and gnunet-transport. The RTT measurement behaviour
is the same as for the ping method in gnunet-conversation (see Section 5.1.1), the only
difference is that the measurement starts soon after the tool was started because unlike
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in gnunet-conversation there is no user interaction required to establish a connection to
the other peer. Without user interaction there was no need to write measurement values
to output files. Instead they are simply printed to stdout. Further information about
the GNUnet echo request packets on the different layers can be found in Section 5.3,
Appendix D provides documentation about the command-line options, both the existing
and the newly implemented ones.

5.1.4 CADET service

While for the RTT measurements on the CONVERSATION layer only the GNUnet
command-line tools had to be modified, CADET’s cryptography delay required modi-
fications of the CADET service. The encryption and decryption delays arise and were
measured in CADET’s service component and the overall RTT delays was measured in
the application (that is gnunet-cadet). This means that encryption and decryption delays
are contained in the overall RTT delay which is also valid for the echo service side. The
procedure (which is illustrated in Figure 4) is as follows:

1. At the measuring peer gnunet-cadet generates a GNUnet echo request packet con-
taining an identifier and dummy data and passes it to the CADET service (destina-
tion: target peer)

2. The CADET service encrypts the packet, stores an encryption delay record and
transmits it to the target peer

3. At the target peer the CADET service decrypts the incoming packet and passes the
plaintext to the echo service (within gnunet-cadet)

4. The echo service copies the packet and passes it to the CADET service (destination:
measuring peer)

5. The CADET service encrypts the packet and sends it back to the measuring peer

6. The CADET service at the measuring peer decrypts the incoming packet, stores a
decryption delay record and passes it to the application (gnunet-cadet)

7. gnunet-cadet calculates the time since the last GNUnet echo request was generated
and stores an RTT record

Measuring worker Target worker
GNUnet
. echo request .

Encryption Decryption
RTT i|: [

Decryption — Encryption

yp GNUnet yp
echo response

Figure 4: Setup for RTT measurements on CORE and CADET layer

This means each RTT measured on the CADET layer contains the encryption and
decryption delays of both the measuring worker and the target worker. In Chapter 6 where
the measured delays are analyzed the cryptography delays were analyzed separately from
the remaining components of the measured RTTs. Section 5.2 describes the math behind
this separation.
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For measuring the encryption and decryption delays at the measuring worker, the
code parts responsible for encrypting and decrypting a CADET packet were identified.
The delays those parts cause were measured using the timestamp data type (GNUNET_TIME_
Absolute) and the function GNUNET_TIME absolute_get_duration() from GNUnet’s TIME
library!”. The timestamp datatype stores an absolute timestamp in ps as 64-bit unsigned
integer and the function calculates the difference of two such integers. The measured en-
cryption and decryption delays in pus were logged into separate files. These modifications
of the CADET service can be disabled at compile time by removing #define MEASURE_
DELAY 1 from cadet.h.

5.1.5 CORE service

Analog to the encryption/decryption delay measurements in the CADET service, en-
cryption/decryption delays of CORE’s OTR implementation was measured in the CORE
service. Removing #define MEASURE DELAY 1 in core.h disables these measurements at
compile time.

5.2 Separating cryptography delays from the measured RTTs

The cryptography delays were measured separately on the CADET and CORE layer as
described in the previous sections. For plotting and analyzing them as component of
the overall delay, twice the encryption delay and twice the decryption delay had to be
subtracted from each measured RTT value as described in Section 5.1.4.

As for all RTT measurements on the CADET layer the same payload sizes were used
and the same is true for the CORE layer, the encryption and decryption delay was as-
sumed to be independent from the network shaping. This allowed calculating means for
encryption and decryption delays over all measurement values separately for CADET and
CORE (the resulting means are listed in Section 6.1.1), and subtracting them from each
RTT. This method was used for all plots in Chapter 6 showing separated encryption and
decryption delay.

5.3 Packet sizes

In order to obtain comparable results for delays measured on different layers, the GNUnet
echo request packets sent over the network have to be the same size for all measurements.
This means for each layer a different payload size had to be determined which considers the
header sizes of all involved layers and encryption overhead (when encryption is involved).

The payload sizes were determined using the command-line tool gnunet-statistics
which displays usage information that the GNUnet services provide to the STATISTICS
service. Most services provide the sizes of the payloads they send and receive. Table 1
lists the resulting packet sizes.

GNUnet layer Payload size in Byte | Definition
CONVERSATION | 292 gnunet-conversation.c
CADET 300 gnunet-cadet.c
CORE 445 gnunet-core.c
TRANSPORT 663 gnunet-transport.c

Table 1: Payload sizes of GNUnet echo request packets on the different GNUnet layers

'"https://gnunet.org/doxygen/d9/d7d/group__time.html
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6 Measurements

In this chapter the conducted measurements are described and the results are analyzed.
First it is analyzed what shares of the total delay the different GNUnet layers have under
different conditions. Section 6.1 describes delay measurements between two peers, with
focus on the network parameters jitter, packet loss and bandwidth. The delays on the
CADET layer are treated separately. In Section 6.2 two different methods for measuring
RTT delay on the CONVERSATION layer are compared. The evaluation of the subjective
assessments of the speech recordings can be found in Section 6.3.

