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Abstract

As a means of reducing power consumption, hardware devices are capable to enter into
sleep-states that have low power consumption. Waking up from those states in order to
return to work is typically a rather energy-intensive activity. Some existing applications
have non-urgent tasks that currently force hardware to wake up needlessly or prevent it
from going to sleep. It would be better if such non-urgent activities could be scheduled
to execute when the respective devices are active to maximize the duration of sleep-states.
This requires cooperation between applications and the kernel in order to determine when
the execution of a task will not be expensive in terms of power consumption.

This work presents the design and implementation of Cryogenic, a POSIX-compatible
API that enables clustering tasks based on the hardware activity state. Specifically, Cryo-
genic’s API allows applications to defer their execution until other tasks use the device
they want to use. As a result, two actions that contribute to reduce the device energy con-
sumption are achieved: reduce the number of hardware wake-ups and maximize the idle
periods.

The energy measurements enacted at the end of this thesis demonstrate that, for the
specific setup and conditions present during our experimentation, Cryogenic is capable to
achieve savings between 1% and 10% for a USB WiFi device.

Although we ideally target mobile platforms, Cryogenic has been developed by means
a new Linux module that integrates with the existing POSIX event loop system calls. This
allows to use Cryogenic on many different platforms as long as they use a GNU/Linux
distribution as the main operating system. An evidence of this can be found in this thesis,
where we demonstrate the power savings on a single-board computer.
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1. Introduction

1.1. Motivation

Energy represents a critical resource nowadays for many kind of devices, as it may set
limitations in their operation. Depending on their characteristics, these limitations are
different for every kind of device or system.

For mobile devices the limitation we come across is lifetime. The usage of smartphones
and tablets has substantially grown over the last years, and this growth comes along with a
higher performance demand. Processors are more and more powerful and internal memo-
ries have more capacity, which allow users to install a large number of applications on their
devices. Some of these applications consume energy even after if the user is not actively
interacting with them, as they could continue to perform tasks in the background.

An example of this behaviour is Google Latitude. This application was a feature of
Google Maps that allowed users to update their current location and share it with their
contacts. The task ran in background in order to automatically update all positions, with-
out the necessity to specifically request the synchronization. This way users were able to
see their own location and the location of their friends within Google Maps.

The goal of this work is to allow application developers to enable such features while
minimizing the resulting increase in power consumption. This thesis will describe mecha-
nisms for applications to manage the impact of background tasks on power consumption.

1.2. Contribution

Modern hardware devices have the capability to enter into sleep-states after a period of
idleness as a means of reducing power consumption [11]. Naturally, resuming the activ-
ity of suspended devices takes time and energy as well [7, 10, 14]. In this thesis, we are
concerned with the energy consumption of background tasks that prevent hardware from
suspending or even force hardware to resume from suspension.

The contribution of this work is a mechanism that permits developers to implement
power-aware applications based on the hardware activity state. Such power-awareness is
achieved through the enabling the deferment of non-urgent tasks until other applications
make use of the same device they need to use.

As a result, these tasks will wait until the corresponding device is already active and they
may be optimistically executed in a clustered way. This behaviour is the central idea of
Cryogenic and the key to reach our goal: maximize the idle periods of every single device
and reduce the number of hardware wake-ups. Thus, we enable developers to balance
between the responsiveness of an application and the amount of energy it consumes.

For that purpose, we have created a Linux kernel module that serves as a simple API for
the developer of power-aware applications. With the Cryogenic module we achieve two
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1. Introduction

main objectives:

• Ease of installation: In order to use Cryogenic, a Linux user only needs to install our
new module following the usual procedure. There is no need to rebuild the kernel
during the installation neither during updates. To benefit from Cryogenic, the user
will still have to use applications that have been implemented using its API; how-
ever, existing legacy applications will continue to run without problems.

• Application migration: The Cryogenic API makes it easy for developers to defer back-
ground tasks to a time where they will not have a significant impact on power man-
agement operations by the hardware. The developer simply needs to decide which
tasks are non-urgent, and add a few lines of code in order to make use of Cryogenic’s
API and permit the deferment of these tasks.

1.3. Document organization

This thesis is organized in chapters as follows: in Chapter 2 we will discuss about other
existing mechanisms thought to reduce power consumption. In Chapter 3 we will detail
Cryogenic’s design and implementation and introduce the usage of the resulting API. We
will also describe the integration of Cryogenic in an existing software. In chapter 4 we
will describe the methodology used to perform the energy measurements and present the
results of our tests. Finally, in Chapter 5, we will present the conclusions and future steps
of this work.
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2. Related work

In this chapter we will discuss a set of existing mechanisms whose design and implemen-
tation are focused on achieving the same goal as Cryogenic, that is to say, reduce power
consumption. This section will allow us to see that there are many considerations to take
into account when talking about power consumption in a system, since each one of these
mechanisms intends to save energy in a different fashion.

2.1. Cinder

Cinder [15, 16] is an operating system designed to fulfill some specific power-related needs
of modern mobile devices. Based on HiStar, it allows to track how applications make use
of energy and provides command over this usage. In this section we will explain the
main characteristics of Cinder’s design, starting with an overview of HiStar, the operating
system Cinder is built on. We will then discuss its main operational features and compare
it to Cryogenic’s design.

2.1.1. HiStar

The HiStar [17] operating system is designed to minimize the amount of code that must
be trusted. It controls how information flows through the system by means of a label
mechanism that allows users to specify fine-grained security policies.

The HiStar kernel is organized around six first-class objects: segments, threads, address
spaces, devices, containers, and gates. Whereas the former four objects are similar to conven-
tional kernels, the latter two add new protection features. Containers provide hierarchical
control over object allocation and deallocation by holding hard links to objects. Once an
object has no path from it to the root container it is deallocated and garbage collected. The
root container is a designated one that can never be deallocated. Gates provide protected
control transfer, allowing a thread to jump to a named point in another address space. The
rest of the kernel abstractions (files, processes, etc.) are built from theses objects.

Among other fields, every object has an immutable label that determines which threads
can observe and which can modify the object. A label consists of a set of categories owned
by threads. Threads can create new read or write categories and place them in the labels of
the objects they create. Then, to observe an object, a thread must own all the read categories
in an object’s label and, likewise, it must own all the write categories in the label if it wants
to write the object. Threads can also grant ownership of any category to other threads, so
as to share privilege. Apart from these permissions there exist a third option that allows
threads to read an object as long as they do not communicate with the network or other
processes.

By means of containers HiStar provides a way to account and revoke storage resources.
This hierarchy does not suffice to deal with resources where control over consumption
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2. Related work

rate is as important as quantity, which is the case of energy. This shortcoming is thus the
motivation that led to the creation of two new kernel objects: reserves and taps. Both objects
are presented in the following section.

2.1.2. Design of Cinder

A reserve represents a right to use a given quantity of energy. All threads are associated
with a reserve from which they draw energy and, like all other kernel objects, every re-
serve has a label that controls which threads can manipulate it. Once an application has
consumed an amount of energy, this quantity is subtracted from the corresponding re-
serve, and the kernel ensures that any application does not perform actions for which its
reserve does not have enough energy. Reserves allow threads to subdivide their available
energy in order to delegate it to other threads and they track the energy consumed from
them by applications. This provides accounting information and permits applications to
be made power-concerned.

A tap is an special-purpose thread whose job is to transfer energy between reserves.
While reserves provide quantities of energy that may be consumed by threads, taps control
the rate at which these quantities could be consumed. A tap is composed by a rate, a source
and a sink reserve, and a label that determines the privileges needed to transfer energy
from the source to the sink reserve.

Reserves and taps therefore form a graph of energy consumption rights. The system
battery is represented as the root reserve, whose energy is subdivided and given to the
rest of the reserves.

Any application may have the possibility of consuming energy at a high rate through
the association with a reserve fed by a high rate tap. This can create a problem if the
application draws less energy than provided by the tap, since the reserve will fill with
energy that other applications will not be able to use. In order to solve this situation, it
is possible for reserves to get unused resources back by means of proportional taps. This
way, a reserve being fed by a tap has a proportional tap in the opposite direction that
transfers a portion of its energy back to the parent reserve per unit time.

These proportional taps do not prevent applications from hoarding energy, as a thread
could create a new reserve without proportional taps and transfer energy to it, accumulat-
ing over time enough energy to starve the rest of the system. Cinder prevents hoarding by
imposing a decay of sources across all reserves. In other words, every reserve has an im-
plicit proportional backwards tap to the battery. The decay is computed using a half-life,
returning to the battery the 50% of energy in each reserve every half-life period of time.

Threads are also able to share their resources in order to avoid resource inversion, where
a thread with enough energy in its reserve cannot run because a thread holding a lock has
run out of energy. In this case, the thread blocked on the lock can donate energy to the
thread holding it, permitting the former to run.

2.1.3. Discussion

Cinder design is thought to provide three basic mechanisms to perform energy manage-
ment: isolation, delegation and subdivision. Isolation is the mechanism that prevents applica-
tions from consuming inordinate amounts of energy or starving other applications. Delega-
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2.1. Cinder

tion allows an application to lend its energy to other applications, making both, the donor
and the recipient, able to consume the delegated resources. Subdivision allows any appli-
cation to partition its available energy. Combining the three mechanisms, Cinder allows
an application to give another principal a partial share of its energy, being totally sure that
the rest will remain for its own use. This idea is the basis of Cinder’s operation.

There also exist specific situations where Cinder has hardware-related considerations.
Hungry-devices may have high initial energy costs. For example, experiments have shown
that the overhead of powering the radio up on a mobile phone dominates the total amount
of energy consumed for flows lasting less than 10 seconds. Cinder can solve this problem
with reserves and taps. The networking stack (netd) has a reserve that stores energy to
power the radio up. Any network system call made when the device is off blocks if the
sum of netd’s reserve and its own one is not enough to power it on. Blocked threads
delegate a share of their energy to the netd’s reserve and once there is enough energy
to power the radio on, Cinder permits the threads to proceed. When the device is on,
additional operations are billed in proportion to the active periods.

This is similar to the main idea of Cryogenic’s design: to cluster tasks that want to make
use of the same device. We can see then that, due to its delegation mechanism, Cinder
could imitate the behaviour of Cryogenic with other devices, creating specific reserves that
save energy to wake them up. It could even distinguish between urgent and non-urgent
assigning lower rate taps to those that are non-urgent.

Cinder also worries about the user’s experience and expectations, since it accounts the
available energy and is able to ration it depending on this amount and the user’s desired
performance or expected lifetime. For example, Cinder could manage to make background
applications consume less energy than foreground applications, or divert energy to an spe-
cific application that the user considers more priority when battery life is low. Cryogenic
does not bear in mind such considerations, and only defers the execution of tasks that are
considered non-urgent by the application’s developer.

Regarding the implementation, we believe it is important to point the different efforts
needed to implement both systems. Cinder is an operating system built on the top of an-
other operating system. As explained in previous sections, an extension of HiStar had to
be implemented to create reserves and taps, and this implies modifying some parts of the
existing kernel as well, in order to integrate these new created objects. This represents a
higher amount of work than Cryogenic, which is an extension of the Linux kernel imple-
mented by means of a kernel module. Thus, all the new code is added on the module
and there is no need to modify the existing kernel. Furthermore, any Linux user willing to
use Cryogenic only has to install the new module, without the need to install a different
operating system.

