LT 0

TECHNISCHE UNIVERSITAT MUNCHEN
DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Byzantine Fault Tolerant Set Consensus
with Efficient Set Reconciliation

Florian Dold

LT 0

TECHNISCHE UNIVERSITAT MUNCHEN
DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Byzantine Fault Tolerant Set Consensus with Efficient Set
Reconciliation

Byzantinischer Consensus auf Mengen mit effizientem

Mengenabgleich
Author Florian Dold
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Christian Grothoff, PhD (UCLA)

Submission Date December 21, 2015

Informatik VIII
Chair for Network Architectures and Services LA

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

December 21, 2015

Signature

Abstract

Byzantine consensus is a fundamental and well-studied problem in the area of distributed
system. It requires a group of peers to reach agreement on some value, even if a
fraction of the peers is controlled by an adversary. This thesis proposes set union
consensus, an efficient generalization of Byzantine consensus from single elements to
sets. This is practically motivated by Secure Multiparty Computation protocols such
as electronic voting, where a large set of elements must be collected and agreed upon.
Existing practical implementations of Byzantine consensus are typically based on state
machine replication and not well-suited for agreement on sets, since they must process
individual agreements on all set elements in sequence. We describe and evaluate our
implementation of set union consensus in GNUnet, which is based on a composition
of Eppstein set reconciliation protocol with the simple gradecast consensus prococol
described by Ben-Or.

Zusammenfassung

Byzantinischer Consensus ist ein fundamentales und weitlaufig erforschtes Problem
aus dem Bereich der verteilten Systeme. Ziel dabei ist es, dass sich eine Gruppe von
Rechnerknoten auf einen einzigen Ausgabewert einigt, selbst dann wenn ein Teil der
Rechnerknoten von einem Gegenspieler kontrolliert wird. In dieser Arbeit wird Byzan-
tischer Consensus auf Mengen von Elementen als Generalisierung von Consensus auf
einzelnen Werten vorgestellt. Dies ist durch die Anwendung in Protokollen fiir Secure
Multiparty Computation motiviert, wie beispielsweise bei elektronischen Wahlen, fiir
die eine grofle Menge an Eingabewerten gesammelt werden muss, und sich anschlie-
Bend auf die gesamte Menge geeinigt werden muss. Bestehende, praktisch orientierte
Loésungen basieren iiblicherweise auf replizierten Zustandsautomaten und sind nicht fiir
die Einigung auf Mengen geeignet, da jedes die einigung auf jedes Element der Menge
sequentiell bearbeitet werden muss. Wir beschreiben und evaluieren eine Implentation
fiir effizienten Consensus auf der Vereinigung von Mengen in GNUnet, welches auf
einer Anwendung von Eppsteins Protokoll fiir effizienten Mengenabgleich auf Ben-Ors
Consensus-Prototoll mit Gradecasts besteht.

Contents
1 Introduction
1.1 Background
1.1.1 Consensus v i e e e e e e
1.1.2 The FLP Impossibility Result
1.1.3 Interfaces to Consensus Protocols
1.1.4 ByzantineConsensus
1.1.5 Otherconsensusmodels
1.2 Ourcontribution
13 Roadmap
2 Set Reconciliation

2.1 Background and Related Work
2.2 High-Level Overview
2.21 Invertible Bloom Filter
2.3 Difference Estimation L.
24 Detailed Description.
2.5 Implementationin GNUnet
2.5.1 GNUnet’s Architectureand SET
252 Optimizations
2.6 Evaluation

Set Union Byzantine Consensus

3.1 SystemModel
3.1.1 An argument against full asynchrony
3.2 Simple Gradecast Consensus
321 Gradecast
322 COMSENSUS . .« v v v v v e e e e e e e e e e e e
33 SetUnion Consensus v v v v v i vt it e e
3.3.1 Definition
3.3.2 Set-Valued Gradecast
3.3.3 CorrectnessSketch

3.3.4 Set-valued simple gradecast consensus

AN U1 U WO =

O O o0 00 I I

I

Contents

34 Implementationin GNUnet 23
341 APL. . . . e 23

3.4.2 Space optimizations 23

343 Evaluation L L 24

3.5 Optimizations and Future Work 28
3.5.1 FastDissemination 28

3.5.2 Extension to Partial Synchrony 29

3.5.3 Set Canonicalization 29

3.5.4 Persistent Data Structures 30
Application to Secure Multiparty Computation 31
4.1 Bulletin Board for Electronic Voting 32
4.2 Distributed Threshold Key Generation and Cooperative Decryption . . 33
4.3 Electronic Voting with Homomorphic Encryption 34
Conclusion and Future Work 35
Appendix 37
A1 SetAPIReference 37
A2 Consensus APIReference 48

Chapter 1

Introduction

This thesis presents a new Byzantine fault-tolerant set union consensus protocol, and
demonstrates the utility of the construction. The protocol allows a set of peers to
compute and agree upon the union of sets. Each member begins with a set of values.
At the end of the protocol, all honest members end up with the same superset, which
includes at least all of the values from the subsets of the non-faulty peers, even in the
presence of an adversary that can control a fraction of the peers.

We assume a partially synchronous communication model, where non-faulty peers
are guaranteed to successfully receive values transmitted by other non-faulty peers
within an existing but unknown finite period of time [22]. The protocol then allows for
[n/37] — 1 Byzantine faults among n > 3 participating peers.

1.1 Background

Distributed systems often implement services that look to a client as if they were
implemented by a single computing facility. In order to achieve this, the components of
the distributed system (henceforth called peers, since this work is primarily concerned
with peer-to-peer networks) must be able to reach agreement amongst each other about
input data, state transitions and outputs during a distributed computation.

While this problem is conceptually quite simple, it has proven to be very challenging
when considering the following two aspects:

1. Peers can fail. In the simplest case, peers exhibit a crash-fault and simply stop
doing any work. With Byzantine' faults, faulty peers can exhibit arbitrary and
potentially coordinated behavior, making these faults much more challenging to

IThe term was popularized by Lamport [39] and refers to a story about the Byzantine army, whose
generals must agree on the choice to attack a city or retreat in the presence of traitorous generals.

2 Chapter 1. Introduction

handle. Practical systems have to consider Byzantine faults not only as a result
of the presence of a attackers, but also as a result of software bugs and hardware
malfunction.

2. The messaging system that peers use to communicate is often unreliable and
asynchronous, meaning that there is no upper bound on the time it takes to deliver
amessage. Intuitively, asynchrony makes agreement harder since it is not possible
anymore to distinguish between a faulty peer and a delayed message.

3. The clocks of peers run at different speeds (a type of asynchrony that is called
processor asynchrony), preventing the reliable use of timeouts.

Note that the term “asynchronous” is is used somewhat inconsistently in the litera-
ture and sometimes refers to a model with an asynchronous messaging system but
synchronous clocks.

1.1.1 Consensus

Many specific variants of the agreement problem (such as the interactive consistency
[26], k-set consensus [16], or leader election [41] and many others [27]) exist. We will
focus on the consensus problem, wherein each peer in a set of peers {Py, ..., P,} starts
with an initial value v € M for an arbitrary fixed set M. At some point during the
execution of the consensus protocol, each peer irrevocably decides on some output
value v; € M. Informally, a protocol that solves the consensus problem must fulfill the
following properties?:

« Agreement: If two peers P; and P; are correct then v; = v;.
o Termination: The protocol terminates in a finite number of steps.

« Validity: If all correct peers have the same input value 9, then all correct peers
decide on v.

Some definitions also include strong validity, which requires that the value that is agreed
upon must have been the initial value of some correct peer [47].

1.1.2 The FLP Impossibility Result

A fundamental theoretical result (often called FLP impossibility for the initials of the
authors) states, informally, that no deterministic protocol can solve the consensus
problem in the asynchronous communication model, even in the presence of only one
crash-fault [28].

ZDifferent variations and names can be found in the literature. We have chosen a definition that
naturally extends to our generalization to sets later on.

1.1. Background 3

While this result initially seems discouraging, the conditions in which FLP impossibility
holds are quite specific and subtle [3]. They have been challenged in a number of ways,
including the following:

« Common coin: Some protocols introduce a shared source of randomness that the
adversary cannot predict or bias. This breaks the assumption that the protocol
must be deterministic. In practice, these protocols are very complex and often use
variants of secret-sharing and weaker forms of Byzantine agreement to implement
the common coin [24, 25, 45].

« Failure oracles: Approaches based on unreliable failure detectors [34] augment
the model with oracles for the detection of faulty nodes. Much care has to be
taken not to violate correctness of the protocol by classifying too many correct
peers as faulty; this is problem is present in early systems such as Rampart [53]
and SecureRing [35] as noted by Castro and Liskov [13, 12]. While the theory of
failure detectors is quite established for the non-Byzantine case, it is not clear
whether they are still useful in the presence of Byzantine faults.

« Partial synchrony: A model where a bound on the message delay or clock shift
exists but is unknown or is known but only holds from an unknown future point
in time is called partial synchrony. The FLP result does not hold in this model
[22].

« Minimal synchrony: The definition of synchrony used by the FLP impossibility
result can be split into three types of synchrony: Processor synchrony, communi-
cation synchrony and and message ordering synchrony. Dolev et al. [20] show
that consensus is still possible if only certain subsets of these three synchrony
assumptions are fulfilled.

1.1.3 Interfaces to Consensus Protocols

Consensus protocols described in theory-oriented work typically are designed to solve
the problem of agreeing on a binary flag or a value from a set that is usually small.
However, this primitive is not what typical applications need. While there are con-
structions that transform consensus on a small sets into efficient consensus on larger
messages [29], we are not aware of any well-known practical implementation of the
simple value-agreement protocols.

Instead, virtually all practical implementations of consensus use the state machine repli-
cation (SMR) approach [56], which by now is a well-established sub-field of distributed
computing. In this framework, peers agree on a sequence of transitions of a state ma-
chine that are triggered by requests from clients. This approach makes it easy to “port”
existing, non-fault tolerant services to a Byzantine fault tolerant implementation [13].

4 Chapter 1. Introduction

For non-Byzantine consensus, the most well-studied practical protocol is Lamport’s
Paxos [38, 37]. Various other solutions with subtle differences have been discovered [61].
Paxos uses a leader to coordinate peers; committing updates requires agreement from a
quorum of the participating peers. Paxos is infamous for its complexity and difficulty,
and some recent efforts [49] seek to provide a more understandable alternative, with
Raft being the most prominent one.

SMR is, however, not well-suited for set union consensus, since the most direct imple-
mentation of set union agreement would reach agreement element-by-element. Consid-
ering that during non-civil periods, that is periods where Byzantine behavior is present,
agreement on a single transition requires all-to-all communication, the communication
complexity for agreement on k set elements would require O(kn?) bits communication.
Since for real-world applications of set union agreement such as electronic voting, k
greatly exceeds n, implementing this with SMR is not efficient.

Rather than seeing SMR as an alternative, our set union consensus construction should
be understood as a complementary approach, that can be combined with SMR in two

ways:

« The set union consensus protocol could be driven by state transitions of the
replicated state machine.

+ The set union consensus protocol could be invoked as a sub-protocol by each of
the replicas.

In both alternatives, the state machines caches requests for insertion of elements from
clients and agrees on the whole set at once.