6.1 Latency by Layer

Round-trip time measurements were conducted between two virtual machines. In parallel
cryptography delays on the CORE and CADET layer and audio codec delays on the
CONVERSATION layer were measured. These measurements are described in detail in
Section 5.1.

For each experiment 1000 values of each measured quantity were recorded, e.g. in an
experiment on the CORE layer 1000 network RTT values, 1000 encryption delay values
and 1000 decryption delay values were recorded.

The delay measurements on the CONVERSATION layer differ from those on the other
layers. As described in Section 5.1.1 delay was measured with two different methods: Using
ping packets like on the other layers and during a call using audio data recorded by the
virtual microphone. This was done in order to assess how realistic the results of the
ping measurements are compared to real conversations. Measuring with both methods
resulted in twice the number of RTT values on the CONVERSATION layer compared to
the other layers. In the plots where different layers are compared the CONVERSATION
delay always stems from the ping method.

In addition to the RTT measurements separate experiments were conducted for sub-
jective QoE assessment, hence the [qoe_] infix in the CONVERSATION column of Table
2. For subjective assessment decoded audio data sent over the network once (in contrast
to packets sent back by an echo service without decoding) is needed. Thus, in contrast
to the RT'T measurements described in Section 5.1.2, in these experiments the audio was
recorded on the target worker (the machine receiving the call).

Table 2 lists the IDs of all conducted ’latency by layer’ experiments. The experiment
IDs which are referenced in the plots and the analysis below correspond to the file names
of the experiment specifications in the YAML format described in Section 4.2.

The emulated parameters delay, delay variance and packet loss were chosen in order to
meet scenarios in which devices are communicating over WiFi and broadband connections.
E.g. delay was varied in the range 20ms..100ms which are typical delays between devices
that are both connected over broadband technologies such as DSL or cable. Packet loss
rates in the range 1%..5% may occur in WiFi environments under bad conditions.

The range of the emulated bandwidth was chosen by making test calls. The calls
showed good quality at 200 kbps and bad quality at 140 kbps.

Default values were used for shaped bandwidth and delay, that is in experiments where
bandwidth emulation is not specified, an emulated bandwidth of 100 Mbit /s was used, not
specifying delay emulation means that an emulated delay of 20 ms was used.

In the measurement scripts it can be specified whether GNUnet should be configured
to use exclusively either UDP or TCP. In order to not leave the decision up to GNUnet
ATS (see section 3.3) and risk switching from one transport protocol to the other during an
experiment, all experiments were conducted with either exclusive UDP or exclusive TCP
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usage. Considering the separate experiments for subjective QoE assessment this leads to a
total number of 200 experiments: 20 TRANSPORT experiments + 20 CORE experiments
+ 20 CADET experiments + 40 CONVERSATION experiments, all conducted with both
TCP-only and UDP-only configuration.

GNUnet layer
TRANSPORT | CORE CADET CONVERSATION
N/A t_ideal 0 cr_ideal 0 cd_ideal 0 cv_[qoe_]ideal 0
20ms t_delay_0 cr_delay_0 cd_delay_0 v_[qoe_]delay_0
> 40ms t_delay_1 cr_delay_1 cd_delay_1 v_[qoe_|delay_1
< 60ms t_delay_2 cr_delay_2 cd_delay_2 cv_[qoe_]delay_2
T 80ms t_delay_3 cr_delay_3 cd_delay_3 v_[qoe_|delay_3
100ms t_delay_4 cr_delay_4 cd_delay 4 cv_[qoe_]delay_4
5% t_pdv_0 cr_pdv_0 cd_pdv_0 cv_[qoe_|pdv_0
s> 10% t_pdv_1 cr_pdv_1 cd_pdv_1 cv_[qoe_|pdv_1
%D E 15% t_pdv_2 cr_pdv_2 cd_pdv_2 cv_[qoe_|pdv_2
2 20% t_pdv_3 cr_pdv_3 cd_pdv_3 cv_[qoe_|pdv_3
< 25% t_pdv_4 crpdv_4 cd_pdv_4 cv_[qoe_]pdv_4
x 2 1% t_loss_0 cr_loss_0 cd_loss_0 v_[qoe_]loss_0
5 = 2% t_loss_1 crloss_1 cd loss_1 cv_[qoe_]loss_1
% E 3% t_loss_2 cr_loss_2 cd_loss_2 v_[qoe_]|loss_2
8 4% t_loss_3 crloss_3 cd_loss_3 cv_[qoe_]loss_3
& 5% t_loss_4 crloss_4 cd_loss_4 cv_[qoe_]loss_4
< 200kbps | t_bandwidth_3 cr_bandwidth 3 | cd_bandwidth_3 | cv_[qoe_]bandwidth_3
= 180kbps | t_bandwidth_7 cr-bandwidth_7 | cd_bandwidth_7 | cv_[qoe_|bandwidth_7
-E 160kbps | t_bandwidth_8 cr_bandwidth 8 | cd_bandwidth_8 | cv_[qoe_|bandwidth_8
ch 140kbps | t-bandwidth_9 cr-bandwidth 9 | cd_bandwidth_ 9 | cv_[qoe_|bandwidth_9