The migration of applications represents a quite different effort for each mechanism
as well. In the case of Cryogenic, the needed modifications are simple and incremental.
The developer must decide which are the non-urgent tasks and wrap their execution with
Cryogenic’s API. This means just adding a few lines of code around the code that executes
these tasks. In the case of Cinder, the developer has to adapt the application to a new
operating system and design the reserve and the tap for the application as well as for ev-
ery single task he wants to assign an isolated budget of energy to. This could be difficult
work since the work of reserves and taps must be consistent in order to avoid problems
presented in the previous section, like hoarding energy or resource inversion.
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To sum up, it is easy to notice that, although similar behaviours could be achieved with
these mechanisms, Cinder and Cryogenic approaches are different. Whereas Cinder bases
its ability to control energy consumption on fairly rationing the actual existing resources
(the battery) among applications, Cryogenic does not address the issue of the amount of
available power nor how much energy an application consumes. Its only concern is on
when devices must be used in order to reduce energy consumption by maximizing the
duration of idle periods. Roughly speaking, we could say that Cinder cares about how
much energy an application consumes, that is to say, accounting; Cryogenic instead cares
about saving or, in other words, creating opportunities for reduced consumption.

2.2. big.LITTLE Processing

big.LITTLE Processing [5, 9, 13] is an energy saving mechanism for mobile platforms de-
veloped by ARM1. With this mechanism different types of CPU in terms of performance
and energy efficiency are paired together and software execution is dynamically transi-
tioned to the appropriate CPU depending on performance needs. big.LITTLE intends to
take advantage of the different usage patterns observed on smartphones and tablets: pe-
riods of high processing activity, such as gaming or web browsing, alternate with longer
periods of low intensity tasks, like e-mail or audio. We will present the main hardware
characteristics and the existing software transition methods. We will finally present the
similarities and differences with Cryogenic.

2.2.1. Hardware design

The key of big.LITTLE processing is the combination of two processors, the big and the
LITTLE ones, that are architecturally identical. Therefore, all instructions will execute in an
architecturally consistent way whether they do it on the big or on the LITTLE processor,but
with different performance.

The significant difference in energy consumption between both processors are due to
differences in their micro-architectures. The main difference is that the LITTLE processor
has a pipeline length between 8 and 10 stages, whereas the pipeline of the big one has a
length between 15 and 24 stages; this is critical as the energy consumed by the execution
of an instruction is related to the number of pipeline stages it must traverse [12].

2.2.2. Software models

big.LITTLE Migration

In this model, the kernel scheduler is unaware of the big and LITTLE cores and it is a
power management software that resides in the kernel space who controls the migration
of software context between cores. When the LITTLE processor is executing at its highest
operating point and more performance is demanded, a migration is executed and both,
the operating system and the applications, move to the big processor.

1ARM Holdings: www.arm.com
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There exist two types of migration: CPU Migration and Cluster Migration. In the Cluster
migration the entire context is migrated from all LITTLE CPUs to the same number of big
CPUs and vice versa. Therefore, only one cluster can be used at the same time. This is
inefficient when the load on a single CPU is high, but the load on other CPUs in the cluster
is low. This is solved with the CPU migration, where each LITTLE CPU is logically paired
with a big CPU and the migration software can execute the context switch between CPUs
to match the current performance demand. In this case, only one CPU per processor pair
can be used at once. In both types of migration, processors or clusters that are not being
used can be powered off.

big.LITTLE MP

In this case, the performance requirements of every task that is currently running is what
determines whether a big processor must be powered on or not. If there are demanding
tasks, a big processor is powered on to execute them while low tasks can keep executing
on a LITTLE processor. As in the previous model, any processors that are not being used
can be powered off.

MP then permits to run applications on the processing resource that is most appropriate
to their requirements. This way, applications that require significant processing perfor-
mance or have time critical results can be executed on the big processor, whereas applica-
tions that do not have these constraints can run on the LITTLE processor.

2.2.3. Discussion

The first characteristic of big.LITTLE Processing that draws our attention is that, in con-
trast to Cryogenic, it is a hardware-based mechanism to reduce power consumption. It
is true that it has software-related issues, as a manager is needed to perform the OS and
application transition between CPUs when using migration, and MP needs cooperation
between the scheduler and processes to assign the execution of tasks to the most appro-
priate CPU; but in the end any user must acquire a device with this type of processor to
obtain power saving benefits.

The deployment complexity of big.LITTLE is different depending on the software model
chosen. With migration, neither the operating system nor applications require any mod-
ifications or changes to adapt to the system, and any application is able to migrate its
execution to the big or LITTLE processors. When using MP, extra-work is required: the
kernel scheduler needs changes to fully support big.LITTLE, since multiprocessor support
for the Linux kernel assumes that all processors have the same performance capabilities.
Hence, Cryogenic’s deployment needs a greater deal of effort compared to big.LITTLE’s
deployment with migration, but the effort is similar when the model is MP because of the
necessity of both mechanisms to extend the kernel operation.

Despite these differences, we could consider that both mechanisms address a similar is-
sue, especially when using MP as the software model for big.LITTLE. With MP, the sched-
uler assigns the execution of tasks that do not have heavy processing requirements to the
LITTLE processor, consuming as a result less energy to run them. Similarly, Cryogenic
defers the execution of non-urgent tasks to prevent them from waking up devices that
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are currently sleeping, reducing the energy consumed for their execution. Thus, both sys-
tems allow to determine a set of tasks that offer the chance to reduce energy consumption
through their execution under special conditions.

The way these sets are determined is different for each method. In the case of Cryogenic,
it is the application developer who must choose the non-urgent tasks that may defer their
execution. In big.LITTLE instead, the real processing requirements determine whether an
application can keep its execution on the LITTLE processor or it must migrate to the big
one. We can see then that Cryogenic has a subjective aspect that could compromise the
responsiveness of the system if the developer does not determine the urgent and non-
urgent tasks in a proper way.

We also wonder if we could combine both mechanisms. At first glance we find it pos-
sible, since the OS and software migration does not interfere with Cryogenic operation.
Nevertheless an undesired behaviour could occur with the big.LITTLE migration. Given a
situation where Cryogenic forces many tasks to defer their execution, these tasks might be
executed in a clustered way as long as they are waiting for the same device to be awake.
This could provoke an extra-demand of processing performance and, consequently, a mi-
gration from the LITTLE to the big processor. Therefore, the energy saved due to Cryo-
genic may be consumed during the execution of the deferred tasks on the big processor
and we would not obtain the expected benefit.

2.3. Windows 7 Kernel Improvements

The processor activity, especially the one related to periodic tasks from applications or
drivers, has a great influence on the power consumption of a system. Modern processors
enter into a low-power state during periods of idle activity between the execution of in-
structions, but many technologies need a minimum time of idleness to obtain actual power
savings. If the idle period is too short, the power required to enter and exit the low-power
state could be greater than the power saved. The following techniques are improvements
introduced in the Windows 7 kernel with the aim of managing and reducing this power
consumption that results from periodic software activity.

2.3.1. Timer Coalescing

The Windows kernel scheduler is driven by a timer interrupt platform that has a default
period. On every of these timer interrupts the kernel checks whether scheduled timers
have expired and, if so, it performs a callback to the function associated with the timer.
Timer Coalescing [2, 3] allows applications and drivers to set a tolerable delay for the
expiration of their scheduled timers. The kernel then uses this delay to adjust the time
when the timer expires and makes it coincide with the expiration of other software timers.
This behaviour is shown with two examples.

In Figure 2.1 we can see the regular non-coalescing behaviour. As already explained, on
every timer interrupt the expiration of timers is checked and then the appropriate callbacks
are performed. This is noticeable since a callback for every expired timer is issued right
after the timer interrupt that follows the expiration.

8
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1 2 3 4 5 6

t

Software timer expiration

Timer interrupt

Callback issue

Figure 2.1.: Service of expired timers without coalescing

Figure 2.2 shows the benefits of Timer Coalescing. The expiration scheduled before the
first timer interrupt, marked with dashes in the picture, has a delay that allows to defer it
and, as a result, the service callback can be issued during the next timer interrupt along
with two other callbacks. The same happens with the expiration prior to to the fourth
timer interrupt, that can be served later so that it coincides with the service of another
timer expiration.

t

Software timer expiration

Timer interrupt

Callback issue

Delayed expiration

d d

Delayd

1 2 3 4 5 6

Figure 2.2.: Service of expired timers with coalescing

Since the callbacks are performed grouped into a single period of processing, the idle
periods between interrupts become longer and the number of times the processor must exit
and enter the low-power state is reduced. This way, the overall system power consumption
is reduced.

Developers can take advantage of Timer Coalescing in different ways depending on
whether they are developing an application or a driver. For applications, a new user-
mode function is provided which allows to set the period when a timer should periodically
expire as well as its tolerable delay2. Similarly, a new kernel-mode function that enables to
set these fields is provided for drivers3. Developers can also specify a tolerable delay for

2http://msdn.microsoft.com/en-us/library/windows/desktop/dd405521(v=vs.85).aspx
3http://msdn.microsoft.com/en-us/library/windows/hardware/ff553249(v=vs.85)
.aspx
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their periodic timers when they use the Windows Driver Framework4. In this case it is not
a function but a field on a structure what they must use to set it5.

2.3.2. Intelligent Timer Tick Distribution

In systems with multiple logical processors, the timer interrupts are mirrored on every
processor and then the callbacks for the corresponding expired timers are performed. The
Intelligent Timer Tick Distribution (ITTD) [3] is a mechanism that reduces the amount of
timer interrupts in this kind of systems. To achieve this, application processors are not wo-
ken up from low-power states unless software timers are expiring or hardware interrupts
other than the timer interrupts occur. Application processors (AP) are any processors in
the system that are not the base service processor (BSP).

Further examples illustrate the differences between the regular processor operation and
the operation when using ITTD with and without coalescing. Figure 2.3 shows the nor-
mal behaviour on multiprocessor systems. Timer interrupts arrive to both processors and
expired timers are served on the corresponding one.

t

BSP

AP

t

Software timer expiration

Timer interrupt

Callback issue

1 2 3 4 5 6

Figure 2.3.: Multiple logical processors without Coalescing nor ITTD

In Figure 2.4 we can see the behaviour of a system with ITTD. It is easy to notice that
the only difference with the previous figure is the last timer interrupt on the AP, which in
this case is not issued because there are no pending callbacks. This example illustrates that,
although ITTD could be used on its own, their benefits may not be significant if expirations
are not properly scheduled for this aim.

4http://msdn.microsoft.com/en-us/library/windows/hardware/ff557565(v=vs.85)
.aspx

5http://msdn.microsoft.com/en-us/library/windows/hardware/ff552519(v=vs.85)
.aspx
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Figure 2.4.: Multiple logical processors with ITTD

The actual benefit of ITTD appears when it is used along with Timer Coalescing. After
Timer Coalescing has grouped callback issues, it is more likely to find timer interrupts that
have no work to do and thus ITTD can remove them. This is shown in Figure 2.5, where
Timer Coalescing allows to cluster the execution of callbacks and ITTD disables three timer
interrupts with no expired timers to serve: the second, the fourth and the sixth.

t

t
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AP

Software timer expiration

Timer interrupt

Callback issue

Delayed expiration

Delayd

d d

d d

1 2 3 4 5 6

Figure 2.5.: Multiple logical processors with Coalescing and ITTD

The final results for the BSP are identical to the example of the previous section since
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ITTD does not affect its operation, but for APs the difference is significant, as the idle
periods may now be longer than the default timer interrupt platform period.

2.3.3. Discussion

Of all the mechanisms we have written about in this chapter, these improvements made in
the Windows 7 kernel are the most similar to Cryogenic. The fundamentals are the same:
try to have the longest idle periods as possible so that the number of hardware wake-ups is
reduced. Nevertheless, the scope of Cryogenic is different: it focuses on devices like hard
disks and network cards instead of processors.