Since the implementation of SMR is difficult and subtle [6], we leave the integration of
our approach with existing SMR protocols as future work.

1.1.4 Byzantine Consensus

The Byzantine consensus problem [39] is a generalization of the consensus problem
where peers might also exhibit Byzantine faults. A fundamental result is that no Byzan-
tine consensus protocol with n peers can support [n/3] or more Byzantine faults in the
asynchronous model [22].

Early attempts at implementing Byzantine consensus with the state machine approach
are SecureRing [35] and Rampart [53]. These two approaches suffered from sacrificing
correctness for progress guarantees in the presence of asynchrony [13].

Castro and Liskov’s Practical Byzantine Fault Tolerance (PBFT) [13, 12] does not suffer
from this problem. PBFT guarantees progress as long as the message delay does not

1.2. Our contribution 5

grow indefinitely for some fixed growth function®. Similar to Paxos, PBFT uses a leader
to coordinate peers (called replicas in BPFT terminology). When replicas detect that the
leader is faulty, they run a leader-election protocol to appoint a new leader.

In practice the approach taken by BPFT (and several derived protocols) has several
problems [14]: Malicious clients can reduce the throughput of system to zero, and
malicious leaders can slow down the system significantly. Correctness proofs for the
respective protocols and the implementation of state machine replication are notoriously
difficult [6].

Some more recent Byzantine state machine replication protocols such as Q/U [1] or
Zyzzyva [36] have less overhead per request since they optimize for the non-Byzantine
case. This is, however, often comes at the expense of robustness in the presence of
Byzantine faults [14].

1.1.5 Other consensus models

Blockchain technology such as the cryptocurrency Bitcoin [46] has gained immense
popularity over the past few years. The blockchain solves a slight variation of Byzantine
consensus without strong validity [42, 31].

Ripple [57] purports to implement a variation of Byzantine consensus over sets of
financial transactions. The set of peers that participate in the Ripple consensus is not
globally defined, but each peer its own fixed list of peers, called the Unique Node List
(UNL). Each UNL is individually assumed to hold a 80% majority of correct peers. In
Ripple there is no consensus on the entirety of the set, but only a majority vote on
elements that are accepted and applied as valid transactions. This is different from our
model, where peers have to agree on the entirety of a set at once, instead of incrementally
outputting accepted elements.

1.2 Our contribution

The work in this thesis proposes a new interface that lies between one-shot consensus
and state machine replication, namely Byzantine set union consensus, where the value
domain M contains the subsets of some potentially infinite universe U, that is M = 2U.

While from a theoretical perspective an existing protocol could be used for set-valued
consensus, it would not be efficient since elements of M = 2U are typically very large. If
the initial values of the correct peers have a large intersection, redundant communication
would take places when naively transmitting these values. Even if the initial overlap is

3In practice, exponential back-off is used

6 Chapter 1. Introduction

small, later stages of multi-valued consensus would incur large communication costs
due to the redundancy in the set elements that are being transmitted.

Our protocol combines an existing protocol for Byzantine consensus [8] with Eppstein’s
protocol for efficient set reconciliation [23].

We demonstrate the practical applicability of our resulting abstraction by using Byzan-
tine fault-tolerant set union consensus to implement distributed key generation, ballot
collection and cooperative decryption from the Cramer-Gennaro-Schoenmakers re-
mote electronic voting scheme [15] in GNUnet*, a framework for secure peer-to-peer
networking.

1.3 Roadmap

Chapter 2 is a self-contained description of set reconciliation based Eppstein’s protocol
[23] and our implementation of it in GNUnet. Chapter 3 applies set reconciliation
to a simple consensus protocol based on graded broadcast [8] to yield an efficient
protocol for set union consensus. We describe and benchmark our implementation of
this protocol in GNUnet. Chapter 4 discusses the applications of set union consensus in
secure multiparty computation protocols. Chapter 5 concludes and gives an overview
of possible future work.

4https://gnunet.org/

https://gnunet.org/

Chapter 2

Set Reconciliation

The goal of set reconciliation is to identify the differences between two large sets, say S,
and Sp, that are stored on two different machines in a network. A simple but inefficient
solution would be to transmit the smaller of the two sets, and let then receiver compute
and announce the difference. In this chapter, we are concerned with protocols that are
more efficient than this naive approach with respect to the amount of data that needs
to be communicated when the sets S, and S, are large, but their symmetric difference
Sq ® Sp is small.

We will first discuss the theoretical aspects of communication-efficient set reconciliation,
and then discuss our implementation of an existing approach, namely set reconciliation
with invertible Bloom filters [23] it in GNUnet.

2.1 Background and Related Work

An early attempt to efficiently reconcile sets [43] was based on representing sets by their
characteristic polynomial over a finite field. Conceptually, dividing the characteristic
polynomials of two sets cancels out the common set elements, leaving only the set
difference. The characteristic polynomials are transmitted as a sequence of sampling
points, where the number of sampling points is proportional to the size of the symmetric
difference of the sets S, and Sp. The number of sampling points can be approximated
with an upper bound, or increased on the fly should a peer be unable to interpolate a
polynomial.

While theoretically elegant, the protocol is not efficient in practice. The computational
complexity of the polynomial interpolation grows as O(|S, @ Sp|*) and uses rather
expensive arithmetic operations over large finite fields.

A more practical protocol was proposed by Eppstein et al. in 2011 [23]. It is based
on Invertible Bloom Filters (IBFs), a data structure that is related to Bloom filters [10].

8 Chapter 2. Set Reconciliation

An attractive property of this approach is that IBFs are used both to construct an
estimator for the size of the symmetric difference between two sets, as well as for the
the reconciliation itself, which requires this estimate. We are not aware of any publicly
available implementations of efficient set reconciliation, other than ours.

There is a generalization of IBFs to multi-party set reconciliation [44]. Since the approach
is based on network coding and requires trusted intermediaries, it is not applicable to
networks with Byzantine faults.

2.2 High-Level Overview

In this section, we will informally describe the set reconciliation protocol based on
invertible Bloom filters. A formal derivation of the expected overhead and failure
probabilities can be found in the work of Eppstein et al. [23]. Other work derives tighter
bounds by applying the theory of random hypergraphs to invertible Bloom filters [54,
33].

2.2.1 Invertible Bloom Filter

The invertible Bloom filter (IBF) is a probabilistic data structure that encodes updates
(insertions and deletions) to a set in constant space. The set elements affected by updates
are represented by a constant-size key, derived from the element via a hash function.
Under certain conditions, it is possible to “invert” the data structure and thereby extract
some or all updates (consisting of the key and the direction that is either insert or delete)
recorded in it.

Extracting an update is generally only possible if the update was only recorded once
in the IBF. Recording a deletion and an insertion of the same element causes the two
updates to cancel each other out, but storing a deletion or insertion of the same element
twice or more makes this update impossible to decode. Updating an IBF is a commutative
operation.

Since the data structure uses constant space, encoding cannot always succeed. Extract-
ing updates (also called decoding an IBF) is a probabilistic operation that is more likely
to succeed when the IBF is sparse, that is the number of encoded operations (excluding
the operations that canceled each other out) is small. The decoding process can also
be partially successful, if some elements could be extracted but the remaining IBF is
non-empty.

In addition to recording single insertions or deletions, IBFs of the same size can also be
combined with each other. When subtracting IBF;, from IBF,, the resulting structure
IBF. = IBF, — IBF, contains all insertions and deletions from IBF,, and an insertion

2.3. Difference Estimation 9

operation from IBF, is recorded as a deletion and vice versa. Effectively the IBF sub-
traction allows to compute the difference between two sets when each set was encoded

as an IBF containing only insertion operations.

When the symmetric difference between the sets is small enough compared to the size of
the IBFs, the result IBF, of the subtraction can be decoded, since the common elements
encoded in IBF, and IBF;, cancel each other out. This makes it possible to obtain the
elements of the symmetric difference, even when the IBFs that represent the full sets

can not be decoded.

As long as the symmetric difference between the original sets S, and S;, can be approxi-
mated well enough, IBFs can be used for set reconciliation by encoding S, in IBF, and
Sp in IBF},. One of the IBFs is sent over the network, the IBF, = IBF, — IBF;, is computed
and decoded. Should the decoding (partially) fail, the same procedure is repeated with
larger IBFs.

2.3 Difference Estimation

In order to select the size of the IBF appropriately for the set reconciliation protocol, one
needs to estimate the symmetric difference between the sets that are being reconciled.
Eppstein et al. [23] describe a very simple technique, called strata estimation, that
is accurate for small differences. While Eppstein et al. suggest combining the strata
estimator, with a min-wise estimator, which is more accurate for large differences, we

only discuss strata estimators here for simplicity.

The set difference is estimated by having both peers encode their set in a strata estimator.
One of the strata estimators is then sent over to the other peer, which uses the two
strata estimators to estimate the size of the symmetric difference between the sets they
encode.

A strata estimator is an array of fixed-size IBFs. These fixed-size IBFs are called strata
since each of them contains a sample of the whole set, with increased sampling proba-
bility towards inner strata. Similar to how two IBFs can be subtracted, strata estimators
are subtracted by pairwise subtraction of the IBFs they consist of.

With every IBF of the strata estimator that results from the subtraction, a decoding
attempt is made. The number of successfully decoded elements in each stratum allows
an estimate to be made on the set difference.

2.4 Detailed Description

Under the hood, an IBF of size n is an array of n buckets. Each bucket holds three values:

10 Chapter 2. Set Reconciliation

« A signed counter that handles overflow via wrap-around. Recording an insertion
or deletion adds —1 or +1 to the counter respectively. In our implementation, we
use an 8-bit counter.

« An @-sum!, called the keySum, over the keys that identify set the elements that
were recorded in the bucket. We write H(e) for the key derived from the set
element e. In our implementation, we use 64-bit keys.

« An @®-sum, called the keyHashSum, over a the hash h(-) of each key that was
recorded in the bucket. In our implementation, we use 32-bit key hashes.

Encoding an update in an IBF records the update in k different buckets of the IBF. The
indices of buckets that record the update are derived via a k independent hash functions
from the 64-bit key of the element that is subject of the update. We write Pos(x) for the
set of array positions that correspond to the element key x.

Before we describe the decoding process, we introduce some terminology. A bucket
is called a candidate bucket if its counter is —1 or +1, which might indicate that the
keySum field contains the key of an element that was the subject of an update. Candidate
buckets that contain the key of an element that was previously updated are called pure
buckets.

Candidate buckets are not necessarily pure buckets, since a candidate bucket could also
result from, for example, first inserting an element key e; and then deleting e, when
Pos(e;) N Pos(e;) # 0 and Pos(e;) # Pos(ey).

The keyHashSum provides a way to detect if a candidate bucket is not a pure bucket,
namely when h(keySum) # keyHashSum. The probability of classifying an impure bucket
as pure with this method is dependent on the probability of a hash collision. Another
method to check for an impure candidate buckets with index i is to check whether
i ¢ Pos(keySum).

The decoding process then simply searches for buckets that are, with high probability,
pure. When the count field of the bucket is 1, the key decoding procedure reports the
key as “inserted” and exececutes a deletion operation with that key. When the count
field is —1, the key is reported as “deleted” and subsequently an insertion operation is
executed.