Table 2: experiments conducted to determine delay by GNUnet layer. Default network shaping param-
eters: 100 Mbit/s bandwidth, 20 ms delay, no delay variation, no packet loss. The prefixes ¢, cr, cd,
cv stand for the GNUnet layers TRANSPORT, CORE, CADET and CONVERSATION, the following

expression is the emulated metric that was varied

6.1.1 Determining the encryption and decryption delay

As described in Sections 5.1.4 through 5.2 the measured RTT delays contain encryption
and decryption delays and thus in order to calculate the network delays for plotting it
was necessary to measure those delays separately and subtract them from the measured
delays.

The encryption and decryption delays were recorded on the measuring worker in all
RTT experiments on the CORE and CADET layers (see Section 5.1.4). A mean and
standard deviation was calculated over all those values. For both CORE and CADET
these sum up to 40000 encryption delay values and 40000 decryption delay values (20
experiments using UDP only, 20 experiments using TCP only, 1000 measuring values per
experiment).

Table 3 shows the results. The standard deviations of CADET’s encryption and de-
cryption are higher than expected. A look into the dataset showed outliers with both
significantly higher and lower delays. Presumably these are caused by packets other than
the GNUnet echo requests, e.g. packets responsible for CADET’s re-keying described in
Section 3.5.2. These may have different packet sizes than the GNUnet echo requests and
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thus may cause different encryption and decryption delays.

GNUnet layer | Encryption delay | Decryption delay
CADET 5.980ms 4+ 1.587ms | 1.377 + 0.673ms
CORE 0.496ms = 0.057ms | 0.501 £ 0.065ms

Table 3: Mean and standard deviation of encryption and decryption delays calculated over
460460 delay values for both CADET and CORE

6.1.2 No network shaping

The first line in table 2 lists delay measurements on the four layers without any network
shaping. As the two virtual machines used for these experiments are on the same host
machine and communicate over a virtual network bridge the physical network delay is
expected to be very low. An RTT measurement using ping without GNUnet involved was
done as shown in listing 8. The resulting delay (RT'7/2) is 0.230 ms with a standard
deviation of 0.029 ms (12.4%).

$ ping -c 1000 -s 725 172.29.0.5
[...]
rtt min/avg/max/mdev = 0.309/0.460/0.939/0.057 ms

Listing 8: Ping measurement with ICMP ECHO_REQUESTSs using a count of 1000. The
packet size 725 equals the one used in gnunet-transport (see section 5.3)

The TRANSPORT layer is expected to add a constant (that is low standard deviation)
processing delay to this. ATS as a potential source of unpredictable delays is prevented
from switching transport protocols by the GNUnet configuration.

ideal_00: No network shaping ideal_00: No network shaping
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Figure 5: Measured delay (mean and standard deviation) without network shaping

Figure 5a shows the means and standard deviations of the measured delays using
TCP only. The delay TRANSPORT added to the network delay measured with ping is
approximately 0.6 ms (0.85 ms in total) which is low compared to the 22.81 ms total
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delay. This can be be considered as processing delay, e.g. inter-process communication as
described in section 5.1.1. The delay increase from TRANSPORT to the CORE layer is
roughly 2.1 ms. Half of this increase is caused by OTR encryption and decryption. These
delays sum up to approximately 1 ms. The remaining 1.1 ms may again result from IPC
communication. The most drastic increase happens from CORE to CADET. CADET
adds 13.5 ms to the total CORE delay. This is the main part of the overall delay seen
on the CONVERSATION layer. Double-Ratchet cryptography delays sum up to around
7.4 ms. The remaining 6.1 ms are analyzed in chapter 6.1.3. A surprising observation is
that the encryption on the CADET layer takes longer than the decryption. As described
in section 3.5.2 this is not expected, but could be explained by parallelization. This is
also investigated in chapter 6.1.3. The network delay measured on the CONVERSATION
layer differs only by roughly 1 ms from the overall CADET delay which is in the same
order as the presumable IPC delays on the other layers. CONVERSATION adds an audio
codec delay of 4.8 ms.

In both the TCP-only (Figure 5a) and the UDP-only (Figure 5b) plot the network
delays show extreme standard deviations with significant differences between TCP and
UDP: e.g. on the CADET layer the standard deviation is approximately 3 ms for TCP
but almost 12 ms for UDP. In cases where UDP shows a higher standard deviations also
the mean is slightly higher for UDP. This might be a hint that both effects are caused by
extreme outliers.

Indeed extreme outliers were found in the datasets: e.g. for UDP at approx. 510 ms
(CADET) and 390 ms (CONVERSATION) and for TCP at approx. 260 ms (CONVER-
SATION). Audio packets with such an extreme delay can’t be used for an active audio
call and thus would probably be dropped by the codec.