Although coalescing is not the final goal of Cryogenic, it is a behaviour likely to happen,
since a set of tasks that are waiting for the same device may be executed in a clustered
way once the device is woken up. In fact, this would be a rather desirable situation and an
evidence of good system performance in terms of power consumption.

The deployment work is similar for both systems. From the OS point of view, Cryo-
genic needs a new module to extend the kernel operation and support the new features.
The Windows 7 kernel also needed modifications, since new functions must be provided
to support Timer Coalescing and the timer interrupt platform must be able not to issue
interrupts when there are no pending callbacks, which is the effect of ITTD. From the de-
veloper point of view, in both cases they have to adapt their applications to the new APIs
by adding or modifying some lines of code. In the case of ITTD, its operation is totally
transparent to the developer and does not add any extra-work.

Both systems focus their efforts on a set of tasks that give the opportunity to save energy
through their deferment: periodic events that may force hardware to resume its activity
at a given time when their execution is not essential. Application developers of both plat-
forms undertake to choose such tasks and set appropriate times for delays and timeouts
so that the responsiveness of the system is not affected.

Despite of focusing on the Windows 7 kernel, there are other platforms that also use
similar techniques to the ones explained in this section to save energy. For example, Apple
introduced timer coalescing on Mavericks6 in order to reduce background work while the
machine is running on battery power [8]. The Linux Kernel introduced a new configura-
tion parameter7 as of version 2.6.21 that allowed CPUs in lower-power states to remain
in this state longer. This method was named Tickless Kernel [4] and has effects similar to
ITTD.

6OS X Mavericks: http://www.apple.com/osx/preview/
7NO HZ: http://lxr.hpcs.cs.tsukuba.ac.jp/linux/kernel/time/Kconfig
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In this chapter we present the design and implementation of Cryogenic. To start with, we
introduce our approach and illustrate the behaviour of a system running Cryogenic. Next,
we present the kernel module that supports Cryogenic’s operation. Finally, we show the
developers perspective and how they can use the resulting API to benefit from Cryogenic.

3.1. Approach

In Section 1.2 we presented the main goals of Cryogenic: reduce the number of hardware
wake-ups so that the overhead power consumption they provoke is avoided and extend
the duration of idle and sleep periods in order to reduce the overall power consumption.
In this section, we illustrate with two examples the behaviour of a normal system and the
achievement of these goals after running Cryogenic on the same scenario.

t

W

sleep

idle

active

wake-up

ts ts

Figure 3.1.: Energy consumption model

The examples follow the model presented in Figure 3.1. Devices can operate in four
states that differ in their energy consumption rate. These states are: active, idle, sleep and
wake-up. When a device is actually working, it remains in the active state until it has
completed its tasks. When this happens, the device enters the idle state, that has a lower
consumption, and then two state transitions are possible: it can become active again if it
is requested to perform more tasks or otherwise it enters the sleep state, which is the one
with the lowest consumption rate. This can only happen if the device is idle enough time
to reach the sleep timeout ts. Once the device is sleeping it can be requested to work again
and thus it must change from sleep to active. This transition is represented by means of
the wake-up state, that has the highest consumption rate.

Although in this model the increase of consumption from one state to the next one with
higher consumption is proportional for all transitions, this is only a representation and the
real increases will heavily depend on every hardware device. Similarly, the sleep timeout
may be different from one device to another.
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t
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sleep

idle
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wake-up

Figure 3.2.: Current execution

Figure 3.2 shows a possible scenario where Cryogenic would be beneficial. On the one
hand, there are two applications, A1 and A2, that execute tasks periodically, each one with
a different period. On the other hand, there are tasks executed due to the user interaction,
U, that have no predictable pattern. Assuming that all tasks want to make use of the same
device, e.g. the network card, the figure illustrates the resulting power consumption for
this device. As we can see, every time tasks need to use the device when it is currently
sleeping, there is an overhead power consumption caused by the transition from sleeping
to active. Then comes the active period and once tasks are finished, the device becomes
idle. In this example, the frequency of execution forces the device to switch from idle to
active many times, preventing it from going to sleep.

sleep

idle

active

wake-up

t

W

A1

A2

U

Figure 3.3.: Execution with Cryogenic
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With Cryogenic, the execution of tasks that belong to A1 and A2 could be deferred until
other tasks interact with the device. This way, the network card is already active when A1

or A2 need to use it and the peak consumption caused by the state transition is eliminated.
Figure 3.3 illustrates this behaviour. Indeed we can notice that the number of wake-ups
has been reduced from 7 to 4. We can also see that the user interaction, which obviously
we can not manage, acts as the main trigger for waiting tasks. As a result, most tasks are
executed right after the user’s tasks in a clustered way and this allows sleep periods to
become longer.

3.2. Architecture

The whole implementation of Cryogenic is embedded in a kernel module that works as
a character device driver [1, Ch. 1]. When Cryogenic is loaded, a set of character devices
is created and a subset of system calls is defined. The system calls handle the character
devices through the device nodes created under /dev/cryogenic/. This is the API that
developers will use later to manage the interaction between applications and hardware
devices.

3.2.1. Device representation

Every device present in a system is represented in the kernel by means of the struct
device1, which is a low-level representation that contains basic information needed to
build the device model [1, Ch. 14]. The struct device is usually embedded in other
high-level structures that track additional information of each specific subsystem. This
way, the SCSI subsystem provides the struct scsi device2 to represent its devices and
the network subsystem represents its devices through the struct net device3. Both
structures have an instance of the struct device as one of their fields.

For character and block devices, a device node is created in the /dev/ directory as well,
and it is internally represented as an instance of the struct cdev4.

Figure 3.4 is an scheme that illustrates which structures and device nodes would repre-
sent any hardware device allowed to operate under Cryogenic’s management, which are
storage devices attached to the SCSI bus and network devices, such as ethernet and wire-
less LAN cards. There are more structures involved in the device model, but these are the
most important ones for the work done in this thesis.

1http://lxr.free-electrons.com/source/include/linux/device.h
2http://lxr.free-electrons.com/source/include/scsi/scsi_device.h
3http://lxr.free-electrons.com/source/include/linux/netdevice.h
4http://lxr.free-electrons.com/source/include/linux/cdev.h
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struct scsi device

struct device

struct cdev /dev/sda

SCSI device

Network device
struct net device

struct device

Figure 3.4.: Internal representation of SCSI and network devices

Structures are represented by boxes and device nodes are ellipses. A normal arrow be-
tween two boxes represents that the target one is embedded inside the origin. The dashed
arrow between a box and an ellipse represents the relationship between a device node and
the struct cdev that represents it.

We can notice that, since they are not block or character devices, network devices do not
have any device node present in the filesystem.

Cryogenic creates a new character device for each of these hardware devices. The cor-
responding device nodes are put together under the new location /dev/cryogenic/.
These new character devices will determine whether it is inexpensive or not that an appli-
cation interacts with the hardware device they are associated to at a given time. The way
they do this task will be presented later.

Cryogenic also defines a new structure for each hardware device. This structure keeps
track of all information needed to hold its operation. Figure 3.5 illustrates the definition of
struct pm device.

1 struct pm_device {
2 int minor;
3 const char *name;
4 struct cdev pm_cdev;
5 struct device *dev;
6 wait_queue_head_t event_queue;
7 int unplugged;
8 request_fn_proc *scsi_request_fn_address;
9 unsigned char serial_number[MAX_SERIAL_NUMBER_SIZE];

10 int scsi_cdev_open;
11 struct net_device_ops my_ops;
12 const struct net_device_ops *old_ops;
13 };

Figure 3.5.: Definition of struct pm device

16



3.2. Architecture

Here is a brief explanation of every field of the structure. The work these fields do will
be presented in the following sections.

int minor
The minor number assigned to the character device pm cdev.

const char *name
A string that identifies the device. For SCSI devices, this field points to the device
SCSI address5. For network devices, it points to the name the kernel gives by default
to every network interface, e.g. eth0, eth1, wlan0, etc.

struct cdev pm cdev
Structure that represents the device node created under /dev/cryogenic/.

struct device *dev
Pointer to the structure that represents the hardware device.

wait queue head t event queue
Queue where deferred tasks will wait until they are allowed to proceed.

unplugged
Flag that determines whether a device has been unplugged from the system.

The following fields are only used by SCSI devices.

char serial number[MAX SERIAL NUMBER SIZE]
It is the device unique serial number assigned by the manufacturer. It has a maxi-
mum size of 20 bytes.

request fn proc *scsi request fn address
This field points to the request fn function of the device. This function is called
every time and I/O request must be performed on the device.

int scsi cdev open
This counter indicates how many times the character device associated to this SCSI
device is currently open.

The following fields are only used by network devices.

const struct net device ops *old ops
Pointer to the struct net dev ops of the device. This structure contains callbacks
needed to manage a network interface.

struct net device ops my ops
An instance of struct net device ops.

5http://www.netfibre.com/?p=392
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In Figure 3.6 we can see the representation of SCSI and network devices after Cryogenic
has been loaded on the system.

struct scsi device

struct device

struct cdev /dev/sda

SCSI device

struct net device

struct device

Network device

struct cdev /dev/cryogenic/eth0

struct pm device

struct cdev /dev/cryogenic/sda

struct pm device

Figure 3.6.: Internal representation of SCSI and network devices after loading Cryogenic

The structures and nodes added by Cryogenic are the shadowed ones. A dashed arrow
between two boxes means that the origin structure has a field that points to the target
structure.

3.2.2. Device search

When Cryogenic is loaded, the first task that must be performed is the search of devices.
For that purpose, the module first allocates a region of minor numbers [1, Ch. 3] between
0 and 9. Once this region has been allocated, there is no way to dynamically reallocate
it, which means that a maximum number of 10 devices can be managed by Cryogenic at
once.

The module then allocates enough memory to save information for the 10 possible de-
vices and assigns it to the variable declared in Figure 3.7, which will store instances of the
struct pm device, presented in Section 3.2.1. Thus, this array is the main variable that
keeps track of all devices whose usage is being managed by Cryogenic. At this point, the
search has not been performed, so all the instances are empty and they are marked as free
by setting the minor field to -1.
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1 static struct pm_device *pm_devices;

Figure 3.7.: Declaration of pm devices

Then comes the actual search, that starts with SCSI devices. Cryogenic looks over the
SCSI bus, that is represented on the system as an instance of struct bus type6, and for
every attached device whose driver is called “sd”, creates the corresponding character de-
vice and fills a position of pm devices with its information. Selecting only those devices
managed by the sd driver is important, since there are other devices attached to the SCSI
bus, e.g. DVD units, that we are not interested in.

The procedure to find network devices is similar to the SCSI case. The module looks
over all the devices present on the init net7 namespace8 and then selects only ethernet
and wireless LAN devices. This time, the criteria to filter is the name of the device, which
must be an string starting with “eth” or “wlan”.

After this work is done, the new device nodes are already present in the directory
/dev/cryogenic/. Nodes corresponding to SCSI devices are named after the device
serial number. For network devices, the default interface name is used for the device node
as well. Figure 3.8 shows the list of files in a system that has attached three hard drives,
two ethernet cards and a wireless LAN card.

1 # ls -l /dev/cryogenic/
2 total 0
3 crw------- 1 root root 247, 0 Dec 9 16:03 9VP26KSV
4 crw------- 1 root root 247, 2 Dec 9 16:03 eth0
5 crw------- 1 root root 247, 3 Dec 9 16:03 eth1
6 crw------- 1 root root 247, 5 Dec 9 16:04 WD-WCAU46069319
7 crw------- 1 root root 247, 1 Dec 9 16:03 WD-WCAV90469334
8 crw------- 1 root root 247, 4 Dec 9 16:05 wlan0

Figure 3.8.: List of files in /dev/cryogenic/

In this example we can observe the major and minor numbers assigned to the devices.
247 is the major number, the same for all devices since it identifies the driver, i.e. the
module. After the comma comes the minor number, that is different for each device and
uniquely identifies them inside the module.