With a probability that increases with sparser IBFs, decoding one element will cause one
or more other buckets to become pure, and the decoding can be repeated to yield more
encoded updates. This iteration either ends with an empty, undecodable or looping
IBF. In case of an undecodable IBF, a larger IBF must be used or the reconciliation must
fall back to the naive approach of sending the whole set. A looping IBF is an IBF (not
considered by Eppstein et al. [23]) where the iterated decoding does not terminate. This

IThe @ denotes bit-wise exclusive or.

2.5. Implementation in GNUnet 11

case can be handled by stopping the iteration and reporting the IBF as undecodable
when the number of decoded elements exceeds a threshold.

2.5 Implementation in GNUnet

Set reconciliation in GNUnet is implemented in the Set service. The Set service provides
a generic interface for set operations between two peers; the set operations currently
implemented are the IBF-based set reconciliation described in this chapter and set

intersection based on Bloom filters [59].

In addition to the operation-specific protocols, the following aspects are handled gener-
ically (i.e. independent of the specific remote set operation) in the SET service:

Local set operations Applications need to create sets and perform actions (including

iteration, insertions, deletions) on them locally.

Concurrent modifications While a local set is used in a set operation, the application
may still mutate that set. To allow this without interfering with the set operation
protocols, changes to sets are versioned. A set operation only sees the state of a

set at the time the operation was started.

Lazy copying Some applications building on the SET service, especially the CONSENsUS
service described in the next chapter, manage many local sets that are large
but only differ in a few elements. We optimize for this case by providing a
lazy copy operation, that returns a logical copy of the set without physically
duplicating the whole sets. The same mechanism that handles versioning of sets
for concurrent modification also allows “forks” of sets to be created efficiently. A
more efficient implementation of this data structure could probably be achieved
with functional/persistent data structures for sets [48].

Negotiating remote operations In a remote set operation, the involved peers have
one of two roles: The acceptor, which waits for remote operation requests and
accepts or rejects them, as well as the initiator, which sends the operation request.

2.5.1 GNUnet’s Architecture and SET

GNUnet is composed of various components that run in separate operating system
processes and communicate via message passing. Components that expose an interface
to other components are called services in GNUnet. A subset of the service dependencies

is shown in Figure 2.1.

The complete interface to the SET service is given in the Appendix.

12 Chapter 2. Set Reconciliation

Figure 2.1: Dependencies and dependents of the SET service in GNUnet

scalarproduct

revocation

The SET service uses the CADET service to establish an encrypted and authenticated

communication channel between two peers [52].

Figure 2.1 shows the dependencies between services in GNUnet that involve SET. Cur-
rently the GNU Name System [62] uses the reconciliation protocol in SET for key
revocation. The SECRETSHARING service uses SET as the communication primitive for
distributed threshold key generation and cooperative encryption without a trusted third
party [19, 30].

The main application for SET in this thesis is the CONSENsUS service discussed in the
next chapter.

2.5.2 Optimizations

Our implementation estimates the initial difference between sets only using strata
estimators. We gzip-compress [18] the strata estimator, which is 60KB uncompressed.
The compression is particularly effective for very small and very large sets, due to the
high probability of long runs of zeros or ones in the most sparse or most dense strata

2.6. Evaluation 13

Figure 2.2: CPU system time for the SET service in relation to total set size. No difference
between sets. Average over five executions.

12 T T T T

m

2 1t ’-—/\—'-"""_-_:
[e)

(9]

()

2

] 0.8]
£

o]

& 06 -
@

1]

35

[0} 0.4 |]
e

2

&

e02F]
w

[7p]

0 | | | |
0 2000 4000 6000 8000 10000
total set size
respectively.

We also use a salt when deriving the bucket indices from the element keys. When the
decoding of an IBF fails, the IBF size is doubled and the salt is changed. This prevents
decoding failures in scenarios where keys map to the same bucket indices even modulo
a power of two, where doubling the size of the IBF does not remove the collision. A
further possible optimization that we did not implement would be to only change the
salt and keep the size of the IBF when the decoding process failed after some elements
were already decoded and the remaining IBF is very sparse.

2.6 Evaluation

The results in this section were generated with the gnunet-consensus-profiler tool,
which uses GNUnet’s TESTING library to execute a set union operation via loopback on
one GNUnet peer. Set elements are randomly generated and always 64 bytes large. All
benchmarks were run on a machine with a 24-core 2.30GHz Intel Xeon E5-2630 CPU,
and GNUnet SVN revision 36765.

The sudden jump in processing time that is visible in Figure 2.2 can most likely be
explained by effects of the processor cache. The effect could not be observed when we

ran the experiment under profiling tools.

The logarithmic increase of the traffic with larger sets (see Figure 2.3) can be explained
by the compression of strata estimators. Since the k-th strata samples the set with

14 Chapter 2. Set Reconciliation

Figure 2.3: CADET traffic the SET service in relation to total set size. No difference between sets.
Average over five executions.

10000 T T T T

9000
8000
7000
6000
5000
4000
3000

CADET traffic in bytes

2000
1000 f i

0 1 1 1 1
0 2000 4000 6000 8000 10000

total set size

Figure 2.4: CPU system time for the SET service in relation to symmetric set difference. No
common elements. Average over five executions.

4.5 T T T T
4 b
35
3k
25
2 L
15 F

1+

SET service user CPU time (seconds)

0.5

0 1 1 1
0 2000 4000 6000 8000 10000

symmetric set difference

2.6. Evaluation 15

Figure 2.5: CADET traffic the SET service in relation to symmetric difference. No common
elements. Average over five executions.

1.6x107 T T . .
1.4x107 .
1.2x107
1x107 .
8x10°6 .

6x10° .

CADET traffic in bytes

4x10° .

2x106 1

0 1 1 1 1
0 2000 4000 6000 8000 10000

symmetric set difference

Figure 2.6: Number of times that IBF decoding failed and a larger IBF had to be sent, average
over five executions.

4 T T T T T T T T T

3.5

IBF retries
N

0 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

symmetric set difference

16

Chapter 2. Set Reconciliation

Figure 2.7: Number of times that IBF decoding failed and a larger IBF had to be sent, average

over five executions.

0.8

0.7

0.6

0.5

0.4

IBF retries

0.3

0.2

0.1

10

15

20 25 30

symmetric set difference

35

40

45

50

probability 27, the sparser strata tend to contain long runs of zeros that are easily

compressed.

The data shown in Figure 2.6 suggests that our difference estimator tends to underesti-

mate the difference for larger symmetric differences. Figure 2.7 shows that for smaller

differences, the number of retries is lower. The estimation could be improved by intro-

ducing a correction factor or following the suggestion by Eppstein et al. and combine

strata estimation with MinWise difference estimators [40], which are more accurate for

larger differences but less accurate for smaller ones.

17

Chapter 3

Set Union Byzantine Consensus

In this chapter we combine the efficient set reconciliation described in the previous
chapter with an existing protocol for Byzantine consensus, namely simple gradecast
consensus [8]!. We first explain the assumptions about our communication and ad-
versary model, give a definition of set union consensus, describe the simple gradecast
consensus and extend it to sets. We will furthermore describe our implementation of

this protocol in GNUnet and evaluate its performance.

3.1 System Model

We assume a computationally unbounded adversary that can corrupt at most t = [n/3]+
1 peers. The adversary is static, i.e. the set of corrupted peers is fixed before the protocol
starts, but this set is not available to the correct peers. The actual number of faulty
peers is denoted by f, with f < t.

Peers communicate over pairwise channels that are authenticated. Message delivery
is reliable (i.e. messages arrive uncorrupted and in the right order) but the receipt of
messages may be delayed. We make the same assumption as Castro and Liskov [13,
12] about this delay, namely that it does not grow faster than some function (usually
f(t) = 2") of wall clock time.

3.1.1 An argument against full asynchrony

In the literature, the asynchronous model is often assumed to be the only one that
matches real distributed systems, sometimes “distributed” is even used as a synonym

1Ben-Or called the algorithm ByzConsensus in “Simple Gradecast Based Algorithms”. Since Gradecast
was originally discovered in the context of a more complex protocol for fully asynchronous consensus
[25], the name “simple gradecast consensus” seems appropriate.

18 Chapter 3. Set Union Byzantine Consensus

for asynchronous [34].

We argue that this view is rather restrictive. On the one hand, protocols that are used in
practice (such as Paxos and BPFT) are often described as working in the asynchronous
model, but they make synchrony assumptions for lifeness, and are strictly speaking
partially synchronous. On the other hand, we are not aware of any truly asynchronous
consensus protocol that can claim to be practical. Some protocols provide rather strong
guarantees on both correctness and lifeness, the expected number of rounds is usually
constant [45]. Some protocols have simplicity as a goal [45], but are still not practical;
they shift complexity to other building blocks (such as a common coin oracle) that are
assumed to be available, but difficult to implement in practice. Implementing a common
coin oracle resilient against an active adversary is non-trivial and usually required extra
assumptions such as a trusted dealer in the startup phase [11] or shared memory [4].

3.2 Simple Gradecast Consensus

The simple gradecast consensus [8] builds a consensus protocol by composing execu-
tions of a weakly broadcast protocol, namely gradecast [8, 25]. The resulting determin-
istic protocol has message complexity O(f - n?). The asymptotic message complexity is
not optimal, but the algorithm is simple and does not make any unrealistic assumptions
about the system model.

3.2.1 Gradecast

A graded broadcast is a communication protocol where a leader P; broadcasts a mes-
sage m among a fixed set P = {Py, ..., P,} of peers. For notational convenience, we
assume that P; € P. In contrast to an unreliable broadcast, the graded broadcast pro-
vides certain correctness properties to the receivers, even if the leader is exhibiting
Byzantine faults.

Specifically, receiver P; obtains not only a message m; but also a confidence value
¢; € {0, 1, 2} that “grades” the correctness of the broadcast.

The following correctness properties must hold:
1. If ¢; > 1 then m; = m; for correct P; and P;
2. If Py is correct, then ¢; = 2 and m; = m for correct P;.
3. |lej = ¢j| < 1for correct P; and P;.

Informally speaking, when a correct peer P; receives a graded broadcast with confidence
2, it can deduct that all other peers received the same message, but some other peers
might have only received it with a confidence of 1.

3.2. Simple Gradecast Consensus 19

Receiving a graded broadcast with confidence 1 also guarantees that all other correct
peers received the same message. However it indicates that the leader behaved incor-
rectly. No assumption can be made about the confidence of other peers.

Receiving a graded broadcast with confidence 0 indicates that the leader behaved incor-
rectly and, crucially, that all other correct peers know that the leader behaved incorrectly.

These are the communication steps for peer P;:
1. LEAD: If i = L then send the input value v to Py, ..., Pp,.
2. ECHO: Send the value o received in LEAD to Py, ..., P,.

3. CONFIRM: If a common value Z was received at least n — t times in round ECHO,
send Z to Py, . .., P,. Otherwise, send nothing.

The grading is done with the following rules. With L we denote as special value that
indicates the absence of a meaningful value. The output of the grading is a tuple
containing the output value and the confidence.

« If some X was received at least n — ¢ times in CONFIRM, output (X, 2).
« Otherwise, if some X was received in CONFIRM at least ¢ + 1 times, output (X, 1).
+ Otherwise, output (L, 0)

A proof that the above protocol satisfies the three gradecast properties based on a simple
counting argument is given by Feldman et al. [25]. We also give a proof sketch for the
set-valued gradecast protocol in section 3.3.3.