By plotting only the values below the 99th percentile in the figures 6a and 6b it can
be estimated how the delays would look like without the outliers. Here both the TCP-
only case and the UDP-only case show very similar means standard deviations between
roughly 0.3 ms (CORE) and 2.5 ms (CONVERSATION). Thus both differences in the
means between TCP and UDP and the extreme standard deviations seem to be caused
by extreme outliers.

ideal_00: No network shaping (< 99th_percentile) ideal_00: No network shaping (< 99th percentile)
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Figure 6: Measured delay (mean and standard deviation) without network shaping (values < 99th percentile)
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In most delay measurements extreme outliers were found. Many were in the order of
seconds. It can be speculated that they are caused by CADET’s re-keying described in
Section 3.5.2. As no clear evidence for this has been found yet, it has to be left as future
work.

6.1.3 A closer look at CADET’s delay

As discussed in the previous section the delay increase from CORE to CADET is mainly
caused by encryption and decryption. As described in Section 3.5.2 the encryption delay
being much higher than the decryption delay is unexpected but might be explainable with
parallelized decryption.

The functions responsible for encryption and decryption using AES and TWOFISH,
GNUNET_CRYPTO_symmetric_encrypt () and GNUNET_CRYPTO_symmetric_decrypt () are
implemented in GNUnet’s CRYPTO library'®. They are wrapping calls to 1ibgcrypt!?. A
program, that calls these functions in two loops was written in C. The input to the encrypt
function was 256 Byte of dummy data. The resulting cyphertext was then passed to the
decrypt function. The time differences these loops cause were measured using GNUNET_
TIME absolute_get_duration() from GNUnet’s TIME library. In a measurement on one
of the virtual machines with 10000 iterations per loop, it was obvious that both functions
cause equal delay (see Table 4).

Function Data size | Delay
GNUNET_CRYPTO_symmetric_encrypt 256 byte 0.063ms
GNUNET_CRYPTO_symmetric_decrypt 256 byte 0.061ms
GNUNET_CRYPTO_ecdhe_key_get_public N/A 4.3ms

Table 4: Mean over 10000 delay measurements for GNUnet functions

A closer look into the source code revealed that during encryption (in function GCT-
send, gnunet-service-cadet_tunnels.c) the function GNUNET_CRYPTO_ecdhe key_get_
public is called, which extracts the Diffie-Hellman ratchet public key (DHr), defined in
[17], from the corresponding private key. A delay measurement was implemented in C like
for the encryption and decryption functions. The result is listed in Table 4: One call to
GNUNET_CRYPTO_ecdhe _key_get_public takes 4.3 ms. This matches roughly the difference
between encryption and decryption delay (4.6 ms).

GNUNET_CRYPTO_ecdhe _key_get_public is called for each outgoing packet although the
Diffie-Hellman ratchet key changes after 64 packets have been sent or under the conditions
described in Section 3.5.2. Thus storing the public key instead of calculating it on-the-fly
would eliminate the delay caused by this function for most packets.

6.1.4 Emulate delay

The figures 7a and 7c show a collection of measurement results from all experiments
where delay was emulated, that is the emulated delay was varied from 20 ms to 100 ms.
The plotted delays contain the same components as the total delays in figure 5a, that
is they include cryptography and codec delays. For plotting a total mean and a total
standard deviation, consisting either of network delay and encryption / decryption delay

8https://gnunet.org/doxygen/d5/df c/group__crypto.html
Yhttps://wuw.gnupg.org/related_software/libgcrypt/
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Figure 7: Measured delay (mean and standard deviation) emulating delay, bandwidth: 100 Mbit/s

As shown in section 6.1.1 the delays caused by cryptography and codec are not varying
much over the course of the experiments. This and visual clarity are the reasons why they
are not listed separately in the collective plots in this chapter.
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The plots show a linear increase of the measured delays on all four layers for both TCP
and UDP. An emulated delay in the range 0 to 100 ms (which is ideal for voice commu-
nication) does not result in unexpected behaviour but each layer only adds the constant
delay described in section 6.1.2. It seems that the difference between TRANSPORT and
CORE is higher than in the previous plots. The 99th-percentile plot shows very similar
proportions to the experiment without network shaping. Thus, the higher mean on the
CORE layer is again caused by outliers.

6.1.5 Emulate packet delay variation

When measuring delay with emulated PDV it is expected that the standard deviation
of the measured values increases with the emulated PDV increase. The figures 8a (TCP
only) and 8c (UDP only) show that this is indeed the case on the TRANSPORT layer. For
both cases the standard deviation increases steadily from 0.4 ms at 5% emulated PDV to
2.1 ms at 25% emulated PDV. The same cannot be said for the other layers. For example
the standard deviation on the CADET layer in the UDP case is much higher at 5% PDV
(43 ms) than at 10% PDV (2.8 ms). In the TCP case for CONVERSATION the standard
deviation even seems to decrease from 86 ms at the lowest PDV to 41 ms at 20% PDV.
Like the high standard deviation in the experiment without network shaping this is caused
by outliers. In the described CONVERSATION case one outlier with a value of more than
2 seconds exists. Again only the values below the 99th percentile were plotted (figures 8b
and 8d). Without the highest percentile the plots show a steady increase of the standard
deviations on the layers TRANSPORT and CORE. CADET and CONVERSATION seem
to be affected little or not at all by this increase on the lower layers because these standard
deviations are small compared to the delay increase both CADET and CONVERSATION
cause.
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Figure 8: Measured delay (mean and standard deviation) emulating PDV