All these character devices belong to the class “cryogenic” that is created at loading
time as well. A class is a high-level view of devices that abstracts low-level details and
allows to group them depending on what they do [1, Ch. 14]. Classes are shown under
/sys/class/. In Figure 3.9 we can see the list of files in the /sys/class/cryogenic/
directory of the system presented in the previous example.

6http://lxr.free-electrons.com/source/include/linux/device.h
7http://lxr.free-electrons.com/source/include/net/net_namespace.h
8http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
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1 # ls -1 /sys/class/cryogenic/
2 cryogenic!9VP26KSV
3 cryogenic!eth0
4 cryogenic!eth1
5 cryogenic!WD-WCAU46069319
6 cryogenic!WD-WCAV90469334
7 cryogenic!wlan0

Figure 3.9.: List of files in /sys/class/cryogenic/

If more than ten devices are attached to the system at loading time, Cryogenic will store
information only for the ten former and will notify the user that the rest could not be
added.

3.2.3. Hotplugging

Cryogenic is able to detect when a hardware device is plugged or unplugged and dynam-
ically add or remove the corresponding devices and structures. The implementation of
this functionality is very similar in both subsystems. The main idea is the interception of
uevents, which are messages sent by the kernel to the userspace with information about
changes in the state of a device. The issue of uevents is managed by udev9. Therefore, the
kernel must be compiled with the uevent option enabled in the configuration10. Otherwise,
the hotplugging will not work.

For SCSI devices, the interception is done by means of the SCSI bus. Among its fields,
the struct bus type has a callback function whose declaration is shown in Figure 3.10.
This function is called when a device is added, removed or a few other things that generate
uevents11. The first parameter corresponds to the device whose state has changed and the
second carries the uevent message.

1 int (*uevent)(struct device *dev, struct kobj_uevent_env *env);

Figure 3.10.: Declaration of the uevent callback

For network devices, the work is done through the net class, that is internally repre-
sented by means of the struct class12. This structure has a uevent callback function
as well as the SCSI bus that is called every time there is a change of state on a device that
belongs to the class.

The way we access the SCSI bus is different to the way we access the net class. As we
already explained, the SCSI bus is represented as an instance of the struct bus type
called scsi bus type13. The variable is declared global and it is an exported symbol,
which means that we can just declare it as extern in our module and access the bus as we

9https://wiki.debian.org/udev
10DM UEVENT http://lxr.hpcs.cs.tsukuba.ac.jp/linux/drivers/md/Kconfig
11http://lxr.free-electrons.com/source/include/linux/device.h
12https://www.kernel.org/doc/htmldocs/device-drivers/API-struct-class.html
13http://lxr.free-electrons.com/source/drivers/scsi/scsi_sysfs.c
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would do with any other variable. The net class instead is not global and it is not an ex-
ported symbol, so we have to access it through the pointer to the net class that all network
devices have. For this reason, it is a requirement that at least one network device is present
in the system when Cryogenic is loaded in order to enable the network hotplugging. The
loopback interface typically satisfies this requirement.

When Cryogenic is loaded, the addresses of the callbacks are changed so that they point
to interceptor functions implemented in the module. The interceptors then find out which
type of action has issued the uevent and call auxiliary functions that perform the device
addition or removal.

When it is a “remove” action on a network device or a SCSI device that is not being
used, the module sets the unplugged flag to 1, enacts the device removal as presented in
Section 3.2.7 and marks the pm device structure as free. If it is a SCSI device with open
descriptors, the module sets the unplugged flag to 1 and wakes up waiting tasks, but
keeps the rest of the fields of pm device untouched. This way, we prevent other devices
from using this slot and allow the system to use the same structure if the hardware device
is reconnected later.

If it is an “add” action on a network device, Cryogenic looks for a free slot in pm devices,
sets the information of the new device and creates the character device. If there is no free
position in the array, a message is written to the system log and the device is not added.
If it is a SCSI device, the module first checks whether it has been reconnected and, if so,
it sets the flag unplugged to 0 and resets other fields of pm device that may change af-
ter the reconnection. Note that the open character device that prevented the device from
being removed does not change, allowing the userspace application that was using it to
continue working without the necessity of closing and reopening it.

Finally, the original uevent functions, whose addresses had been previously saved, are
called in order not to compromise the system operation.

3.2.4. Task information

In order to support the work done by the system calls, a new structure that keeps track of
tasks execution is provided by Cryogenic. Figure 3.11 illustrates its definition.

1 struct pm_private {
2 int first_poll;
3 int timer_added;
4 unsigned long min_delay;
5 struct timer_list timer;
6 struct pm_device *pm_dev;
7 };

Figure 3.11.: Definition of struct pm private

Next we describe the structure’s fields.

int first poll
This field is a flag that indicates whether it is the first time that poll has been called for
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a specific task (first poll = 1) or the task has returned to poll after its execution
has been deferred (first poll = 0).

unsigned long min delay
It is the minimum time the task must wait until its execution can be resumed. It is
set in jiffies14 and it is an absolute time.

struct timer list timer
This is the timer that controls the timeout. An excerpt of the definition of the struct
timer list is shown in Figure 3.12. The rest of fields have been omitted since they
are not meant to be accessed from outside the timer code itself [1, Ch. 7]. The field
expires is the timeout, that is to say, the maximum time that a task can wait until
its execution can be resumed. As with the minimum delay, it is set in jiffies and it is
an absolute time. The pointer function must be set to a function that will be called
whenever the timer expires with data as an argument.

int timer added
This flag determines if the timer that controls the task timeout has been added or not.
If the timer has been added it is set to 1, otherwise its value is 0.

struct pm device *pm dev
Pointer to the struct pm device that corresponds to the device the task wants to
use.

1 struct timer_list {
2 /* ... */
3 unsigned long expires;
4 void (*function)(unsigned long);
5 unsigned long data;
6 /* ... */
7 };

Figure 3.12.: Definition of struct timer list

3.2.5. System calls

As a device driver, Cryogenic must provide the necessary system calls to manage the char-
acter devices it creates. The set of system calls provided is illustrated in Figure 3.13, which
shows the declaration of the struct file operations of our module [1, Ch. 3].

14http://www.makelinux.net/books/lkd2/ch10lev1sec3
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1 static struct file_operations pm_fops = {
2 .owner = THIS_MODULE,
3 .open = pm_open,
4 .release = pm_release,
5 .poll = pm_poll,
6 .unlocked_ioctl = pm_ioctl
7 };

Figure 3.13.: Declaration of pm fops

Next we present the work done in each of these system calls.

open

The declaration of the open system call is illustrated in Figure 3.14. This function cre-
ates an instance of the struct pm private and assigns it to the private data field of
filp, which is meant to preserve state information across system calls [1, Ch. 3].

1 static int pm_open(struct inode *inode, struct file *filp)

Figure 3.14.: Declaration of pm open

Then, some of the fields of the structure are set: pm dev points to the corresponding
device, timer added is set to 0 and timer is initialised. Before the initialisation, the
function and the data fields are set, respectively, to timeout wake up and to the cre-
ated pm private instance. Therefore, when the timer expires timeout wake up will be
called with pm private as a parameter. The function will be presented in following sec-
tions. Finally, a variable that keeps track of the references to the module is increased by 1.
If the device is a SCSI device, the field scsi cdev open is increased by 1 as well.

release

The release system call first checks whether there is an scheduled timer for the task
and, if so, it deletes it to prevent it from expiring. Then, the work done by pm open must
be undone. Thus, pm release frees the memory that was allocated for the pm private
structure and decreases the value of the reference counter.

If it a SCSI device, its specific reference counter must also be decreased by 1. If the
counter reaches 0 and unplugged is set, it means that the hardware device had been
unplugged while the character device was still open and the device could not be removed.
Therefore, the device is removed here and the slot is marked as free.

The declaration of this system call is illustrated in Figure 3.15.
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1 static int pm_release(struct inode *inode, struct file *filp)

Figure 3.15.: Declaration of pm release

ioctl

The ioctl [1, Ch. 6] system call is used to set the minimum delay and the timeout for a
specific task. The declaration of this system call is illustrated in Figure 3.16.

1 static long pm_ioctl(struct file *filp, unsigned int cmd, unsigned long
arg)

Figure 3.16.: Declaration of pm ioctl

The parameter cmd is the ioctl command15. This parameter is used to identify the
work that must be done in the system call. In our case, pm ioctl is only used to set
the delay and the timeout, and thus Cryogenic only defines one command, illustrated in
Figure 3.17

1 #define PM_IOC_MAGIC ’k’
2 #define SET_DELAY_AND_TIMEOUT _IOW(PM_IOC_MAGIC, 1, struct pm_times)

Figure 3.17.: Definition of the ioctl command

Four different macros are available to perform the creation of ioctl commands. Since we
are writing data on the module, we use the IOW macro. The magic number is set to ’k’
because it is one of the unused blocks defined in the ioctl documentation. The next param-
eter is used to identify the command among all the possible commands of a device driver.
Since Cryogenic only defines one command, we assign it the number 1. Finally, the last
parameter notifies the type of the data that is going into the kernel: struct pm times.
This structure is provided by Cryogenic and its definition is illustrated in Figure 3.18.

1 struct pm_times {
2 unsigned long delay_msecs;
3 unsigned long timeout_msecs;
4 };

Figure 3.18.: Definition of pm times

15http://www.cs.fsu.edu/˜baker/devices/lxr/http/source/linux/Documentation/
ioctl/ioctl-number.txt
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The parameter arg is the address of an instance of this structure that is created in
userspace. Thus, ioctl just needs to cast it to struct pm times * in order to access
its fields.

When pm ioctl is called, we get the pm private structure of the task through the
parameter filp. Before setting the delay and the timeout, we need to check if a timer had
been previously added. In that case, we delete it and set the corresponding flag to 0. This
is done in order to prevent Cryogenic from adding more than one timer for the same task
at the same time.

Then the delay and timeout passed as parameters are set on the corresponding fields
of pm private. Both values are relative times passed in milliseconds, but must be saved
as absolute times in jiffies, so the appropriate conversions are done before setting the val-
ues [1, Ch. 7].

It is important to notice that pm ioctl does not add any timer, it only sets the field
expires of the timer that later, in pm poll, will be added. For this reason, the first poll
flag must be set here to 1, since the call to pm poll will be issued right after the call to
pm ioctl.

poll

The poll [1, Ch. 6] system call determines whether a task is allowed to perform an I/O
operation or otherwise it must wait some event to happen. The declaration of pm poll is
illustrated in Figure 3.19.

1 static unsigned int pm_poll(struct file *filp, struct poll_table_struct

*table)

Figure 3.19.: Declaration of pm poll

Similarly to pm ioctl, the first we need to do here is getting the pm private structure
by means of the parameter filp.

Firstly, Cryogenic checks if the unplugged flag is set. If it is, we must return a value
indicating that the device is ready to perform an I/O operation. Otherwise, Cryogenic
checks if the current time is greater than the task’s delay. If it does not, the task is not
allowed to proceed. If it does, we must check if the execution comes from a timeout that
has expired or from an I/O operation performed by some other application. In both cases,
first poll will be set to 0 and then, pm poll must allow the task to proceed and per-
form the I/O operation by returning the appropriate value. If first poll is set to 1 the
task is not allowed to proceed, since it means that this is the first time that pm poll has
been called and the task must wait for its timer to expire or for other tasks to perform an
I/O operation on the device.