3.2.2 Consensus

The gradecast can be used to implement a consensus protocol [8].

Each peer stores a list of blacklisted peers. Blacklisted peers are excluded from the
protocol; their messages are ignored. In the simple gradecast consensus protocol, peers
corrupted by the adversary are forced to either expose themselves as faulty (and conse-
quently be excluded) by gradecasting a value with low confidence, or follow the protocol
and allow all peers to reach agreement.

The protocol consists of ¢ + 1 super-rounds. Each peer stores in addition to the blacklist
a candidate value that is set to the peer’s initial value before the first round. In each
super-round, each peer gradecasts their candidate value. Peers that gradecast with a
confidence less than 2 are put in the blacklist. Recall that different correct peers might
receive a gradecast with different confidence, but the difference between confidences
is at most 1; thus peers do not necessarily agree on the blacklist. At the end of each
super-round, peers change their candidate value to the value that was received most

20 Chapter 3. Set Union Byzantine Consensus

often from gradecasts with a confidence of as least 1. After the last super-round, the
peers commiit to their current candidate value.

A full proof of the correctness of simple gradecast consensus was given by Ben-Or [8].
The protocol described in that paper additionally uses early stopping [21]. We do not
include early stopping because it would make the implementation more complex.

If the candidate value that was determined after the last super-round did not receive a
majority of at least 2¢ + 1 or the blacklist has more than ¢ entries, either more than ¢
faults happened or, in the partially synchronous model, correct peers did not receive a
message within the designated round due to the delayed delivery.

3.3 Set Union Consensus

We now show how the simple gradecast consensus can be combined with set reconcili-
ation to yield an efficient protocol for exact agreement on sets.

The basic idea is to replace sending single values with a set reconciliation. The grading
must be lifted from single values to sets.

3.3.1 Definition

We now give a definition of set union consensus that is motivated by practical applica-
tions to secure multiparty computation protocols such as electronic voting, which are
discussed in more detail in the next chapter.

Consider a set of n peers P = {Py, ..., P,}. Fix some (possibly infinite) universe M of set
elements that can be represented by a bit string. Each peer P; has an initial set Sgo) CM.

Let R(s) : 2M — 2M be a function that canonicalizes subsets of M by replacing multiple
conflicting elements with the lexically smallest element in the conflict set and removes
invalid elements. What is considered conflicting or invalid is application-specific.

During the execution of the set union consensus protocol, after finite time each peer P;
irrevocably commits to a set S; such that

1. For any pair of correct peers P;, P; it holds that S; = §;.
2. If P; is correctand e € S? thene € S;.
3. The set S; is canonical, that is S; = R(S;).

For certain applications, the canonicalization function enables to set an upper bound on
the number of elements that can simultaneously be in a set. For example in electronic

3.3. Set Union Consensus 21

voting, canonicalization would remove malformed votes and only keep one vote for two
different (encrypted) votes submitted by the same voter identity.

3.3.2 Set-Valued Gradecast

The decision of the CONFIRM step and the grading can be lifted to sets by considering
elements separately and then choosing the lowest grading. A problem with this direct
lifting is that “send nothing” in the CONFIRM step cannot be represented directly
anymore. We resolve that by marking the whole set that contains a minority element
as “contested”.

We introduce some notation first. Let y* (i, R, x) and y~ (i, R, x) be the number of peers
that included / excluded the element x in the set reconciled with P; in round R.

The gradecast protocol then proceeds as follows:

1. LEAD: If i = L then send the input set to Py, ..., Py.

2. ECHO: Send the set received in LEAD to Py, ..., P,.

3. CONFIRM:
« Let x € Zyg; if x* (i, ECHO,x) > n—t.
o Letx € Zpp if y*(i, ECHO,x) <n—tor y (i, ECHO,x) <n—t
« If Z1nin = 0, send (NONCONTESTED, Z,45) to Py, ..., Pp.
+ Otherwise send (CONTESTED, Zp,4;) to Py, ..., P,.

Note that sending a set can be done efficiently with set reconciliation, where the receiv-
ing party reconciles with a set that, in an execution without Byzantine faults, would

match the sender’s set.
The following rules are applied for grading:

« Let g, be the number of (NONCONTESTED, _) messages from the CONFIRM
round.

o Letx € X iff y*(i, CONFIRM,x) >t + 1
o If gyc > n —t then output (X, 2)
+ Otherwise, if g, > t + 1 then output (X, 1).

+ Otherwise, output (L, 0)

22 Chapter 3. Set Union Byzantine Consensus

3.3.3 Correctness Sketch
We now show that this protocol satisfies the three gradecast properties. The proof is
modeled after the argument given by Feldman et al. [25, 24].

« Lemma 1: If two correct peers confirm (NONCONTESTED, A) and (NONCONTESTED, B)
then A = B.

- Proof via contradiction / counting argument
— Assume w.lo.g. x € Aand x ¢ B.
— Atleast n — t peers must have echoed a set that includes x to the first peer.
— Suppose f of these peers were faulty, then n — t — f good peers included x
— Thatleaves (n — f) — (n —t — f) = t good peers that could have excluded x
— Thus only 2t could have echoed a set to the second peer that excludes x.
— But 2t < n — t, thus correct peers can’t confirm (NoONCONTESTED, B)

« Property 1: If ¢;,¢; > 1 then m; = m; for correct P; and P;
— Directly follows from grading rules and Lemma 1

« Property 2: If Py is correct, then ¢; = 2 and m] = m for correct P;.
— All good players ECHO and CONFIRM the same set

« Property 3: |c; — ¢j| < 1 for correct P; and P;.

— If a correct player sets ¢; = 2, then at least 2t + 1 players must have sent
(NoNCONTESTED, _), and at least t + 1 of them most have been good. Thus
good players decide at least ¢; > 1

3.3.4 Set-valued simple gradecast consensus

The extension of the simple gradecast consensus protocol to sets is very close to the
original protocol. Instead of a candidate value, peers now have a candidate set.

To guarantee the second correctness property for set union consensus, namely that an
element that was in the input set of one correct peer will be in the output set of all
correct peers, every peer does a set reconciliation with each other peer. New elements
learned during these reconciliation are added to the peers’ candidate sets.

The rest of the protocol proceeds just like the single-value case, except that the grade-
casts are replaced with set gradecasts, and the new candidate set is obtained by only
including elements that were in a majority of set gradecasts with confidence > 0.

3.4. Implementation in GNUnet 23

3.4 Implementation in GNUnet

We implemented the set union consensus protocol in the ConseENsUS service of GNUnet.
ConNsENsUS builds on the SET service described in the previous chapter.

3.4.1 API

To request the execution of a set union consensus, peers need to specify the following
parameters:

« The list of other peers that participate

« A 512-bit application ID, which allows multiple instances of the protocol to be
executed concurrently without interference.

 The desired start and end time of the protocol execution.

These parameters are hashed into a global identifier that uniquely identifies the consen-

sus session.

The API client then gives the list of set elements that should be used in the consensus
protocol. The client is notified by a callback when the consensus succeeds or an error
occurs.

3.4.2 Space optimizations

To keep the description of the set union consensus protocol in the previous section suc-
cinct, we assumed that peers transmit sets using the reconciliation protocol, effectively

reconciling the set is being sent with every peer’s current set, resulting in a new set.

Our implementation adds some optimizations to make the protocol more practical. Since
the new sets usually differ in only a few elements, we do not create new sets. Instead,
in the leader round we just store the set of differences with a reference to the original
set. In the ECHO and CONFIRM round, we also reconcile with respect to the set we
received from the leader and not a peer’s current set.

In the ECHO round, we only store one set and annotate each element with that indi-
cates which peer included or excluded that set element. This allows a rather efficient
computation of the set and contestation flag that is used in the CONFIRM round.

24 Chapter 3. Set Union Byzantine Consensus

3.4.3 Evaluation
Methodology

We implemented a profiler for the CONSENsUSs service using GNUnet’s TESTBED frame-
work [60]. The profiler emulates a netwok of GNUnet peers connected in a clique.

The CoNSENSUS service can be configured to exhibit the following types of adversarial
behavior:

o SpamAlways: With this behavior enabled, a peer adds a constant number of
additional elements in every reconciliation.

« SpamLeader: This behavior is like SpamAlways, except that additional elements
are only added in reconciliations where the peer acts as a leader.

o SpamEcho: Likewise, elements are only inserted in echo rounds.

« Idle: With this behavior enabled, peers do not participate actively in the protocol,
which amounts to a crash fault from the start of the protocol. This type of behavior
is not interesting for the evaluation, but used to test the implementation with
regards to timeouts and majority counting.

e

For the Spam-* behaviors, two different variations are implemented. One of them (
replace”) always generates new elements for every reconciliation. This is not typical
for real applications (since the number of stuffable elements would be limited by set
canonicalization), but shows the performance impact in the worst case. The other
variation (“*-noreplace”) reuses the same set of additional elements for all reconciliations,

which is more realistic for most cases.

We did not implement adversarial behaviour where elements are elided, since the re-
sulting traffic is the same as for additional elements, and memory usage would only be

reduced.

The traffic consumption was measured using the statistics that the CADET service pro-
vides. Processor time was measured using GNUnet’s resource reporting functionality,
which uses the wait3 system call for that purpose. The peak heap memory usage was
measured with Valgrind’s Massif tool?.

All benchmarks were run on a machine with a 24-core 2.30GHz Intel Xeon E5-2630 CPU,
and GNUnet SVN revision 36765.

All peers in our experiment start with the same set of elements; different sets would
only affect the all-to-all union phase of the protocol which only does pairwise set

reconciliation.

thtp://valgrind.org/docs/manual/ms-manual.html

http://valgrind.org/docs/manual/ms-manual.html

3.4. Implementation in GNUnet 25

Figure 3.1: Cadet traffic per peer for 100 elements and only correct peers. Average over five
executions.

4)(].06 T T T T T T
3.5x106 - i
0 3x10° | .
g
) 6
c 2.5x10° 7]
.U 6
% 2x106 -
i 1.5x106 .
[a)
S
1x106 - .
500000 (- .
0 | | | | |
2 4 6 8 10 12 14 16
number of peers
Results

As expected, traffic increases cubically with the number of peers when no malicious
peers are present (Figure 3.1). Most of the CPU time (Figure 3.3) is taken up by CADET,
which uses expensive cryptographic operations [52]. Since we ran the experiments on
a multicore machine, the total latency follows the same pattern as the traffic.

Note that even though our implementation falls back to synchronous rounds when they
do not received an expected reconciliation after a timeout, in the non-malicious case
the consensus can stop early and does not have to wait for round timeouts (see Figure
3.2).

The number of additional elements that occured during set reconciliations is shown in
Figure 3.6. The number of stuffed elements for the “SpamEcho” behavior is larger than
for “SpamLead”, since multiple ECHO rounds are executed for one LEAD round, and
the number of stuffed elements is fixed per reconciliation. When malicious peers add
extra elements during the LEAD round, the effect of that is amplified, since all correct
receivers have to re-distribute the additional elements in the ECHO/CONFIRM round.
Even though adding elements in the LEAD round requires the least bandwidth from the
leader the effect on traffic and latency is the largest (see Figures 3.4 and 3.5).