6.1.6 Emulate packet loss

Emulated packet loss was varied from 1% to 5%. The figures 9a through 9d show the
measured delays including the results without emulated packet loss taken from the exper-
iments delay_tcp_0 and delay_udp_0. In both the TCP and the UDP plots a linear increase
of the measured delays can be observed. For TCP the increase per % packet loss on all
layers is roughly 12%, the increase on the CADET layer being a little more fluctuating
than on the other layers.
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Figure 9: Measured delay (mean and standard deviation) emulating packet loss

The boxplots in Figure 10 show a lot of outliers, that is measured values outside of
1.5 IQR (inter-quartile range). For TRANSPORT there are 1129 outliers and for CORE
there are 1241 outliers from 10000 measured values each. The values of most of the outliers
are not as extreme as seen in the previous experiments. The vast majority is below 300
ms. So in contrast to the previously discussed experiments the outliers are an essential
share of the measured values and a mean may not be the best choice for getting reliable
information about datasets with such properties.

Another observation are the extreme standard deviations on all layers (TCP) and on
the layers CADET and CONVERSATION (UDP). As TCP is reliable, it will retransmit
lost packets which causes high variance for TRANSPORT and all layers above.

The UDP-only plots have a very low standard deviation for TRANSPORT and a much
lower standard deviation for CORE than the TCP plots. This is because neither these
two layers nor UDP provide reliability. gnunet-transport and gnunet-core detected the
lost packets after the timeouts described in Section 5.1.3 but no retransmissions that
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could have increased the variance were done. CADET’s reliability functionality is in effect
though, because the CONVERSATION service activates it as described in Section 3.6.
Thus when CADET detects a lost packet, it initiates a retransmission. This explains that
the standard deviation is high on the CADET and CONVERSATION layer.

The fluctuations in the standard deviations can be explained again with extreme out-
liers: the 99th percentile plots for both UDP and TCP show steady increasing standard
deviations.
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Figure 10: Boxplot of the measured network delays at 5% emulated packet loss; 1:
TRANSPORT, 2: CORE, 3: CADET, 4: CONVERSATION

6.1.7 Emulate low bandwidth

Low bandwidth was emulated in the range 140 Kbit/s to 200 Kbit/s in steps of 20 KBit/s.
Measurements were done like for the other metrics but the plots are omitted for the
following reason.

In all plots (TCP-only, UDP-only, both 100th-percentile and 99th-percentile plots) the
mean of the TRANSPORT delay was higher than for the next higher layer CORE. This
clearly indicates a measurement error. As every plots was affected and a very low standard
deviation existed for TRANSPORT and CORE, outlier cannot explain the effect. As the
bandwidths are very low considering the codec’s bit rate of 48 Kbit/s and the packet
header and encryption overhead of the four layers it is possible that slight differences in
the effective bit rate can lead to different queueing delays. Such differences between the
layers can only exist if either the ping packets were sent in different rates or if the ping
packets had different sizes. Different rates are not possible because the same hardcoded
interval (300 ms) was used for all command-line tools, using the same implementation for
enforcing that interval. So the second statement must be true: The ping packet sizes of
different command-line tools differ in size.

The packet sizes listed in Table 1 were determined using gnunet-statistics. This
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seems to be an unreliable method because the number of bytes displayed may be the sum
of payloads of multiple packets. E.g. on the CORE and CADET layer key exchange
packets may be sent in between the application data. This may have been summarized
into one statistics output.

The measurement errors result from wrongly determined packet sizes. This has an
effect on the experiments with low bandwidth emulation because here queueing delays
increase rapidly when the effective bit rate comes close to or exceeds the available band-
width. In the other experiments a large bandwidth of 100 Mbit/s was available, so the
effect of the wrong packet sizes should not be significant.

6.2 CONVERSATION ping measurements vs. call delay

In order to determine how close the RT'T measurements are to a realistic scenario, that is
a call with speech recorded by a microphone, the RTTs measured using the ping method
were compared with RTTs measured using the call method (both defined in Section 3.6).

Figure 11 shows the comparison for the TCP-only experiments discussed in the previous
sections. For an emulated delay of 20 ms the means for both methods are equal as the
plots 11a and 11b show. For increasing emulated delay the delays from both methods
increase linearly, but with a slightly higher slope for the call method. From the lowest to
the highest emulated delay the measured delays increase by 286% for the ping method and
by 405% for the call method. This can be explained by higher queueing delays because of
the much higher packet rate. For an emulated delay of 100 ms, the measured delay for call
method exceeds the recommended the recommended maximum mouth-to-ear delay (see
Section 2.2). Thus, bad QoE is expected.

The higher delay values in the packet loss plot can be explained with higher queueing
delay aswell.