Finally, when a task is not allowed to proceed, poll wait [1, Ch. 6] is called in order to
queue the task on the event queue of the corresponding device and a timer is added to
control the timeout. The corresponding flag is set to 1 to indicate that it has been added.
The flag first poll is set to 0 to indicate that the next time pm poll is called for this task
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it will not be a direct call from the userspace, but a resumption of activity after waiting for
an event.

3.2.6. Triggering events

Two possible events are meant to resume the activity of waiting tasks: an I/O operation on
a SCSI or network device performed by other tasks or the expiration of their timer. When
these events occur, an auxiliary function that calls the wake up [1, Ch. 6] method over the
corresponding event queue is executed. In this section we present the different functions
that perform this work.

I/O operation on SCSI devices

The I/O operations on block devices are managed through the struct request queue.
When a process needs to perform a read or a write operation, a request is created and
queued on the request queue associated to the device. When it is time to process re-
quests, the request fn method associated to the queue is called [1, Ch. 16]. This method
is a callback whose declaration is illustrated in Figure 3.20.

1 typedef void (request_fn_proc) (struct request_queue *q);
2

3 struct request_queue {
4 /* ... */
5 request_fn_proc *request_fn;
6 /* ... */
7 };

Figure 3.20.: Declaration of request fn

In order to resume the activity of tasks that are waiting for a specific SCSI device, Cryo-
genic intercepts the calls to the request fn method of this device. The interception is
done through the substitution of the callback’s addresses by the address of the interceptor
function defined in our module. The field scsi request fn address is used to save
the original address.

The interceptor determines which SCSI device is being requested to perform the I/O op-
eration and then wakes up all tasks present on its event queue. Eventually, the original
request fn method is called to continue with the regular system execution.

If the requested device is not found because it has been unplugged, a message is written
to the system log. Since the request fn function is a void method, there is no need to
return an error code.

I/O operation on network devices

The struct net device has a field called netdev ops that points to an instance of
struct net device ops16. This structure defines several callbacks to manage the oper-
16http://lxr.free-electrons.com/source/include/linux/netdevice.h
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ation of the network device. To enact the resumption of tasks that perform network I/O,
Cryogenic intercepts the calls to the function ndo start xmit, declared in Figure 3.21.

1 struct net_device_ops {
2 /* ... */
3 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,

struct net_device *dev);
4 /* ... */
5 };

Figure 3.21.: Declaration of ndo start xmit

As its name indicates, this function initiates the transmission of a packet. Its interception
requires more work than the SCSI request fn method, since the pointer netdev ops
is declared constant and thus, the address of the callback cannot be directly changed
by the interceptor address. Instead, we need to create and identical copy of the struc-
ture pointed by netdev ops that is stored on the field my ops of pm device. Then, the
ndo start xmit callback of this new instance is modified to point to our interceptor and
netdev ops is made to point to the new instance. The address of the original instance is
saved on the old ops field.

From this point on, the work done is almost identical to the SCSI interceptor: the func-
tion determines which device is being requested to send a packet, wakes up the tasks
queued on its event queue and calls the original ndo start xmit function.

The ndo start xmit function returns a value according to the result of the transmis-
sion. Thus, if the device is not found, the interceptor returns NETDEV TX BUSY17 to indi-
cate that the driver could not properly take care of the packet. A notification message is
written to the system log as well.

In contrast to the packet transmission, the packet reception is an event that comes from
outside the system. This makes the system unable to decide or know when a packet must
be received and therefore, the packet reception has not been considered as a triggering
event in this thesis.

Timer expiration

As we presented in Section 3.2.4, the struct timer list has a field called function.
This pointer must point to a function defined in our module that will be called whenever
the timer expires.

The name of this function is timeout wake up and its definition is illustrated in Fig-
ure 3.22.

1 static void timeout_wake_up(unsigned long private_data)

Figure 3.22.: Definition of timeout wake up

17http://lxr.gwbnsh.net.cn/linux/Documentation/networking/netdevices.txt
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Through the pointer passed as a parameter, the function is able to get the private data
structure that contains the information of the task whose timer has expired. The expected
behaviour here would be to wake up only this task. However, waking up this task would
likely issue an I/O request on the network device that would eventually wake up all the
tasks in the event queue. Thus, we can just directly wake up all tasks in the queue.

3.2.7. Device removal

Either when a hardware device is unplugged or when Cryogenic is unloaded, one or more
devices may be removed from the system and some actions must be enacted in order to
keep the system’s consistency and avoid future errors.

For each target device that is actually being removed, the first job consists of restoring
the original address of the request fn method or the ndo start xmit function. This
is important since all hardware devices are still attached to the system after unloading
Cryogenic and the structures illustrated in Figure 3.4 remain in the kernel and they must
keep working properly. Then, all tasks that are waiting in the event queue are woken
up in order to delegate the error handling as we already explained. Lastly, the associated
character device created by Cryogenic and its corresponding device node is destroyed, and
the pm device instance is set as free. Note that Cryogenic cannot be unloaded if any of its
character devices are open.

In Section 3.2.3 we explained that a SCSI device that is unplugged while its character
device is open is not removed from the system, but its tasks are woken up. As a result,
when they return to pm poll, the system call will return a value indicating that they are
ready to proceed. The userspace application will then try to perform an I/O operation
on a device that is not present on the system anymore. Thus, the error handling is dele-
gated to the calls that actually manage the operation. Besides, if the hardware device is
plugged again before closing the descriptor, the userspace application is able to continue
its execution using the same descriptor.

The operation of network devices is subject to factors that are no guaranteed to re-
main unchanged after a possible reconnection, for example the type of IP address used
(IPv4/IPv6) or the network they belong to. Thus, the case of a device being reconnected
has not been considered for network devices and they are removed from Cryogenic after
they are unplugged. If an associated character device was open, the userspace application
must close it an open a new one to continue working.

3.3. Developer perspective

In this section we present the way developers should use Cryogenic’s API in order to
benefit from its capabilities. We illustrate with examples the code that must be added to
modify the behaviour of any application and give a clearer idea of the execution flow.

3.3.1. UDP client

To start with, consider the C code in Program 3.1 that implements a simple UDP client.
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Program 3.1: client.c

1 #include <arpa/inet.h>
2 #include <netinet/in.h>
3 #include <stdio.h>
4 #include <sys/types.h>
5 #include <sys/socket.h>
6 #include <unistd.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <time.h>

10

11 #define BUFLEN 512
12 #define PORT 666
13 #define SRV_IP "131.159.74.67"
14

15 int main(int argc, char *argv[])
16 {
17 struct sockaddr_in sock;
18 char buf[BUFLEN];
19 int sock_fd;
20 int i;
21

22 sock_fd = socket(PF_INET, SOCK_DGRAM, 0);
23 if (sock_fd < 0) {
24 perror("socket() failed\n");
25 exit(1);
26 }
27

28 memset((char *) &sock, 0, sizeof(sock));
29 sock.sin_family = AF_INET;
30 sock.sin_port = htons(PORT);
31 if (inet_aton(SRV_IP, &sock.sin_addr) == 0) {
32 fprintf(stderr, "inet_aton() failed\n");
33 exit(1);
34 }
35

36 struct timeval exec_t;
37 struct tm *t;
38

39 i = 1;
40 while(1) {
41

42 sprintf(buf, "%02d\0\n", i);
43

44 struct sockaddr *saddr = (struct sockaddr *) &sock;
45 if (sendto(sock_fd, buf, BUFLEN, 0, saddr, sizeof(sock)) < 0) {
46 perror("sendto() failed\n");
47 exit(1);
48 }
49 gettimeofday(&exec_t, NULL);
50 t = localtime(&exec_t.tv_sec);
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51 printf("Sent %02d [%02d:%02d:%02d.%03d]\n", i, t->tm_hour, t->
tm_min, t->tm_sec, (int) exec_t.tv_usec/1000);

52 ++i;
53

54 sleep(5);
55 }
56

57 close(sock_fd);
58

59 return 0;
60 }

This program creates a UDP socket and sends a packet to a server every 5 seconds.
Immediately after sending every packet, a message with the transmission number and a
timestamp is printed to the standard output as we can see in Figure 3.23. It is easy to notice
the period of 5 seconds between transmission looking at the timestamps.

1 # ./client
2 Sent 01 [16:17:56.322]
3 Sent 02 [16:18:01.323]
4 Sent 03 [16:18:06.323]
5 Sent 04 [16:18:11.323]
6 Sent 05 [16:18:16.324]

Figure 3.23.: Sample output of Program 3.1

Imagine now that we want to apply Cryogenic to give more flexibility to the transmis-
sion time. Figure 3.24 illustrates the behaviour of the UDP client before and after applying
the modifications.

t(s)0 5 10 15 20 25

d
w t(s)

t

Figure 3.24.: Behaviour of Program 3.1 before and after Cryogenic

The first timeline presents the normal operation: a transmission, represented by a red
cross, is issued every 5 seconds. The second timeline presents the operation under Cryo-
genic’s management. After every transmission, the program waits 4 seconds and then, a
window w of 2 seconds starts. This window is the margin we want to let the program to
send the next packet and Cryogenic will determine the time inside the window when the
packet will be actually transmitted. As a result, the transmissions will be issued between 4
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and 6 seconds after the previous one. These are, respectively, the delay d and the timeout
t that we will set later to the task.

In order to apply Cryogenic, the first thing we must do is adding the code that opens the
character device associated to the interface that will be used to send the packets, which we
must know beforehand. If it was, for instance, eth0, we would add the code illustrated
in Figure 3.25 before the main loop. The resulting file descriptor will be used later to call
ioctl and select.

1 int fd = open("/dev/cryogenic/eth0", O_RDWR);
2 if (fd < 0) {
3 perror("open() failed");
4 exit(1);
5 }

Figure 3.25.: Opening the character device

Next, we have to pass the delay and the timeout to the module. For that purpose, we
must define and use the struct pm times, presented in Section 3.2.5. Remember that
these times must be passed in milliseconds and they are relative times. The code added is
illustrated in Figure 3.26.

1 struct pm_times times;
2 times.delay_msecs = 4000;
3 times.timeout_msecs = 6000;

Figure 3.26.: Setting the delay and the timeout

Now it is time to call ioctl in order to actually pass the values to the module. The code
illustrated in Figure 3.27 is added at the beginning of the main loop. Note that the ioctl
command used is the one presented in Section 3.2.5 and thus we must define it here as
well.

1 int r;
2 r = ioctl(fd, PM_SET_DELAY_AND_TIMEOUT, &times);
3 if (r < 0) {
4 perror("ioctl() failed");
5 exit(1);
6 }

Figure 3.27.: Calling ioctl

The following step is calling select. This system call receives one or more file descrip-
tors and determines whether I/O becomes possible for any of them. The file descriptors
are passed as parameters by means of three sets: a set to check the availability of data for
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reading, a set to check the availability of space to write and a set for exceptional conditions
that usually involve TCP sockets. After calling select, all file descriptors will be removed
from the sets except those that are immediately ready to perform the corresponding I/O
operation and a value that describes the operations that could be performed is returned.

The select system call will internally execute pm poll, presented in Section 3.2.5.
Therefore, whenever select determines that a file descriptor is ready for reading or writ-
ing, it will be actually determining that the hardware device associated to that character
device is already active and Cryogenic allows the task to proceed its execution.

Thus, we need to create a set and add the file descriptor of the open character device.
We could use the read or the write set but not the set for exceptional conditions since the
implementation of pm poll does not support it. Figure 3.28 illustrates how to do this task.