Finally, when the number of stuffed elements is limited (“SpamAll-noreplace” in Figs.
3.4, 3.5, 3.6), to a fixed set (instead of stuffing fresh elements in each reconciliation, as
with the “SpamEcho-noreplace” and “SpamEcho-replace” behaviors), the effect on the

performance is very limited.

26 Chapter 3. Set Union Byzantine Consensus

Figure 3.2: Runtime of consensus for 100 elements of 64 bytes and only correct peers. Average
over five executions.

220 T T T T T T
200 + -
L 180 | -
C
S 160 | -
(0]
(]
c 140 | -
g 120 .
(0]
% 100 -
2 8ot -
v
S 60t -
e
Q 40 - 1
20 | -
0 1 1 1 1 1 1

2 4 6 8 10 12 14 16
number of peers

Figure 3.3: CPU of consensus for 100 elements of 64 bytes and only correct peers. Average over
five executions.

90 T T T T T L
cadet service

80 set service = f = |
—~ 70 F .
2]
2
o 60 1
(9]
(O]
)
o S0 F .
£
40 |+ 1
o)
o
© 30+]
(O]
%]
S5 20+ |

10 .

0

2 4 6 8 10 12 14 16

number of peers

3.4. Implementation in GNUnet 27

Figure 3.4: Cadet traffic for consensus on 100 elements of 64 bytes and one malicious peer with
the indicated mode. Average over five executions.

600000 - ; ; . :
SpamEcho-replace
SpamlLead-replace = = »
500000 - SpamAll-noreplace X |
n
g
> 400000
o]
£
L
£ 300000
©
5
|_
w
Q 200000
<
o
100000
0 X X X X X X
0 10 20 30 40 50 60 70

number of stuffed elements per reconciliation

Figure 3.5: Latency for consensus on 100 elements of 64 bytes and one malicious peer with the
indicated mode. Average over five executions.

110 T T T T

T T
SpamEcho-replace
1001 SpamLead-replace = = = ~
SpamAll-noreplace . -

90 F . -
80
2]
2
S 70
(9]
% 60
£
> 50
e
g 40
©
30
20
10
O 1 1 1 1 1 1
0 10 20 30 40 50 60 70

number of stuffed elements per reconciliation

28 Chapter 3. Set Union Byzantine Consensus

Figure 3.6: Total number of extra elements received by each peer for consensus on 100 elements
of 64 bytes and one malicious peer with the indicated mode. Average over five executions.

25000 ; . , : : 1
SpamEcho-replace
SpamLead-replace = = =
SpamAll-noreplace «+vi: .
20000 Lo
2
c
2
S 15000 - |
o] .
o
& 10000 | |
£
8
5000 - i
0 _—= 1 -~ -I- - | | . |
0 10 20 30 40 50 60 70

number of stuffed elements per reconciliation
3.5 Optimizations and Future Work

We now discuss possible future work, some of which concerns limitations of the current

implementation.

3.5.1 Fast Dissemination

Recall that in order to be included in the final set, an element must be sent to at least t +1
peers, so that at least one correct peer will receive the element. In applications of set
union consensus such as electronic voting, the effort to the client should be minimized,
and it is thus in practice elements will be sent only to ¢ + 1 peers, which leads to large
initial symmetric differences between peers.

A possible optimization would be to add another dissemination round that only requires
nlog, n reconciliations to achieve perfect element distribution when only correct peers
are present. The n? reconciliations that follow will consequently be more efficient, since
no difference has to be reconciled when all peers are correct. In the presence of faulty
peers, the optimization adds more overhead through the additional dissemination round.

More concretely, in the additional dissemination round the peers reconcile with their
2¢-th neighbour (for some arbitrary, fixed order on the peers) in the £-th subround of
the dissemination round. After [log,] of these subrounds, the elements are perfectly
distributed as long as every peer passed along their current set correctly.

3.5. Optimizations and Future Work 29

3.5.2 Extension to Partial Synchrony

The prototype used in the evaluation only works in the synchronous model. It would
be trivial to extend it to the partially synchronous model with synchronous clocks by
using the same construction as BPFT [13], namely retrying the protocol with larger

round timeouts (usually doubled on each retry) when it did not succeed.

It might be worthwhile to further investigate the Byzantine round synchronization
protocols discovered independently by Attya and Dolev [5] as well as Dwork, Lynch
and Stockmeyer [22]. Running a Byzantine clock synchronization protocol interleaved
with consensus protocol might lead to a protocol with lower latency, since the timeouts
are dynamically adjusted instead of being increased for each failed protocol run.

3.5.3 Set Canonicalization

A faulty leader in can add or remove elements from the sets, thus increasing the set
difference and making the reconciliation less efficient.

An upper bound on the number of added elements can be obtained by using an ap-
propriate canonicalization function. The prototype used for the evaluation does not
yet support canonicalization functions, but our evaluation showed that it is critical for
performance to bound the extra elements added by the adversary particularly in the
leader round.

We assume that the adversary has a fixed number k of elements that are known to the
adversary, do not belong to any initial set of a correct peer and would not be removed

by the canonicalization function.

It is possible to limit the number of elements that a peer corrupted by the adversary can
elide when that peer is the current gradecast leader.

An additional simple gradecast consensus is added before after the all-to-all round, in
which the peers agree on a vector that contains the size of every peer’s candidate set.

The | n/2]-smallest element of that vector is then used as a threshold for the size of the
leader set, leader sets smaller than the threshold are ignored and not echoed by honest

peers.

The adversary could distribute the k stuffable elements so that every excluded leader is
a correct peer. The validity property is still preserved, since all non-stuffable elements
were distributed in the all-to-all round, and are thus guaranteed to end up in the output

set, since they will have at least a [n/2] + 1 majority.

It is not possible to guarantee k as an upper bound on the set difference for a leader,
This will significantly reduce wasted traffic and memory usage that is amplified by the

30 Chapter 3. Set Union Byzantine Consensus

echoing of the leader’s set.

During echo / confirm, the adversary could still cause more wasted traffic / storage, but
that is without the amplification factor caused by the re-broadcasting.

3.5.4 Persistent Data Structures

Both the SET and CoNSENsUS service have to store many variations of the same set when
faulty peers elide or add elements. While the SET service API already supports lazy
copying, the underlying implementation is inefficient and based on a log of changes per
set element with an associated version number. It might be possible to reduce memory
usage and increase performance of the set element storage by using data structures that
are more well suited, such as the persistent data structures described by Okasaki [48].

31

Chapter 4

Application to Secure Multiparty
Computation

Secure Multiparty Computation (SMC) is an area of cryptography that is concerned
with protocols that allow a group of peers P = Py, ..., P, to jointly compute a function
y = f(x1,...,x,) over private input values xi, ..., x, without using a trusted third
party [32]. Each peer P; contributes its own input value x;, and during the course of
the SMC protocol only learns the output y, but no information about the other peers’
input values. Practical applications of SMC include electronic voting, secure auctions

and privacy-preserving data mining.

SMC protocols assume a threshold ¢t < n on the amount of peers controlled by an adver-
sary, which is typically either honest-but-curious (i.e. tries to learn as much information
as possible but follows the protocol) or actively malicious. In the actively malicious case,
the common definition of SMC mandates the availability of Byzantine consensus as a

building block [55].1

In practical applications, the inputs typically consist of sets of values that were given to
the peers P by external clients: In electronic voting protocols the peers need to agree
on the set of votes; with secure auctions, the peers need to agree on bids, and so on.

In this chapter, we focus on one practical problem, namely electronic voting. We show
how set-valued Byzantine consensus is used at multiple stages of the protocol, and
discuss how our approach differs from existing solutions found in the literature. The
scheme was previously implemented in GNUnet without Byzantine agreement [19].

1 An attempt has been made to relax the definition of SMC to alleviate this requirement, resulting in a
weaker definition that includes non-unanimous aborts as a possible result [32]. This definition is mainly
useful in scenarios without an honest 2/3 majority, where Byzantine consensus is not possible in the
asynchronous model [22].

32 Chapter 4. Application to Secure Multiparty Computation

Figure 4.1: Relation of different SMC protocols and communication primitives in GNUnet.
Dashed arrows indicate optional dependencies.

distributed key generation cooperative decryption

bulletin board

set union consensus

set reconciliation

4.1 Bulletin Board for Electronic Voting

The Bulletin Board is communication abstraction commonly used for electronic voting
[7, 51]. It is a stateful, append only channel that participants of the election can post
messages to. Participants of the election identify themselves with a public signing key
and must sign all messages that they post to the bulletin board. The posted messages
are publicly available to facilitate independent auditing of elections.

Existing work on electronic voting either does not provide a Byzantine fault-tolerant
bulletin board in the first place [2] and instead relies on trusted third parties or suggests
the use of state machine replication [15].

Some of the bulletin board protocols surveyed by Peters [51] additionally use threshold
signatures to certify to the voter that the vote was accepted by a sufficiently large
fractions of the peers that jointly provide the bulletin board service. With a naive
approach, the message that certifies acceptance by t peers is the concatenation of the
peers’ individual signatures and thus O(t) bits large. Threshold signature schemes allow
smaller signatures, but at the expense of a more complex protocol. Since the number
of peers is typically not very large, a linear growth in ¢ is acceptable makes the simple
scheme sufficient for practical implementations.

4.2. Distributed Threshold Key Generation and Cooperative Decryption 33

It is easy to implement a variant of the bulletin board with set union consensus. In
contrast to traditional bulletin boards, this variant has phases, where posted messages
are only visible after the group of peers have agreed that a phase is concluded. The
concept of phases maps well to the requirements of existing voting protocols. Every
phase is implemented with one set union consensus execution. To guarantee that a
message is posted to the bulletin board, it must be sent to at least one correct peer from
the group of peers that jointly implements the bulletin board.

4.2 Distributed Threshold Key Generation and Cooperative
Decryption

Voting schemes as well as other secure multiparty computation protocols often rely on
threshold cryptography [17]. The basic intuition behind threshold cryptography is that
some operations (such as signing a message or decrypting a ciphertext) should only
succeed if a large enough fraction of some group of peers agrees that the operation
should be executed.

Typically the public key of the threshold cryptosystem is publicly known, while the
private key is not known by any entity but reconstructible from the shares that are
distributed among the participants, for example with Shamir’s secret sharing scheme
[58].

Generating this shared secret key either requires a trusted third party, (which is undesir-
able for most practical applications since it creates a single point of failure) or a protocol
for distributed key generation [30, 50]. Typical distributed key generation protocols
require the peers to agree on a number of pre-shares, where every peer contributes a
number of pre-shares. After the pre-shares are agreed upon, they are re-combined in
different ways by each peer respectively, yielding the shares of the private threshold
key.

In the key generation protocol used for the Cramer et al. voting scheme, the number
of pre-shares that need to be agreed upon is quadratic in the number of peers. Every
peer needs to know every pre-share, even if it is not required by the individual peer
for reconstructing the share, since the pre-shares are usually accompanied by non-
interactive proofs of correctness.

Thus the number of values that needs to be agreed upon is quadratic in the number of
peers, which makes the use of set union consensus attractive compared to individual
agreement.

Even though the pre-shares can be checked for correctness, Byzantine consensus on the
set of shares is still necessary for the case when a malicious peer submits a incorrect

34 Chapter 4. Application to Secure Multiparty Computation

share to only some peers. Without Byzantine consensus, different correct recipients
might exclude different peers, resulting in inconsistent shares.