The biggest difference between the two methods can be seen in the bandwidth plot.
For dereasing emulated bandwidths the delays increase only slightly for the ping method
but in an extreme way for the call method. Between an emulated delay of 200 Kbit/s and
180Kbit /s the increase is 525%. This means that while still potentially suitable for good
QoE at 200 Kbit/s available bandwidth, for little less than 200 Kbit /s available bandwidth
the queueing delay becomes unsuitable according to the ITU-T recommendations (Section
2.2). This sudden delay increase is an indication for packet loss because of insufficient
bandwidth. QoE is expected to be bad for bandwidths of 180 Kbit/s or less.
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Figure 11: CONVERSATION delays: Comparing ping method and call method (TCP only)

6.3 Evaluation of the recorded calls

The experiments on the CONVERSATION layer for subjective QoE assessment as de-
scribed in Section 2 were done separately. Of each experiment two recordings were as-
sessed in order to determine QoE tendencies. The audio file (reference audio) used was a
poem recorded in a studio by a professional speaker. At the target peer one minute of the
call was recorded.

In a first evaluation four kinds of behaviour was observed. Some recordings had very
short artifacts, distributed over the whole duration of the recording. These, if not occur-
ring too often, left the speech understandable (as in every word could be understood).
Other recordings showed longer silence periods up to roughly 3 seconds. This lead to four
disturbance categories to be examined:

1. up to 5 artefacts of < 1s: Every word could be understood, this might still be a
satisfying QoE for many users
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2. up to 20 artefacts of < 1s: Almost all words could be understood, but the
artefacts occur to often to provide a satisfying QoE

3. up to 5 silence periods of < 5s: Words were left out, not a satisfying QoE

4. more artefacts / silence periods: The disturbances occur to often to understand
the speech content

Table 5 show the assessment results. It is obvious that only very few recordings fall
into the first category. In the delay category only a UDP-only experiment falls into this
categoriy. The bandwidth category shows that with the same delay and even a lower
bandwidth TCP may perform similarly, though. Thus without assessing a greater amount
of recordings it cannot be concluded, whether UDP or TCP performs better at low delays.

Type of disturbance
up to 5 arte- | up to 5 silence | up to 20 silence | more silence
facts of < 1s periods of < 5s | periods of < 1s | periods
0|U T
> 1 U T
< 2 T, U
© 3 T,U
4 T, U
0 T, U
> 1 T, U
A 2 T, U
AT U
4| T U
w 0|U T
21 U T
E 2 T,U
g 3 T, U
& 4 T, U
< 3|7 U
2 7 T, U
-% 8 T, U
g9 T, U
e

Table 5: Subjective QoE assessment, T: TCP-only, U: UDP-only; the serial numbers correspond to those
in the experiment IDs (see Table 2)

A low packet loss rate (1 or 2%) seems to have less negative effects, when UDP is used.
This makes sense as TCP reliability features will increase the delay as shown in Section
4.3.2.

For emulated PDV all recordings contain at most 5 silence periods, for two of them at
the highest emulated PDV (20 and 25%) show even small artefacts (first category). Thus
PDV seems to affect QoE the least.

In general it can be said that bad QoE, that is more than 20 artefacts of less than
1 second or more than 5 silence periods of more than 5 seconds, will definitely occur for
delays of 60 ms or more, for packet loss of 3% and for bandwidths of 180 Kbit/s or less.
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7 GNUnet optimization

As shown in Section 6.1.3 an optimization with estimated big effect is avoiding calling
the function GNUNET_CRYPTO_ecdhe _key_get_public during encryption for each message.
Instead it should only be called once a Diffie-Hellman ratchet step was done and stored
for future messages. On the virtual machines this would save 18.6% (4.3 ms) of the overall
mouth-to-ear delay.

Moreover a very important task left to future work is determining the GNUnet imple-
mentation details that cause the extreme outliers described throughout Section 6 and find
measures to mitigate the outliers.

Another optimization measure would be to implement the per-packet RELIABLE /
UNRELIABLE transport for CADET. This would make it possible to send audio packets
unreliably while continuing to send control packets reliably without the extra implemen-
tation overhead of a second CADET channel. A task linked to this would be to implement
a way for CADET to influence the underlying transport selection. Currently the RELI-
ABLE / UNRELIABLE option in the CADET API only enables or disables CADET’s
reliability mechanisms but has no effect on whether ATS selects an unreliable (UDP) or a
reliable transport (TCP/HTTP, etc.). An application should be enabled to pass a prefer-
ence about its reliability and performance requirements to ATS through the API. In the
ATS API 20 a function for expressing performance preferences already exists and could be
extended.

2Onttps://gnunet . org/doxygen/d8/d82/group__ats.html
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8 Conclusion

In this thesis delays were measured on the four GNUnet layers the voice application
GNUnet conversation employs. The fully automated measurements were done under dif-
ferent network conditions: A network emulator was used to vary the metrics delay, packet
delay variation, packet loss and bandwidth. GNUnet’s services and command-line tools
were extended to provide measurement features. The security architecture of GNUnet
required the measurement of encryption and decryption delays on the layers CORE and
CADET. Delay caused by the audio codec was measured on the CONVERSATION layer.