1 fd_set wr;
2 FD_ZERO(&wr);
3 FD_SET(fd, &wr);

Figure 3.28.: Declaring and initialising the sets of file descriptors

After the declaration, the macro FD ZERO clears the sets and FD SET adds fd to the set
that monitors the availability of write operations. Now the call to select can eventually
be performed right before sending the packet. The code is shown in Figure 3.29.

1 r = select(fd+1, NULL, &wr, NULL, NULL);
2 if (r < 0) {
3 perror("select() failed");
4 exit(1);
5 }

Figure 3.29.: Calling select

The first parameter must be an integer one more than the maximum file descriptor in
any of the sets. Since we only have one descriptor, we just need to increase the descriptor
of the open device by one. The last parameter is a timeout that determines the longest
time that select may wait before returning. Since it is set to NULL, select will block
indefinitely until the descriptor becomes ready.

Eventually, it has to be checked with the FD ISSET macro that the file descriptor is still
in the set in order to effectively send the packet. The code that sends the packet should be
wrapped by and if statement, as Figure 3.30 shows.
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1 if (FD_ISSET(fd, &wr)) {
2

3 /* ... */
4

5 }

Figure 3.30.: Checking the presence of the file descriptor in the set

Lastly, the file descriptor must be closed before the end of the main function. Figure 3.31
illustrates the code that performs this operation.

1 close(fd);

Figure 3.31.: Closing the character device

After adding these excerpts of code and deleting the call to sleep, the program is ready
to run under the management of Cryogenic. The entire code with all the necessary in-
cludes, defines and declarations can be consulted in Section B.1.2.

To summarize, in every iteration of the loop, the call to ioctl sets the delay and the
timeout and select is called with the descriptor of the character device passed as a pa-
rameter. The execution will block there until the descriptor becomes available for writing,
that will happen between 4 and 6 seconds after the call and actually means that the net-
work device is active and sending the packet will not be expensive in terms of energy
consumption or, otherwise, the device has not been activated by others and the timeout
has expired forcing the packet to be sent anyway. Figure 3.32 illustrates the output of the
program.

1 # ./client-cryo
2 Sent 01 [16:24:01.852]
3 Sent 02 [16:24:06.860]
4 Sent 03 [16:24:11.566]
5 Sent 04 [16:24:17.580]
6 Sent 05 [16:24:23.596]
7 Sent 06 [16:24:29.612]
8 Sent 07 [16:24:33.908]
9 Sent 08 [16:24:39.916]

10 Sent 09 [16:24:45.932]
11 Sent 10 [16:24:50.940]

Figure 3.32.: Sample output of the program in Section B.1.2

This section is just an example to introduce the usage of the API. Developers may want
their tasks to have a different behaviour that fits better to the requirements and the oper-
ation of their applications. Therefore, they need to properly calculate the delay and the
timeout for each transmission.
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3.3.2. Filesystem synchronization

In this section we illustrate the usage of Cryogenic with SCSI devices and give a simple
example where the behaviour we want to achieve with Cryogenic requires the calculation
of a different delay and timeout for each task.

Consider the code in Program 3.2 that has a similar behaviour to the one in the previous
section.

Program 3.2: sync.c
1 #include <stdio.h>
2 #include <unistd.h>
3 #include <stdlib.h>
4 #include <string.h>
5

6 #include <time.h>
7 #include <sys/stat.h>
8 #include <fcntl.h>
9

10 #include <sys/ioctl.h>
11 #include <sys/select.h>
12 #include <sys/time.h>
13

14 #define BUFLEN 512
15

16 int main(int argc, char *argv[])
17 {
18 char buf[BUFLEN];
19 int i;
20

21 int fd_file = open(argv[1], O_RDWR|O_CREAT, S_IRUSR|S_IWUSR);
22 if (fd_file < 0) {
23 perror("open() failed");
24 exit(1);
25 }
26

27 struct timeval exec_t;
28 struct tm *t;
29

30 i = 1;
31 while(1) {
32

33 int b = sprintf(buf, "%d\n", i);
34

35 if (write(fd_file, buf, b) < 0) {
36 perror("write() failed\n");
37 exit(1);
38 }
39 sync();
40 gettimeofday(&exec_t, NULL);
41 t = localtime(&exec_t.tv_sec);
42 printf("Written %02d [%02d:%02d:%02d.%03d]\n", i, t->tm_hour,
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43 t->tm_min, t->tm_sec, (int) exec_t.tv_usec/1000);
44 ++i;
45

46 sleep(5);
47 }
48

49 close(fd_file);
50

51 return 0;
52 }

This program opens a file passed as a parameter and, every 5 seconds, it writes to the file
and then synchronizes the filesytem to actually write the changes to the hard drive. After
every synchronization a message with the writing number and a timestamp is printed to
the standard output.

Now we want to apply Cryogenic so that we define a tolerance window to send the
packet that will not be placed depending on the previous synchronization time, but on the
period. Figure 3.33 illustrates this behaviour.

t(s)0 5 10 15 20 25

d
w t(s)

t

Figure 3.33.: Behaviour of Program 3.2 before and after Cryogenic

The delay and the timeout for every synchronization are calculated in function of the
time of the previous one in order to make the middle of the window coincide with every
period of 5 seconds. This way, given a situation where the timeout of the task always
expires because no other tasks are using the device, the position of the windows will not
be affected in contrast to the program in the previous section, where the windows would
be increasingly displaced.

Add the code that opens the character device as we presented in the previous section.
Remember that now the file we must use is named after the serial number of the hard drive
where the file that is modified is stored.

Next we define a new variable for the tolerance and set it to 2 seconds. Then, we can
declare the variable of type pm times and set the delay and the timeout, respectively, to 5
seconds minus half the tolerance and 5 seconds plus half the tolerance, as it is illustrated
in Figure 3.34.
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1 unsigned long tolerance = 2000;
2 struct pm_times times;
3 times.delay_msecs = 5000 - tolerance/2.0;
4 times.timeout_msecs = 5000 + tolerance/2.0;

Figure 3.34.: Setting the delay and the timeout

These values will be only valid for the first synchronization. From now on we need
to calculate them in every iteration, so we need a variable that stores the time when the
synchronizations start. Add the code in Figure 3.35 right before the loop starts.

1 struct timeval start_t;
2 gettimeofday(&start_t, NULL);

Figure 3.35.: Getting the start time

The next steps are identical to the UDP client example: call ioctl, declare a set of
descriptors, add the descriptor of the character device, call select and wrap the code
that writes to the file and calls sync with the if statement that checks the presence of the
descriptor in the set.

Before the loop ends, we need to set the delay and the timeout for the next synchroniza-
tion. The code that performs this task is illustrated in Figure 3.36, that also includes the
code that prints the new calculated values to the standard output.

1 unsigned long start_t_msecs = (start_t.tv_sec*1000) + (start_t.tv_usec
/1000);

2 unsigned long exec_t_msecs = (exec_t.tv_sec*1000) + (exec_t.tv_usec
/1000);

3 times.delay_msecs = start_t_msecs + 5000*i - exec_t_msecs - tolerance
/2.0;

4 times.timeout_msecs = times.delay_msecs + tolerance;
5 printf(" - New delay: %lu\n", times.delay_msecs);
6 printf(" - New timeout: %lu\n", times.timeout_msecs);

Figure 3.36.: Calculating the new delay and timeout

The values are calculated the following way:

tdelayi = tstart + 5000× i− texeci−1 −
w

2
(3.1)

ttimeouti = tdelayi + w (3.2)

Figure 3.37 clarifies this equations. The addition of tstart, which is the time when the
main loop starts, and 5000 × i corresponds to the time of period i. Since the delay and
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timeout are passed as relative times, we need to subtract the time when the (i − 1)-th
synchronization is issued from the previous addition, obtaining as a result the time area
between texeci−1 and i. Finally, to obtain the delay for the current synchronization we just
need to subtract from this area half the duration of the window, and the timeout is the
result of adding half the window to this area or, easier, adding the window to tdelayi .

t(s)
1 2 i− 1 i

tdelayi

ttimeouti

texeci−1

w
2

tstart

Figure 3.37.: Times involved in the calculation of the delay and the timeout

After deleting the call to sleep the code is ready to be executed. The entire program
with all the modifications can be found in Section B.2.1.

Figure 3.38 illustrates the output of the program. We can observe the delay and the
timeout for the next synchronization after every writing and how it is respected: the syn-
chronizations are never issued before the delay or after the timeout. It is also noticeable
that great values come always after an early synchronization, and small values come after
late synchronizations. This allows to make the window coincide with the initial period of
5 seconds, as we explained before.

1 # ./sync-cryo file.txt
2 Written 01 [18:24:39.397]
3 - New delay: 3241
4 - New timeout: 5241
5 Written 02 [18:24:43.491]
6 - New delay: 4147
7 - New timeout: 6147
8 Written 03 [18:24:49.600]
9 - New delay: 3038

10 - New timeout: 5038
11 Written 04 [18:24:53.823]
12 - New delay: 3815
13 - New timeout: 5815
14 Written 05 [18:24:58.076]
15 - New delay: 4562
16 - New timeout: 6562
17 Written 06 [18:25:04.244]
18 - New delay: 3394
19 - New timeout: 5394

Figure 3.38.: Sample output of the program in Section B.2.1
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3.3.3. The GNUnet neighbour discovery

The examples we have presented so far were specially created in order to illustrate sam-
ple scenarios where Cryogenic could be beneficial and introduce the usage of its API. In
this section we want to test the ease of migration of an existing application that was not
originally thought to use Cryogenic. For this purpose, we provide and example where it is
applied on a real software, and evaluate then the effort needed to achieve the integration
of Cryogenic into the existing code.

The aforementioned software is GNUnet18, an official GNU package that provides a
framework for secure, decentralized peer-to-peer networking. GNUnet allows anonymous
censorship-resistant file-sharing, and provides link encryption, peer discovery, resource
allocation and communication over several transport protocols.

Ir order to connect with the others, peers in the GNUnet overlay network need to get
address information. Among other methods, GNUnet provides UDP neighbour discovery
in LAN to obtain this information. Every 5 minutes, the broadcast addresses of each IPv4
interface found are gathered and a HELLO message is sent to these addresses. Similarly, a
multicast request is created for each IPv6 interface and the HELLO message is sent to the
multicast groups.

The behaviour of this functionality gives the opportunity to apply Cryogenic in order
to reduce the power consumed by each network device. In order to allow the addition
and the correct operation of Cryogenic’s API, a previous modification is enacted: each
broadcast or multicast message is sent from a single task. This is a requirement, since we
need to open the corresponding file in /dev/cryogenic/ for each interface, and set the
delay and timeout and call select for each transmission.

Upon this, we can add to the file plugin transport udp broadcasting.c, located
under the transport/ directory in GNUnet’s source tree19, the code that belongs to Cryo-
genic. This file contains all the necessary structures and functions that perform the neigh-
bour discovery. We pay special attention to the following ones that are being modified:

struct BroadcastAddress

This structure contains a pointer to an address and a pointer to an instance of Plugin,
a structure that encapsulates information about the UDP transport protocol state. An
instance of this structure is created for each interface found.

static int iface proc()

This function is called for every interface found. If it is an IPv4 interface, it gets
its broadcast address and calls the function that issues the transmission. If it is an
IPv6 interface, it creates the multicast request and calls the function that issues the
transmission as well.

static void udp ipv4 broadcast send()

This function issues the transmission of a broadcast message through an IPv4 inter-
face and queues the following transmission.

18https://gnunet.org/
19https://gnunet.org/svn/gnunet/src/
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static int udp ipv6 broadcast send()

This function issues the transmission of a multicast message through an IPv6 inter-
face and queues the following transmission.

void stop broadcast()

This function disables the broadcasting functionality.