Similarly, when a message that was encrypted with the threshold public key shall
be decryped, every peer contributes a partial decryption with a proof of correctness.
While the set of partial decryptions is typically linear in the number of peers, set union
consensus is still a reasonable choice here, the whole system only needs one agreement
primitive.

4.3 Electronic Voting with Homomorphic Encryption

While various conceptually different voting schemes use homomorphic encryption, we
look as the scheme by Cramer et al. [15] as a modern and practical representative.
A fundamental mechanism of the voting scheme is that a set of voting authorities
Ay, ..., A, establish a threshold key pair that allows any entity that knows the public
part of the key to encrypt a message that can only be decrypted when a threshold of
the voting authorities cooperate. The homomorphism in the cryptosystem enables the
computation of an encrypted tally with only the ciphertext of the submitted votes. Votes
represent a choice of one candidate from a list of candidate options. The validity of
encrypted votes is ensured by equipping them with a non-interactive zero-knowledge
proof of their validity.

It is assumed that the adversary is not able to corrupt more than 1/3 of the authorities.
The voting process itself is then facilitated by all voters encrypting their vote and
submitting it to the authorities.

The encrypted tally is computed by every authority and then cooperatively decrypted
by the authorities and published. Since correct authorities will only agree to decrypt
the final tally and not individual votes, the anonymity of the voter is preserved.

For the voting scheme to work correctly, all correct peers must agree on exactly the same
set of ballots before the cooperative decryption process starts, otherwise the decryption
of the tally will fail.

35

Chapter 5

Conclusion and Future Work

We have shown that set union consensus is a versatile primitive that can be used as the
sole communication primitive for different secure multiparty computation protocols.
We have also given performance characteristics of our implementation.

In future work, we would like to apply the idea of set union consensus to Byzantine
consensus protocols that are more efficient than the simple gradecast consensus. We
also would like to give a comparison between our implementation and a concrete
implementation of a bulletin board for remote electronic voting that uses replicated
state machines. Promising candidates for comparison that have a publicly available and
actively maintained implementation are BFT-SMaRt [9] and ARCHISTAR !.

1http://bft-smart.github.io/library/,https://github.com/Archistar/archistar-core

http://bft-smart.github.io/library/
https://github.com/Archistar/archistar-core

36

Chapter 5. Conclusion and Future Work

37

Appendix A

Appendix

In the following, we give the documented interface for the C programming language to
GNUnet’s SET and CONSENSUS service.

A.1 Set API Reference

/ k%
* Opaque handle to a set.
*/

struct GNUNET_SET_Handle;

VAT
* Opaque handle to a set operation request from another peer.
*/

struct GNUNET_SET_Request;

/ k%
* Opaque handle to a listen operation.
*/

struct GNUNET_SET_ListenHandle;

VAT
* Opaque handle to a set operation.
*/

struct GNUNET_SET_OperationHandle;

VAT

38 Appendix A. Appendix

* The operation that a set set supports.
*/
enum GNUNET_SET_OperationType
{
VAT
* A purely local set that does not support any operation.
*/
GNUNET_SET_OPERATION_NONE,

/ *x
* Set intersection, only return elements that are in both sets.
*/

GNUNET_SET_OPERATION_INTERSECTION,

/ k%
x Set union, return all elements that are in at least one of the sets.
x/
GNUNET_SET_OPERATION_UNION
}

/**
* Status for the result callback
*/
enum GNUNET_SET_Status
{
VAT
* Everything went ok, we are transmitting an element of the
* result (in set, or to be removed from set, depending on
x the ‘enum GNUNET_SET_ResultMode‘).

* Only applies to
* #GNUNET_SET_RESULT_FULL,
* #GNUNET_SET_RESULT_ADDED,
* #GNUNET_SET_RESULT_REMOVED,
*/
GNUNET_SET_STATUS_OK,

VAT
* Element should be added to the result set
* of the local peer, i.e. the local peer is

A.1. Set API Reference

* missing an element.

*

* Only applies to #GNUNET_SET_RESULT_SYMMETRIC
*/
GNUNET_SET_STATUS_ADD_LOCAL,

/ k%
x Element should be added to the result set
* of the remove peer, i.e. the remote peer is
* missing an element.
*
* Only applies to #GNUNET_SET_RESULT_SYMMETRIC
*/

GNUNET_SET_STATUS_ADD_REMOTE,

/ k%
* The other peer refused to to the operation with us,
* or something went wrong.
*/

GNUNET_SET_STATUS_FAILURE,

/ **
* Success, all elements have been returned (but the other peer
* might still be receiving some from us, so we are not done). Only
* used during UNION operation.
*/
GNUNET_SET_STATUS_HALF_DONE,

/ k%
x Success, all elements have been sent (and received).
x/
GNUNET_SET_STATUS_DONE
};

VAT

* The way results are given to the client.
*/

enum GNUNET_SET_ResultMode

{
/ **

40 Appendix A. Appendix

/

S

{

} .

x Client gets every element in the resulting set.
*
* Only supported for set intersection.
*/
GNUNET_SET_RESULT_FULL,

VAT
x Client gets notified of the required changes
* for both the local and the remote set.
*
* Only supported for set
*/
GNUNET_SET_RESULT_SYMMETRIC,

/ k%
* Client gets only elements that have been removed from the set.
*
* Only supported for set intersection.
*/
GNUNET_SET_RESULT_REMOVED,

/ **
* Client gets only elements that have been removed from the set.
*
* Only supported for set union.
*/
GNUNET_SET_RESULT_ADDED

’

k.
* Element stored in a set.
*/

truct GNUNET_SET_Element

VAT
* Number of bytes in the buffer pointed to by data.
*/

uintl6_t size;

/ **

A.1. Set API Reference 41

* Application-specific element type.
*/
uintlé_t element_type;

/ k%
x Actual data of the element
*/
const void xdata;
};
/%

* Continuation used for some of the set operations
*
* @param cls closure
*/
typedef void (*xGNUNET_SET_Continuation) (void xcls);

/ *x

*

Callback for set operation results. Called for each element
* in the result set.

* @param cls closure
@param element a result element, only valid if status is #GNUNET_SET_STATUS_OK
* @param status see ‘enum GNUNET_SET_Status’
*/
typedef void (*xGNUNET_SET_ResultIterator) (void x*cls,
const struct GNUNET_SET_Element *xelement,
enum GNUNET_SET_Status status);

*

/**

Iterator for set elements.

*

*

@param cls closure
* @param element the current element, NULL if all elements have been
* iterated over
* @return #GNUNET_YES to continue iterating, #GNUNET_NO to stop.
*/
typedef int (*GNUNET_SET_ElementIterator) (void *cls,
const struct GNUNET_SET_Element xelement);

42 Appendix A. Appendix

/ k%
* Called when another peer wants to do a set operation with the
* local peer. If a listen error occurs, the @a request is NULL.
*
* @param cls closure
* @param other_peer the other peer
* @param context_msg message with application specific information from

* the other peer

* @param request request from the other peer (never NULL), use GNUNET_SET_accept()
* to accept it, otherwise the request will be refused

* Note that we can’t just return value from the listen callback,

* as it is also necessary to specify the set we want to do the

* operation with, whith sometimes can be derived from the context

* message. It’s necessary to specify the timeout.

*/

typedef void

(xGNUNET_SET_ListenCallback) (void *cls,
const struct GNUNET_PeerIdentity *other_peer,
const struct GNUNET_MessageHeader xcontext_msg,
struct GNUNET_SET_Request *request);

typedef void
(*GNUNET_SET_CopyReadyCallback) (void *cls,
struct GNUNET_SET_Handle xcopy);

/ **
* Create an empty set, supporting the specified operation.
*
* @param cfg configuration to use for connecting to the
* set service
* @param op operation supported by the set

* Note that the operation has to be specified
* beforehand, as certain set operations need to maintain
* data structures spefific to the operation

* @return a handle to the set
*/

A.1. Set API Reference 43

struct GNUNET_SET_Handle *
GNUNET_SET_create (const struct GNUNET_CONFIGURATION_Handle x*cfg,
enum GNUNET_SET_OperationType op);

VAT
* Add an element to the given set.
* After the element has been added (in the sense of being
* transmitted to the set service), @a cont will be called.
* Calls to #GNUNET_SET_add_element can be queued

* @param set set to add element to
* @param element element to add to the set
* @param cont continuation called after the element has been added
* @param cont_cls closure for @a cont
*x @return #GNUNET_OK on success, #GNUNET_SYSERR if the
* set is invalid (e.g. the set service crashed)
*/
int
GNUNET_SET_add_element (struct GNUNET_SET_Handle xset,
const struct GNUNET_SET_Element *element,
GNUNET_SET_Continuation cont,
void xcont_cls);

YETS
* Remove an element to the given set.
x After the element has been removed (in the sense of the
* request being transmitted to the set service), cont will be called.
* Calls to remove_element can be queued

* @param set set to remove element from
* @param element element to remove from the set
* @param cont continuation called after the element has been removed
* @param cont_cls closure for @a cont
x @return #GNUNET_OK on success, #GNUNET_SYSERR if the
* set is invalid (e.g. the set service crashed)
*/
int
GNUNET_SET_remove_element (struct GNUNET_SET_Handle xset,
const struct GNUNET_SET_Element xelement,

44 Appendix A. Appendix

GNUNET_SET_Continuation cont,
void xcont_cls);

void

GNUNET_SET_copy_lazy (struct GNUNET_SET_Handle x*set,
GNUNET_SET_CopyReadyCallback cb,
void x*cls);

/%

* Destroy the set handle, and free all associated resources.

*

Iterations must have completed (or be explicitly canceled)

*

before destroying the corresponding set. Operations may

*

still be pending when a set is destroyed.
*
* @param set set to destroy
*/
void
GNUNET_SET_destroy (struct GNUNET_SET_Handle xset);

/ k%
* Prepare a set operation to be evaluated with another peer.
* The evaluation will not start until the client provides
* a local set with GNUNET_SET_commit().

* @param other_peer peer with the other set
* @param app_id hash for the application using the set
* @param context_msg additional information for the request
* @param result_mode specified how results will be returned,
* see ‘enum GNUNET_SET_ResultMode’.
* @param result_cb called on error or success
* @param result_cls closure for @a result_cb
* @return a handle to cancel the operation
*/
struct GNUNET_SET_OperationHandle x
GNUNET_SET_prepare (const struct GNUNET_PeerIdentity xother_peer,
const struct GNUNET_HashCode *app_id,
const struct GNUNET_MessageHeader *xcontext_msg,
enum GNUNET_SET_ResultMode result_mode,

A.1. Set API Reference 45

GNUNET_SET_ResultIterator result_cb,
void xresult_cls);

VAT
* Wait for set operation requests for the given application ID.
x If the connection to the set service is lost, the listener 1is
* re-created transparently with exponential backoff.

* @param cfg configuration to use for connecting to
* the set service
* @param operation operation we want to listen for
* @param app_id id of the application that handles set operation requests
* @param listen_cb called for each incoming request matching the operation
* and application id
* @param listen_cls handle for @a listen_cb
* @return a handle that can be used to cancel the listen operation
*/
struct GNUNET_SET_ListenHandle *
GNUNET_SET_listen (const struct GNUNET_CONFIGURATION_Handle x*cfg,
enum GNUNET_SET_OperationType op_type,
const struct GNUNET_HashCode *app_id,
GNUNET_SET_ListenCallback listen_cb,
void xlisten_cls);

VAT

*

Cancel the given listen operation. After calling cancel, the
* listen callback for this listen handle will not be called again.