Audio recordings were done in parallel in all experiments that involved CONVERSA-
TION calls. Separate audio recordings were done for subjective QoE assessment.

The evaluation of the measured delays showed, that on average GNUnet conversation
causes 23 ms of mouth-to-ear delay on top of existing network delay, with otherwise
ideal network conditions, that is, a sufficient bandwidth and no jitter or packet loss.
In this case the largest part (approx. 60%) is caused by CADET. CADET’s delay is
mostly encryption and decryption delay (Double-Ratchet cryptography). We were able to
show that optimization is possible in the encryption part of this delay by not calling the
expensive function GNUNET_CRYPTO_ecdhe _key_get_public for every message. On systems
with a performance similar to the machines used this would save more than 18% of the
mouth-to-ear delay most of the time.

Although for increasing delay at the underlying network layer the average delays at
the GNUnet layers were only increased by a constant and for increasing loss of IP packets
only a slight delay increase could be measured (caused by TCP’s and CADET's reliability
mechanisms), the subjective QoE assessment mostly showed bad QoE for typical network
conditions. The reasons are extreme outliers in the order of 1 second occurring in many
measurements. The GNUnet implementation details responsible for this are yet to be
determined.

Recommendations for good QoE with the current CONVERSATION implementation
could be determined: CONVERSATION cannot provide good QoE if the delay to the
other end is 60 ms or more or the available bandwidth is below 200 Kbit/s. Furthermore
good QoE could only be observed with a packet loss rate of 1% or less.

Important future work includes analyzing CONVERSATION’s behaviour in different
network topologies, such as routes over multiple GNUnet peers or parallel routes with
different network conditions. Examining the connection establishment procedure is im-
portant for a an extensive QoE analysis too. A task not directly related to this thesis,
but which should not be underestimated is to improve CONVERSATION’s user interfaces
(command-line and graphical) so secure, distributed voice communication finally becomes
usable.
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A  GNUnet configuration used for measurements

[arm]
SYSTEM_ONLY = NO
USER_ONLY = NO

[transport]

PLUGINS = tcp

# PLUGINS = wudp

# PLUGINS = tcp udp

[peerinfol
USE_INCLUDED_HELLOS = NO

[transport-udp]
BROADCAST = NO

[hostlist]
AUTOSTART = NO
FORCESTART = NO

[fs]
AUTOSTART = NO
FORCESTART = NO

[nat]
ENABLE_UPNP = NO

[nsel
AUTOSTART = NO
FORCESTART = NO

[revocation]
AUTOSTART = NO
FORCESTART = NO

[set]
AUTOSTART = NO
FORCESTART = NO

[vpn]
AUTOSTART = NO
FORCESTART = NO

[PATHS]
GNUNET_HOME = ./test

[conversation]
LINE = 2

Listing 9: The GNUnet configuration without restricted transport (for UDP-only or TCP-
only uncomment the respective line)
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B Usage of the measurement scripts

Usage: mc.py [options]

Options:-

h, --help show this help message and exit-

¢ CONFIG, --config=CONFIG
config file path-

r, --reinstall-gnunet
push local gnunet changes to the workers and initiate
rebuild / reinstall-

m, --manual configure and start the peers and shape the network as

described in the given experiment file-
--experiment=EXPERIMENT
configure and start the peers and conduct the
experiment discribed in the given file-
--number=NUMBER
run the experiment n times-
--transport=TRANSPORT
configure gnunet to use the specified transport
protocol (tcp/udp) only-

e EXPERIMENT,

n NUMBER,

t TRANSPORT,

w TIMEOUT, --timeout=TIMEOUT
configure the timeout for one experiment, default: 600
Listing 10: Usage of the measurement controller script
usage: mw.py [-h]

{call,experiment ,init-gnunet ,shutdown-gnunet ,set-workers ,update-
P g g P
gnunet ,record-conversation ,unshapel}

positional arguments:
{call,experiment ,init-gnunet ,shutdown-gnunet ,set-workers ,update-gnunet ,record-
conversation ,unshapel}
call call a GNUnet peer using conversation
experiment start an experiment
init-gnunet start GNUnet with the config file from the environment
shutdown-gnunet stop gnunet
set-workers store information about workers
update-gnunet recompile and reinstall gnunet if changes exist
record-conversation
start conversation with --auto-accept and record to
output.wav as soon as the call is accepted
unshape remove all network shaping
optional arguments:-

h, --help show this help message and exit

Listing 11: Usage of the measurement worker script

C Output files

Table 6: The measured delays are either printed to stdout or written to a CSV file (filename
currently hardcoded); the delays are logged in microseconds, lost packets are logged as -1

GNUnet component

Output location

Description

gnunet-conversation

conversation_rtt_ping.csv

CONVERSATION RTT values (ping method)