The code that is being added follows the same structure as the UDP client and the filesys-
tem synchronization examples, but looks slightly different, since we use the GNUnet’s API
to call some system calls, as well as to handle some errors.

The first step is adding to the BroadcastAddress structure two fields that save, re-
spectively, the file descriptor of the corresponding character device and the delay and
timeout for the transmissions. The new fields are illustrated in Figure 3.39. The structure
GNUNET DISK FileHandle is provided by the GNUnet’s API in order to handle open
files on different operating systems. The second new field is an instance of the structure
supplied by Cryogenic to handle the times, which we presented in Section 3.2.5.

1 #if LINUX
2 /**
3 * Cryogenic handle.
4 */
5 struct GNUNET_DISK_FileHandle *cryogenic_fd;
6

7 /**
8 * Time out for cryogenic.
9 */

10 struct pm_times cryogenic_times;
11 #endif

Figure 3.39.: New fields in struct BroadcastAddress

Next, the device node corresponding to each interface found should be opened. This is
done in the iface proc function, as Figure 3.40 illustrates. This code is added right before
calling the functions udp ipv4 broadcast send and udp ipv6 broadcast send.

The GNUNET DISK file open function is a GNUnet’s API function that opens a file. It
receives as parameters the name of the file to open and two flags that determine the open-
ing mode and the permissions, and returns an instance of the GNUNET DISK FileHandle
structure.

The interface name whose character device has to be opened is one of the parameters
that iface proc receives, and it is handled by means of other GNUnet’s functions in
order to build the entire path to the corresponding file.
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1 #if LINUX
2 /*
3 * setup Cryogenic FD for ipv4 broadcasting
4 */
5 char *filename;
6

7 GNUNET_asprintf (&filename,
8 "/dev/cryogenic/%s",
9 name);

10 if (0 == ACCESS (name, R_OK))
11 {
12 ba->cryogenic_fd =
13 GNUNET_DISK_file_open (filename,
14 GNUNET_DISK_OPEN_WRITE,
15 GNUNET_DISK_PERM_NONE);
16 }
17 GNUNET_free (filename);
18 #endif

Figure 3.40.: Opening the character device for an IPv4 interface

The following steps are calculating and setting the delay and the timeout for the trans-
mission and calling select. The code illustated in Figure 3.41 is added to the functions
that issue the transmission of a message.

In order to calculate the delay and the timeout we make use of the broadcast interval,
which is already stored in the Plugin structure that is passed to the functions as a pa-
rameter. As we want to place the new tolerance window in a symmetrical position with
respect to the current transmission period, the delay is set to the broadcast interval minus
the 50%, and the timeout is set to the broadcast interval plus the 50%.

GNUnet does not define any function in its API to call ioctl, thus the call is performed
using the usual API. If ioctl fails, the necessary actions to continue with the regular
system operation are enacted.

In contrast to ioctl, the call to select is performed through a GNUnet’s API func-
tion: GNUNET SCHEDULER add write file. The call to this function blocks until the file
descriptor passed as the second parameter becomes ready for writing. When this happens,
the function passed as the third parameter is called.

As we can see, we are calling the same function again, which will issue the transmission
in the first place and then, set the times and call select for the next one.

The code in Figure 3.41 corresponds to an IPv4 interface. For an IPv6 interface the code
would be identical but replacing all the appearances of udp ipv4 broadcast send with
the corresponding one for IPv6. In both cases, the code between lines 1 and 26 is added
before the call to GNUNET SCHEDULER add delayed, which appears in line 27. This func-
tion calls the function passed in the second parameter after the interval of time passed in
the first parameter. This is the current behaviour of the broadcasting and this line will be
executed only in case of an error.
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1 #if LINUX
2 /*
3 * Cryogenic
4 */
5 if (NULL != baddr->cryogenic_fd)
6 {
7 baddr->cryogenic_times.delay_msecs =
8 (plugin->broadcast_interval.rel_value_us/1000.0)*0.5;
9 baddr->cryogenic_times.timeout_msecs =

10 (plugin->broadcast_interval.rel_value_us/1000.0)*1.5;
11

12 if (ioctl(baddr->cryogenic_fd->fd,
13 PM_SET_DELAY_AND_TIMEOUT,
14 &baddr->cryogenic_times) < 0)
15 {
16 GNUNET_log_strerror (GNUNET_ERROR_TYPE_WARNING, "ioctl");
17 baddr->broadcast_task =
18 GNUNET_SCHEDULER_add_delayed (plugin->broadcast_interval,

&udp_ipv4_broadcast_send, baddr);
19 }
20 else
21 GNUNET_SCHEDULER_add_write_file (

GNUNET_TIME_UNIT_FOREVER_REL, baddr->cryogenic_fd,
22 &udp_ipv4_broadcast_send,
23 baddr);
24 }
25 else
26 #endif
27 baddr->broadcast_task =
28 GNUNET_SCHEDULER_add_delayed (plugin->broadcast_interval,
29 &udp_ipv4_broadcast_send, baddr);

Figure 3.41.: Setting the delay and the timeout and calling select for and IPv4 interface

Finally, all the open file descriptors should be closed before the neighbour discovery
ends. Figure 3.42 illustrates the codes that performs this task, added after the main while
loop in function stop broadcast. The pointer p points to a BroadcastAddress and it
is got previously in the function through the Plugin passed as a parameter.

1 #if LINUX
2 GNUNET_DISK_file_close(p->cryogenic_fd);
3 #endif

Figure 3.42.: Closing the character device descriptor

As we already mentioned, the code added to GNUnet follows the same structure and the
same flow of events as the previous examples. This is because the key of the behaviour of
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any application running under Cryogenic’s management is the delay and the timeout, and
their calculation is the only part of the code that completely depends on the developer. This
makes it possible to apply Cryogenic to any real software by using localized modifications
in all cases, regardless of the overall system complexity.

Besides, the implementation of Cryogenic by means of a module and its redefinition of
the POSIX system calls allows the developer to use existing APIs in most cases. This is an
advantage, since the developer does not need to learn a new API, but has to learn how to
make Cryogenic work properly.
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In this chapter we present the experiments performed in order to evaluate Cryogenic’s
operation. We present first the methodology used and provide guidelines to do the correct
setup. Upon this, we present the test programs and illustrate the results obtained.

4.1. Methodology

The first decision concerning the methodology followed to carry out the energy measure-
ments was the usage of a Raspberry Pi1 as the base system. The Raspberry Pi is a single-
board computer composed of a Broadcom system on a chip (SoC), a SD Card used for
booting and persistent storage, two USB and one ethernet ports, video and audio outputs
and other low-level peripherals. The Broadcom SoC is composed of an 700MHz ARM
processor and 512MB of RAM. The power is usually supplied through a MicroUSB cable.
Figure 4.1 shows a scheme of the Raspberry Pi.

Figure 4.1.: Raspberry Pi scheme

The main reason that led to this decision was the low baseline power consumption of a
Raspberry Pi, which is around 3.5W and tiny compared to a desktop or a laptop. This is
important, since this way we have a chance of observing the reduction in power consump-
tion. Other advantages are the possibility of supplying power to the Pi through the pin
header, that allows us to control the input voltage or current supplied, and obviously the
possibility of using a GNU/Linux distribution as the main operating system.

1http://www.raspberrypi.org/
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In order to measure the energy consumed by the Raspberry Pi, we supply a constant
input voltage Vi of 5V to the Pi and use an oscilloscope to measure the current draw I(t)
over the platform while the tests programs are running. Then, the power is calculated
applying the following formula:

P (t) = Vi × I(t) (4.1)

Finally, we integrate the power with respect to time to obtain the total energy consump-
tion:

E =

∫ b

a
P (t) dt (4.2)

Figure 4.2 illustrates the circuit used to perform the measurements. Power is supplied
using a DC power supply, and two probes are required: a current probe, represented by
a dotted line, and a voltage probe, represented by a dashed line. In particular, for our
experimentation we used a TTi CPX400D Dual 420 watt power supply, a Tektronix MSO
2024 mixed signal oscilloscope, a Tektronix A622 AC/DC current probe and the Raspberry
Pi was model B.

R-Pi

Oscilloscope

Figure 4.2.: Circuit diagram for measurements

The voltage probe measures the voltage on a specific General Purpose Input/Output
(GPIO) pin, which is previously configured as an output pin. When the execution of the
test programs start, the pin is set to its high value and provides a voltage of 3.3V. When the
execution finishes, it is set to its low value again and the output voltage drops to 0V. This
way we determine when the test programs start and end their execution.

4.2. Set Up

In this section we present how to set up the Raspberry Pi in order to successfully load
Cryogenic and run the test programs. We also illustrate how to assemble the different
components of the circuit in Figure 4.2.
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4.2.1. Raspberry Pi

For our experimentation on the Raspberry Pi, we used the last version of the Debian-based
distribution Raspbian, which at the time of writing is wheezy and can be downloaded from
www.raspberrypi.org/Downloads. As usual, the image must be written to a 4GB or
larger SD card using the UNIX tool dd.

Module Compilation

Cryogenic must be compiled before loading it on the Raspberry Pi. There are to ways
of doing this: compiling directly on the Pi or cross compiling on another GNU/Linux
system. Compiling on the Pi requires the installation of the corresponding Linux headers.
Although we managed to compile Cryogenic, further errors appeared at loading time and
we never succeeded to run Cryogenic after compiling it on the Pi. Thus, in this thesis we
document how to cross compile Cryogenic and we would strongly recommend to do it
this way.

First, download the latest Raspberry Pi compiler and set an environment variable that
points to its location:

1 # git clone https://github.com/raspberrypi/tools
2 # export CCPREFIX=/home/me/tools/arm-bcm2708/arm-bcm2708-linux-gnueabi/bin/arm-bcm2708-

linux-gnueabi-

Now, download the Raspberry Pi kernel source. Since wheezy uses the kernel version
3.6.11+, we must download it from the 3.6 stable code branch:

1 # mkdir raspbian
2 # cd raspbian
3 # git init
4 # git fetch git://github.com/raspberrypi/linux.git rpi-3.6.y:refs/remotes/origin/rpi-3.6.y
5 # git checkout rpi-3.6.y

Then set the following environment variable that points to the location of the source:

1 # export KERNEL_SRC=/home/me/raspbian

The next step is to compile the entire kernel. Although we will not use the resulting
image, we need to build Module.symvers and other intermediaries that will allow us to
compile the module.

Run the following command to ensure that we have a clean directory tree:

1 # make mrproper

Then copy the current configuration file of the Pi to the source location:

1 # scp pi@rpiaddress:/proc/config.gz .
2 # zcat config.gz > .config

Finally, write the configuration and compile the kernel:
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1 # make ARCH=arm CROSS_COMPILE=${CCPREFIX} oldconfig
2 # make ARCH=arm CROSS_COMPILE=${CCPREFIX}

At this point, go to the directory where Cryogenic source file is located and create the
Makefile to compile it:

1 obj-m += pm-rpi.o
2

3 all:
4 make ARCH=arm CROSS_COMPILE=${CCPREFIX} -C $(KERNEL_SRC) M=$(PWD)

modules
5

6 clean:
7 make -C $(KERNEL_SRC) M=$(PWD) clean

Run make and the object file pm-rpi.ko will be created. This file must be copied to the
Raspberry Pi.

Module Loading

Once the pm-rpi.ko file is present on the Pi, we can dynamically load or unload it run-
ning the following commands:

1 # insmod pm-rpi.ko
2 # rmmod pm-rpi.ko

To automatically load Cryogenic at boot time, edit the file /etc/modules, which con-
tains a list of modules that must be loaded at boot time, and append the following line:

1 pm-rpi

Next, create a directory under /lib/modules/3.6.11+/kernel/drivers/ called
pm-rpi/ and place here the object file pm-rpi.ko.