*

@param lh handle for the listen operation
*/
void
GNUNET_SET_listen_cancel (struct GNUNET_SET_ListenHandle x1h);

VAT

*

Accept a request we got via GNUNET_SET listen(). Must be called during
GNUNET_SET _listen(), as the ‘struct GNUNET_SET_Request‘ becomes invalid
afterwards.

*

*

*

Call GNUNET_SET _commit() to provide the local set to use for the operation,

46 Appendix A. Appendix

*

and to begin the exchange with the remote peer.

* @param request request to accept

* @param result_mode specified how results will be returned,
* see ‘enum GNUNET_SET_ResultMode’.

* @param result_cb callback for the results

* @param result_cls closure for @a result_cb

* @return a handle to cancel the operation

*/

struct GNUNET_SET_OperationHandle x*

GNUNET_SET_accept (struct GNUNET_SET_Request *request,
enum GNUNET_SET_ResultMode result_mode,
GNUNET_SET_ResultIterator result_cb,
void xresult_cls);

VAT
* Commit a set to be used with a set operation.
* This function 1is called once we have fully constructed
* the set that we want to use for the operation. At this
* time, the P2P protocol can then begin to exchange the
* set information and call the result callback with the
* result information.

* @param oh handle to the set operation

* @param set the set to use for the operation

*x @return #GNUNET_OK on success, #GNUNET_SYSERR if the
* set is invalid (e.g. the set service crashed)
*/

int

GNUNET_SET_commit (struct GNUNET_SET_OperationHandle x*oh,

struct GNUNET_SET_Handle xset);

VAT
* Cancel the given set operation. May not be called after the
x operation’s ‘GNUNET_SET_ResultIterator’ has been called with a
*x status that indicates error, timeout or done.
*
* @param oh set operation to cancel
*/

A.1. Set API Reference 47

void
GNUNET_SET_operation_cancel (struct GNUNET_SET_OperationHandle =xoh);

/ k%
x Iterate over all elements in the given set.
* Note that this operation involves transferring every element of the set
* from the service to the client, and is thus costly.
* Only one iteration per set may be active at the same time.

* @param set the set to iterate over

* @param iter the iterator to call for each element

* @param iter_cls closure for @a iter

* @return #GNUNET_YES if the iteration started successfuly,

* #GNUNET_NO if another iteration was still active,

* #GNUNET_SYSERR if the set is invalid (e.g. the server crashed,
disconnected)

*/

int

GNUNET_SET_iterate (struct GNUNET_SET_Handle =xset,
GNUNET_SET_ElementIterator iter,
void xiter_cls);

/ k%
* Stop iteration over all elements in the given set. Can only
* be called before the iteration has "naturally" completed its
* turn.
*
* @param set the set to stop iterating over
*/

void

GNUNET_SET_iterate_cancel (struct GNUNET_SET_Handle xset);

/ k%
* Create a copy of an element. The copy
* must be GNUNET_free-d by the caller.
*
* @param element the element to copy
* @return the copied element
*/
struct GNUNET_SET_Element =*

48 Appendix A. Appendix

GNUNET_SET_element_dup (const struct GNUNET_SET_Element xelement);

/ k%
* Hash a set element.
*
* @param element the element that should be hashed
* @param ret_hash a pointer to where the hash of @a element
* should be stored
*/
void
GNUNET_SET_element_hash (const struct GNUNET_SET_Element xelement,
struct GNUNET_HashCode *xret_hash);

A.2 Consensus API Reference

/ *x

* Called when a new element was received from another peer, or an error occured.

*

May deliver duplicate values.

*

Elements given to a consensus operation by the local peer are NOT given
* to this callback.

*

@param cls closure

*

@param element new element, NULL on error
*/
typedef void (*GNUNET_CONSENSUS_ElementCallback) (void x*cls,
const struct GNUNET_SET_Element xelement);

/ k%
* Opaque handle for the consensus service.
*/

struct GNUNET_CONSENSUS_Handle;

VAL
* Create a consensus session. The set being reconciled is initially
* empty.

* @param cfg
* @param num_peers

A.2. Consensus API Reference 49

* @param peers array of peers participating in this consensus session

* Inclusion of the local peer is optional.

* @param session_id session identifier

* Allows a group of peers to have more than consensus session.

* @param start start time of the consensus, conclude should be called before

* the start time.

* @param deadline time when the consensus should have concluded

* @param new_element_cb callback, called when a new element is added to the set by

* another peer. Also called when an error occurs.

* @param new_element_cls closure for new_element

* @return handle to use, NULL on error

*/

struct GNUNET_CONSENSUS_Handle x*

GNUNET_CONSENSUS_create (const struct GNUNET_CONFIGURATION_Handle xcfg,
unsigned int num_peers,
const struct GNUNET_PeerIdentity xpeers,
const struct GNUNET_HashCode *session_id,
struct GNUNET_TIME_Absolute start,
struct GNUNET_TIME_Absolute deadline,
GNUNET_CONSENSUS_ElementCallback new_element_cb,
void *new_element_cls);

/ k%
x Called when an insertion (transmission to consensus service, which
* does not imply fully consensus on this element with all other
* peers) was successful. May not call GNUNET_CONSENSUS_destroy();
* schedule a task to call GNUNET_CONSENSUS_destroy() instead (if
*x needed).

* @param cls
* @param success #GNUNET_OK on success, #GNUNET_SYSERR if
* the insertion and thus the consensus failed for good
*/
typedef void (*xGNUNET_CONSENSUS_InsertDoneCallback) (void =xcls,
int success);

VAT
* Insert an element in the set being reconsiled. Only transmit changes to
* other peers if GNUNET_CONSENSUS_begin() has been called.

50 Appendix A. Appendix

* Must not be called after GNUNET_CONSENSUS_conclude().
x May not call GNUNET_CONSENSUS_destroy(); schedule a task to call
* GNUNET_CONSENSUS_destroy() instead (if needed).

* @param consensus handle for the consensus session
* @param element the element to be inserted
* @param idc function called when we are done with this element and it

* is thus allowed to call GNUNET_CONSENSUS_insert() again
* @param idc_cls closure for @a idc
*/

void

GNUNET_CONSENSUS_insert (struct GNUNET_CONSENSUS_Handle *consensus,
const struct GNUNET_SET_Element *xelement,
GNUNET_CONSENSUS_InsertDoneCallback idc,
void xidc_cls);

VAT
* Called when a conclusion was successful.
*
* @param cls
*/
typedef void (*xGNUNET_CONSENSUS_ConcludeCallback) (void x*cls);

VAT

*

We are finished inserting new elements into the consensus;
* try to conclude the consensus within a given time window.

* @param consensus consensus session
* @param conclude called when the conclusion was successful
* @param conclude_cls closure for the conclude callback
*/
void
GNUNET_CONSENSUS_conclude (struct GNUNET_CONSENSUS_Handle xconsensus,
GNUNET_CONSENSUS_ConcludeCallback conclude,
void xconclude_cls);

/ **

A.2. Consensus API Reference

* Destroy a consensus handle (free all state associated with
* it, no longer call any of the callbacks).
*
* @param consensus handle to destroy
*/
void
GNUNET_CONSENSUS_destroy (struct GNUNET_CONSENSUS_Handle *consensus);

51

52

Appendix A. Appendix

53

Bibliography

[10]

[11]

[12]

[13]

Michael Abd-El-Malek et al. “Fault-scalable Byzantine fault-tolerant services”. In:
ACM SIGOPS Operating Systems Review 39.5 (2005), pp. 59-74 (cit. on p. 5).

Ben Adida. “Helios: Web-based Open-Audit Voting.” In: USENIX Security Sympo-
sium. Vol. 17. 2008, pp. 335-348 (cit. on p. 32).

Marcos K Aguilera. “Stumbling over consensus research: Misunderstandings and
issues”. In: Replication. Springer, 2010, pp. 59-72 (cit. on p. 3).

James Aspnes. “Lower bounds for distributed coin-flipping and randomized con-
sensus”. In: Journal of the ACM (JACM) 45.3 (1998), pp. 415-450 (cit. on p. 18).
Chagit Attiya, Danny Dolev, and Joseph Gil. “Asynchronous byzantine consen-
sus”. In: Proceedings of the third annual ACM symposium on Principles of dis-
tributed computing. ACM. 1984, pp. 119-133 (cit. on p. 29).

Pierre-Louis Aublin et al. “The Next 700 BFT Protocols”. In: ACM Trans. Comput.
Syst. 32.4 (Jan. 2015), 12:1-12:45. 1SsN: 0734-2071. po1: 10.1145/2658994. URL:
http://doi.acm.org/10.1145/2658994 (cit. on pp. 4, 5).

Josh Daniel Cohen Benaloh. Verifiable secret-ballot elections. Yale University. De-
partment of Computer Science, 1987 (cit. on p. 32).

Michael Ben-Or, Danny Dolev, and Ezra N Hoch. “Simple gradecast based algo-
rithms”. In: arXiv preprint arXiv:1007.1049 (2010) (cit. on pp. 6, 17-20).

Alysson Bessani, Jodo Sousa, and Eduardo EP Alchieri. “State machine replication
for the masses with BFT-SMaRt”. In: Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference on. IEEE. 2014, pp. 355-362
(cit. on p. 35).

Burton H Bloom. “Space/time trade-offs in hash coding with allowable errors”.
In: Communications of the ACM 13.7 (1970), pp. 422-426 (cit. on p. 7).

Christian Cachin, Klaus Kursawe, and Victor Shoup. “Random oracles in Con-
stantinople: Practical asynchronous Byzantine agreement using cryptography”.
In: Journal of Cryptology 18.3 (2005), pp. 219-246 (cit. on p. 18).

Miguel Castro and Barbara Liskov. “Practical Byzantine fault tolerance and proac-
tive recovery”. In: ACM Transactions on Computer Systems (TOCS) 20.4 (2002),
pp- 398-461 (cit. on pp. 3, 4, 17).

Miguel Castro, Barbara Liskov, et al. “Practical Byzantine fault tolerance”. In:
OSDI. Vol. 99. 1999, pp. 173-186 (cit. on pp. 3, 4, 17, 29).

http://dx.doi.org/10.1145/2658994
http://doi.acm.org/10.1145/2658994

54

[16]

[17]
(18]
[19]

[20]

[22]

[23]

[26]

[27]

BIBLIOGRAPHY

Allen Clement et al. “Making Byzantine Fault Tolerant Systems Tolerate Byzan-
tine Faults.” In: NSDL Vol. 9. 2009, pp. 153-168 (cit. on p. 5).

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. “A secure and op-
timally efficient multi-authority election scheme”. In: European transactions on
Telecommunications 8.5 (1997), pp. 481-490 (cit. on pp. 6, 32, 34).

Roberto De Prisco, Dahlia Malkhi, and Michael Reiter. “On k-set consensus prob-
lems in asynchronous systems”. In: Parallel and Distributed Systems, IEEE Trans-
actions on 12.1 (2001), pp. 7-21 (cit. on p. 2).