CONVERSATION service

conversation_rtt_call.csv

CONVERSATION RTT values (call method)

gnunet-helper-audio-record

conversation_encode_delay.csv

OPUS encode delay

gnunet-helper-audio-playback

conversation_decode_delay.csv

OPUS decode delay

gnunet-cadet

stdout

CADET RTT values

CADET service

cadet_encryption_delay.csv
cadet_decryption_delay.csv

double ratchet encryption delay
double ratchet decryption delay

gnunet-core

stdout

CORE RTT values

CORE service

core_encryption_delay.csv
core_-decryption_delay.csv

OTR encryption delay
OTR decryption delay

gnunet-transport

stdout

TRANSPORT RTT values
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D GNUnet command-line tools

gnunet-transport
Direct access to transport service.
Arguments mandatory for long options are also mandatory for short optiomns.-

a, --all print information for all peers (instead of only
connected peers)-

b, --benchmark measure how fast we are receiving data from all
peers (until CTRL-C)-

c, ——config=FILENAME use configuration file FILENAME-

D, --disconnect disconnect from a peer

-E, --echo activate echo mode-

e, -—events provide information about all connects and
disconnect events (continuously)-

h, --help print this help-

i, -—information provide information about all current connections
(once)-

L, --log=LOGLEVEL configure logging to use LOGLEVEL-

1, --logfile=FILENAME configure logging to write logs to FILENAME-

m, --monitor provide information about all current connections
(continuously)

-N, -—-number=NUMBER number of RTT measurements-

n, --numeric do not resolve hostnames-

P, --plugins monitor plugin sessions-

p, ——peer=PEER peer identity

-r, ——measure-rtt measure rount-trip time by sending packets to an
echo-mode enabled peer-

s, -—-send send data for benchmarking to the other peer
(until CTRL-C)-

V, --verbose be verbose-

v, --version print the version number

-w, —-—timeout=SECONDS timeout for each RTT measurement

Report bugs to gnunet-developers@gnu.org.
GNUnet home page: http://www.gnu.org/s/gnunet/
General help using GNU software: http://www.gnu.org/gethelp/

Listing 12: gnunet-transport command-line options, newly-implemented options in red

gnunet-core
Print information about connected peers.
Arguments mandatory for long options are also mandatory for short options.-

c, ——config=FILENAME use configuration file FILENAME

-e, —-—echo activate echo mode-

h, --help print this help-

L, --log=LOGLEVEL configure logging to use LOGLEVEL-

1, --logfile=FILENAME configure logging to write logs to FILENAME-

m, --monitor provide information about all current connections
(continuously)

-n, —-—count=COUNT number of RTT measurements

-p, ——peer=PEER peer identity

-r, —-measure-rtt measure round-trip time by sending packets to an
echo-mode enabled peer-

v, --version print the version number

-w, ——timeout=SECONDS timeout for each RTT measurement

Report bugs to gnunet-developers@gnu.org.
GNUnet home page: http://www.gnu.org/s/gnunet/
General help using GNU software: http://www.gnu.org/gethelp/

Listing 13: gnunet-core command-line options, newly-implemented options in red
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gnunet-cadet (OPTIONS | PEER.ID SHARED_SECRET)
Create tunnels and retrieve info about CADET’s status.
Arguments mandatory for long options are also mandatory for short options.-
C, --connection=CONNECTION_ID
Provide information about a particular connection-

c, ——config=FILENAME use configuration file FILENAME-

d, --dump Dump debug information to STDERR-

e, ——echo Activate echo mode-

h, --help print this help-

L, --log=LOGLEVEL configure logging to use LOGLEVEL-

1, —-logfile=FILENAME configure logging to write logs to FILENAME
-n, --count=COUNT number of RTT measurements-

o, --open-port=SHARED_SECRET

Listen for connections using a shared secret
among sender and recipient-

P, --peers Provide information about all peers-

p, ——peer=PEER_ID Provide information about a patricular peer
-r, --measure-rtt Active RTT measurements-

T, --tunnels Provide information about all tunnels-

t, --tunnel=TUNNEL_ID Provide information about a particular tunnel-
Vv, —--version print the version number

-w, —-—timeout=SECONDS timeout for each RTT measurement

Report bugs to gnunet-developers@gnu.org.
GNUnet home page: http://www.gnu.org/s/gnunet/
General help using GNU software: http://www.gnu.org/gethelp/

Listing 14: gnunet-cadet command-line options, newly-implemented options in red

gnunet-conversation
Enables having a conversation with other GNUnet users.
Arguments mandatory for long options are also mandatory for short options.

-a, -—auto-accept automatically accepts all incoming calls (for
measurement purposes)-

c, ——config=FILENAME use configuration file FILENAME

-E, --echo activate echo mode-

e, -—ego=NAME sets the NAME of the ego to use for the phone
(and name resolution)-

h, --help print this help-

L, --log=LOGLEVEL configure logging to use LOGLEVEL-

1, --logfile=FILENAME configure logging to write logs to FILENAME

-n, ——count=COUNT number off RTT measurements-

p, —-—phone=LINE sets the LINE to use for the phone

-r, ——measure-rtt activate RTT measurement-

v, —--version print the version number

-w, ——timeout=SECONDS timeout for each RTT measurement

Report bugs to gnunet-developers@gnu.org.
GNUnet home page: http://www.gnu.org/s/gnunet/
General help using GNU software: http://www.gnu.org/gethelp/

Listing 15: gnunet-conversation command-line options, newly-implemented options in red