Yvo G Desmedt. “Threshold cryptography”. In: European Transactions on Telecom-
munications 5.4 (1994), pp. 449-458 (cit. on p. 33).

L Peter Deutsch. “GZIP file format specification version 4.3”. In: (1996) (cit. on
p. 12).

Florian Dold. “Cryptographically Secure, Distributed Electronic Voting”. Bache-
lor’s Thesis. Technische Universitat Miinchen, 2014 (cit. on pp. 12, 31).

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. “On the minimal syn-
chronism needed for distributed consensus”. In: Journal of the ACM (JACM) 34.1
(1987), pp. 77-97 (cit. on p. 3).

Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. “Early Stopping in
Byzantine Agreement”. In: 7. ACM 37.4 (Oct. 1990), pp. 720-741. 1sSN: 0004-5411.
DOI: 10.1145/96559.96565. URL: http://doi.acm.org/10.1145/96559.96565
(cit. on p. 20).

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in the presence
of partial synchrony”. In: Journal of the ACM (FJACM) 35.2 (1988), pp. 288—323
(cit. on pp. 1, 3, 4, 29, 31).

David Eppstein et al. “What’s the difference?: efficient set reconciliation without
prior context”. In: ACM SIGCOMM Computer Communication Review. Vol. 41. 4.
ACM. 2011, pp. 218-229 (cit. on pp. 6-10).

Paul Neil Feldman. “Optimal algorithms for Byzantine agreement”. PhD thesis.
Massachusetts Institute of Technology, 1988 (cit. on pp. 3, 22).

Paul Feldman and Silvio Micali. “Optimal algorithms for Byzantine agreement”.
In: Proceedings of the twentieth annual ACM symposium on Theory of computing.
ACM. 1988, pp. 148-161 (cit. on pp. 3, 17-19, 22).

Michael J Fischer and Nancy A Lynch. A lower bound for the time to assure inter-
active consistency. Tech. rep. DTIC Document, 1981 (cit. on p. 2).

Michael J Fischer, Nancy A Lynch, and Michael Merritt. “Easy impossibility proofs
for distributed consensus problems”. In: Distributed Computing 1.1 (1986), pp. 26—
39 (cit. on p. 2).

Michael] Fischer, Nancy A Lynch, and Michael S Paterson. “Impossibility of
distributed consensus with one faulty process”. In: Journal of the ACM (FJACM)
32.2 (1985), pp. 374-382 (cit. on p. 2).

http://dx.doi.org/10.1145/96559.96565
http://doi.acm.org/10.1145/96559.96565

BIBLIOGRAPHY 55

[29]

[36]

[37]

(38]

[39]

Matthias Fitzi and Martin Hirt. “Optimally efficient multi-valued byzantine agree-
ment”. In: Proceedings of the twenty-fifth annual ACM symposium on Principles of
distributed computing. ACM. 2006, pp. 163-168 (cit. on p. 3).

Pierre-Alain Fouque and Jacques Stern. “One round threshold discrete-log key
generation without private channels”. In: Public Key Cryptography. Springer. 2001,
pp- 300-316 (cit. on pp. 12, 33).

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. “The bitcoin backbone pro-
tocol: Analysis and applications”. In: Advances in Cryptology-EUROCRYPT 2015.
Springer, 2015, pp. 281-310 (cit. on p. 5).

Shafi Goldwasser and Yehuda Lindell. “Secure multi-party computation without
agreement”. In: Journal of Cryptology 18.3 (2005), pp. 247-287 (cit. on p. 31).
Michael T Goodrich and Michael Mitzenmacher. “Invertible bloom lookup tables”.
In: Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton
Conference on. IEEE. 2011, pp. 792-799 (cit. on p. 8).

Rachid Guerraoui et al. “Consensus in asynchronous distributed systems: A con-
cise guided tour”. In: Advances in Distributed Systems. Springer, 2000, pp. 33-47
(cit. on pp. 3, 18).

Kim Potter Kihlstrom, Louise E Moser, and P Michael Melliar-Smith. “The Se-
cureRing protocols for securing group communication”. In: System Sciences, 1998.,
Proceedings of the Thirty-First Hawaii International Conference on. Vol. 3. IEEE.
1998, pp. 317-326 (cit. on pp. 3, 4).

Ramakrishna Kotla et al. “Zyzzyva: speculative byzantine fault tolerance”. In:
ACM SIGOPS Operating Systems Review. Vol. 41. 6. ACM. 2007, pp. 45-58 (cit. on
p- 5).

Leslie Lamport. “Paxos made simple”. In: ACM Sigact News 32.4 (2001), pp. 18-25
(cit. on p. 4).

Leslie Lamport. “The part-time parliament”. In: ACM Transactions on Computer
Systems (TOCS) 16.2 (1998), pp. 133-169 (cit. on p. 4).

Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine generals
problem”. In: ACM Transactions on Programming Languages and Systems (TOPLAS)
4.3 (1982), pp. 382-401 (cit. on pp. 1, 4).

Ping Li and Arnd Christian Konig. “Theory and applications of b-bit minwise
hashing”. In: Communications of the ACM 54.8 (2011), pp. 101-109 (cit. on p. 16).
Navneet Malpani, Jennifer L Welch, and Nitin Vaidya. “Leader election algorithms
for mobile ad hoc networks”. In: Proceedings of the 4th international workshop on
Discrete algorithms and methods for mobile computing and communications. ACM.
2000, pp. 96-103 (cit. on p. 2).

Andrew Miller and Joseph J LaViola Jr. “Anonymous byzantine consensus from
moderately-hard puzzles: A model for bitcoin”. In: Retrieved from Anonymous
Byzantine Consensus from Moderately-Hard Puzzles: A Model for Bitcoin (2014)
(cit. on p. 5).

56

[47]

(48]

[49]

[53]

[54]

[55]

[56]

BIBLIOGRAPHY

Yaron Minsky, Ari Trachtenberg, and Richard Zippel. “Set reconciliation with
nearly optimal communication complexity”. In: Information Theory, IEEE Trans-
actions on 49.9 (2003), pp. 2213-2218 (cit. on p. 7).

Michael Mitzenmacher and Rasmus Pagh. “Simple Multi-Party Set Reconciliation”.
In: arXiv preprint arXiv:1311.2037 (2013) (cit. on p. 8).

Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. “Signature-free
asynchronous Byzantine consensus with t< n/3 and O (n 2) messages”. In: Pro-
ceedings of the 2014 ACM symposium on Principles of distributed computing. ACM.
2014, pp. 2-9 (cit. on pp. 3, 18).

Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Consulted
1.2012 (2008), p. 28 (cit. on p. 5).

Gil Neiger. “Distributed consensus revisited”. In: Information Processing Letters
49.4 (1994), pp. 195-201 (cit. on p. 2).

Chris Okasaki. Purely functional data structures. Cambridge University Press, 1999
(cit. on pp. 11, 30).

Diego Ongaro and John Ousterhout. “In search of an understandable consensus
algorithm”. In: Proc. USENIX Annual Technical Conference. 2014, pp. 305-320 (cit.
on p. 4).

Torben Pryds Pedersen. “A threshold cryptosystem without a trusted party”.
In: Advances in Cryptology—EUROCRYPT 91. Springer. 1991, pp. 522-526 (cit. on
p- 33).

RA Peters. “A Secure Bulletin Board”. Master’s Thesis. Technische Universiteit
Eindhoven, 2005 (cit. on p. 32).

Bartlomiej Polot and Christian Grothoff. “Cadet: Confidential ad-hoc decentral-
ized end-to-end transport”. In: Ad Hoc Networking Workshop (MED-HOC-NET),
2014 13th Annual Mediterranean. IEEE. 2014, pp. 71-78 (cit. on pp. 12, 25).
Michael K Reiter. “The Rampart toolkit for building high-integrity services”. In:
Theory and Practice in Distributed Systems. Springer, 1995, pp. 99-110 (cit. on
pp- 3, 4).

Michael Rink. “Mixed Hypergraphs for Linear-Time Construction of Denser
Hashing-Based Data Structures”. English. In: SOFSEM 2013: Theory and Prac-
tice of Computer Science. Ed. by Peter van Emde Boas et al. Vol. 7741. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 356-368. 1SBN:
9783642358425. pOI1: 10.1007/978-3-642-35843-2_31. URL: http://dx.doi.
org/10.1007/978-3-642-35843-2_31 (cit. on p. 8).

Jared Saia and Mahdi Zamani. “Recent results in scalable multi-party computa-
tion”. In: SOFSEM 2015: Theory and Practice of Computer Science. Springer, 2015,
pp- 24-44 (cit. on p. 31).

Fred B Schneider. “Implementing fault-tolerant services using the state machine
approach: A tutorial”. In: ACM Computing Surveys (CSUR) 22.4 (1990), pp. 299—
319 (cit. on p. 3).

http://dx.doi.org/10.1007/978-3-642-35843-2_31
http://dx.doi.org/10.1007/978-3-642-35843-2_31
http://dx.doi.org/10.1007/978-3-642-35843-2_31

BIBLIOGRAPHY 57

[57]

(58]

[59]

[60]

[61]

[62]

David Schwartz, Noah Youngs, and Arthur Britto. “The Ripple protocol consensus
algorithm”. In: Ripple Labs Inc White Paper (2014) (cit. on p. 5).

Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11 (1979),
pp- 612—613 (cit. on p. 33).

Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. “Theory and
practice of bloom filters for distributed systems”. In: Communications Surveys &
Tutorials, IEEE 14.1 (2012), pp. 131-155 (cit. on p. 11).

Sree Harsha Totakura. “Large Scale Distributed Evaluation of Peer-to-Peer Proto-
cols”. Masters. Garching bei Muenchen: Technische Universitaet Muenchen, June
2013, p. 76 (cit. on p. 24).

Robbert Van Renesse, Nicolas Schiper, and Fred B Schneider. “Vive la différence:
Paxos vs. Viewstamped Replication vs. Zab”. In: (2014) (cit. on p. 4).

Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. “A censorship-
resistant, privacy-enhancing and fully decentralized name system”. In: Cryptology
and Network Security. Springer, 2014, pp. 127-142 (cit. on p. 12).

	Introduction
	Background
	Consensus
	The FLP Impossibility Result
	Interfaces to Consensus Protocols
	Byzantine Consensus
	Other consensus models

	Our contribution
	Roadmap

	Set Reconciliation
	Background and Related Work
	High-Level Overview
	Invertible Bloom Filter

	Difference Estimation
	Detailed Description
	Implementation in GNUnet
	GNUnet's Architecture and Set
	Optimizations

	Evaluation

	Set Union Byzantine Consensus
	System Model
	An argument against full asynchrony

	Simple Gradecast Consensus
	Gradecast
	Consensus

	Set Union Consensus
	Definition
	Set-Valued Gradecast
	Correctness Sketch
	Set-valued simple gradecast consensus

	Implementation in GNUnet
	API
	Space optimizations
	Evaluation

	Optimizations and Future Work
	Fast Dissemination
	Extension to Partial Synchrony
	Set Canonicalization
	Persistent Data Structures

	Application to Secure Multiparty Computation
	Bulletin Board for Electronic Voting
	Distributed Threshold Key Generation and Cooperative Decryption
	Electronic Voting with Homomorphic Encryption

	Conclusion and Future Work
	Appendix
	Set API Reference
	Consensus API Reference