Finally, run the following command to rebuild the dependencies:

1 # depmod -a

Reboot the system and Cryogenic will be automatically loaded.

C Library for Broadcom BCM2835 Installation

In order to manage the GPIO pins, the bcm2835 library must be installed on the Raspberry
Pi. During our experimentation we used the version 1.32, that can be downloaded running
the following command:

1 wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.32.tar.gz

Now, we only need to extract the files, run the configuration script, compile and install:
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1 tar zxvf bcm2835-1.xx.tar.gz
2 cd bcm2835-1.xx
3 ./configure
4 make
5 sudo make check
6 sudo make install

4.2.2. Circuit assembly

The assembly of the circuit in Figure 4.2 is achieved through the pin header embedded in
the Raspberry Pi. Figure 4.3 shows the pin header layout.

12 16 18 22

7 11 13 15

Figure 4.3.: Pin header layout

The pins surrounded by red circles are power pins of 5V, the ones surrounded by white
circles are ground pins, and the ones surrounded by green circles are GPIO pins. The rest
are not important for our experimentation.

Thus, we should connect the positive pole of the power supply to one of the 5V pins, and
the negative pole to one of the ground pins. It is important to be aware of the polarity and
supply no more than 5V. Otherwise, the Pi could be damaged since there is no over-voltage
protection on the board.

Next, we need to connect the voltage probe to one of the GPIO pins, whose behaviour
can be controlled through software. The ground clamp of the probe should also be con-
nected to one of the ground pins. The number next to each GPIO pin in Figure 4.3 is its
identifier inside the pin header and is the number that we must use to control the be-
haviour of each specific pin.

Finally, place the current probe around one of the cables that connect the Pi to the power
supply, taking care to match the current direction indicator with the actual direction in the
circuit. There is no danger of damage, but the signal of the sample would be inverted in
case of placing it wrongly.

4.3. Test programs

Four shellscripts have been created in order to simulate different scenarios where the op-
eration of Cryogenic may vary. These scripts execute four instances of different versions of
the UDP client presented in Section 3.3.1, let them run for 60 seconds and then terminate
their execution.
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The versions of the UDP client are the following:

client.c [period (ms)]

Sends a UDP packet at every interval of time defined by the input parameter, which
defines a period.

client-rand.c [period (ms)]

Sends a UDP packet at a random time between the last transmission and two times
the period defined by the input parameter.

client-cryo.c [interface] [period (ms)] [tolerance (ms)]

Sends a UDP packet at every interval of time defined by the period plus/minus half
the tolerance. The actual time is determined by Cryogenic. The interface parameter
is the name of the active interface that is used to send the packets.

For all versions, we selected prime numbers for the period and the tolerance input pa-
rameters. This way, we make the appearance of collisions to be unlikely.

Next, we describe the shellscripts:

test1.sh [interface]

Runs two instances of client.c and two instances of client-cryo.c.

test1r.sh [interface]

Runs one instance of client.c, one instance of client-rand.c and two instances
of client-cryo.c.

test2.sh

Runs four instances of client.c.

test2r.sh

Runs one instance of client-rand.c and three instances of client.c.

These scripts also undertake to call the C programs that set the corresponding GPIO pin
to its high and low values when they start and finish their execution. These C programs,
as well as the UDP client versions and the scripts can be consulted in the Appendix of this
thesis.

4.4. Results

In this section we present the results of our research. Each experiment consists of a batch
run of the scripts presented in Section 4.3 in which we vary different factors, like the fre-
quency of packet transmission or the size of the packets sent.

In order to obtain results statistically significant, each script is executed ten times for
every experiment, and then the mean and the standard deviation of each set of results are
calculated.

While all these experiments were running, an HDMI monitor and a wired USB keyboard
were plugged to the Pi. The network device used was an Edimax EW-7811Un wireless USB
adapter.
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4.4.1. Baseline consumption

A first batch run enacted by the authors of [6] let us see that the baseline power consump-
tion of the Raspberry Pi was rather high compared to the specific power consumption of
the WiFi device. As a result, the percentage of consumption decrease was low and did not
reflect the real savings.

To solve this situation, we decided to measure first the baseline consumption of the
Pi with the WiFi device plugged but not connected to any wireless network. Then, for
each experiment, we subtract this baseline to the total energy consumed and calculate the
savings for the WiFi device only. Table 4.1 illustrates the results of these measurements.
The script baseline.sh, whose code is included in Section B.3.1, just sets the high value
for the GPIO pin, waits for 60 seconds and sets the low value for the pin again.

# Baseline
1 112.869877 J
2 112.934779 J
3 113.864178 J
4 114.061811 J
5 114.026117 J
6 114.005366 J
7 112.675130 J
8 112.943434 J
9 113.727830 J

10 113.918938 J
Mean 113.502746 J

Standard Deviation 0.569063 J

Table 4.1.: Baseline consumption results

4.4.2. Experiment 1

For this experiment, we connected the WiFi device to the network eduroam2 and set the
packet payload to 512 bytes. The period of packet transmission for every client and the
tolerance for the ones that use Cryogenic is shown in Table 4.2, expressed in milliseconds.
As we already mentioned, prime numbers are used in order to avoid collisions and the
tolerance window is the 50% of the period.

no Randomization Randomization
Cryogenic1 no Cryogenic1r Cryogenic2 no Cryogenic2r

client 5003 client 5003 client-rand 5003 client 5003
client 3533 client 3533 client 3533 client 3533

client-cryo 3001 1511 client 3001 client-cryo 3001 1511 client 3001
client-cryo 2503 1249 client 2503 client-cryo 2503 1249 client 2503

Table 4.2.: Transmission period and tolerance in milliseconds for Experiment 1

2https://www.eduroam.org/
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The superscripts on the header of the table denote which of the shellscripts presented in
Section 4.3 is executed in each case: 1 corresponds to test1.sh, 1r to test1r.sh, 2 to
test2.sh and 2r to test2r.sh. This notation is applied throughout this section.

The results obtained for these values are listed in Table 4.3. The row labeled as “Device
consumption” corresponds to the subtraction of the baseline, calculated in the previous
section, to the mean. The “Savings” row is the percentage of decrease of the Cryogenic test
programs with respect to the non-Cryogenic ones, distinguishing between the no random-
ized and the randomized cases.

no Randomization Randomization
# Cryogenic1 no Cryogenic1r Cryogenic2 no Cryogenic2r

1 118.231250 J 119.751021 J 119.356147 J 118.056000 J
2 117.313994 J 119.984405 J 117.449686 J 119.808370 J
3 116.243912 J 117.578811 J 117.572424 J 117.117942 J
4 117.970088 J 119.250669 J 118.407992 J 118.908278 J
5 119.608451 J 120.404512 J 119.870179 J 120.257686 J
6 119.873042 J 119.942403 J 118.956864 J 120.526507 J
7 117.779464 J 119.748845 J 118.428992 J 119.524538 J
8 119.651749 J 120.710930 J 119.631208 J 120.879302 J
9 120.822664 J 121.485627 J 120.808594 J 125.580573 J

10 120.891067 J 121.814166 J 122.029147 J 125.100955 J
Mean 118.838568 J 120.067139 J 119.251123 J 120.576015 J

Device consumption 5.335822 J 6.564393 J J 5.748377 J 7.073269 J
Standard deviation 1.555452 J 1.186711 J 1.422768 J 2.758853 J

Savings 18.72% 18.73%

Table 4.3.: Results of Experiment 1

As expected the test programs that use Cryogenic consume less energy than the others,
almost 20% in both cases. Nevertheless, taking into account the consumption values for
the WiFi device, we consider that the standard deviation obtained is high for all the sets,
especially for the non-Cryogenic test program that uses randomization, and this makes
these results less precise.

A possible explanation for such different values when running the same script is the
usage of eduroam, a wireless network that may have a large numbers of users generating
traffic that could cause interference. In order to work around this issue, we used a different
network for the following experiments.

4.4.3. Experiment 2

In this experiment, we connected the Pi to a protected wireless network specifically created
for the experimentation. This way, we guaranteed that any other user was able to connect
and cause interferences to the network.

The rest of parameters remained untouched: the transmission periods and tolerances
were the ones displayed in Table 4.2 and the payload size was 512 bytes. Table 4.4 illus-
trates the results for the new testing configuration.

50



4.4. Results

Looking at these results, the first thing we notice is that the consumption specific to the
WiFi device has increased between 2 and 3 joules. Several factors may explain this increase.
For instance, throughout the experimentation we noticed that the overall consumption
usually increases when the Pi has been on for a long period of time. There also exist other
factors related to the new network, like the router speed or the encryption used, that might
cause different packet overheads.

no Randomization Randomization
# Cryogenic1 no Cryogenic1r Cryogenic2 no Cryogenic2r

1 121.903248 J 121.550464 J 120.515872 J 121.008448 J
2 121.400528 J 121.399952 J 122.224240 J 121.673120 J
3 121.979152 J 120.989200 J 121.806688 J 121.534880 J
4 121.531632 J 121.297056 J 120.440608 J 122.748688 J
5 122.751792 J 123.730816 J 121.679616 J 123.309792 J
6 122.269840 J 122.510320 J 121.645088 J 122.855616 J
7 122.249616 J 122.806528 J 123.776688 J 123.280640 J
8 122.462464 J 123.320656 J 121.963504 J 122.951008 J
9 121.602608 J 122.018160 J 122.188176 J 123.209472 J

10 122.392544 J 122.096432 J 121.166000 J 122.385648 J
Mean 122.054342 J 122.171958 J 121.740648 J 122.495731 J

Device consumption 8.551596 J 8.669212 J 8.237902 J 8.992985 J
Standard deviation 0.445371 J 0.909376 J 0.952592 J 0.817383 J

Savings 1.36% 8.40%

Table 4.4.: Results of Experiment 2

Although the energy consumption has increased, the savings in these experiments are
more moderate, especially in the case of no randomization, where the decrease is smaller
than 2%. However, for the not randomized case, the standard deviation of the non-Cryogenic
test programs is almost two times the deviation of the Cryogenic tests, and this could have
affected to the final result.

In spite of this difference, it is important to note that the standard deviation is now
smaller than 1 joule in all cases. This fact, along with the overall consumption increase,
makes these results to be more precise than the results of the first experiment.

Since Cryogenic may defer the transmission of some packets, we wanted to check that
the savings obtained were not due to the transmission of fewer packets. Therefore, we de-
cided to calculate the energy consumption per packet sent. Table 4.5 illustrates the results.

For each test program, the table displays the WiFi device consumption and the num-
ber of packets sent in every run. With these values, we calculate the consumption per
packet and obtain the mean and the standard deviation of each set. Again, The “Sav-
ings/Packet” row is the percentage of decrease of the Cryogenic results with respect to the
non-Cryogenic results.

As we suspected, the test programs that use Cryogenic sent fewer packets than the rest.
However, the usual behaviour is that a Cryogenic client sends only one less packet than a
non-Cryogenic one, and this is not a consequence of the deferment, but a consequence of
the client design. It is easy to notice this issue just comparing the code of both versions:
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client.c sends a packet right after the main loops starts, waits a period, sends the fol-
lowing packet and so on; in contrast, client-cryo.c assigns the delay and the timeout
and calls select at the beginning of the loop, forcing the first transmission to wait.

no Randomization
# Cryogenic1 no Cryogenic1r

1 8.400502 J 71 pkt 0.118317 J 8.047718 J 73 pkt 0.110243 J
2 7.897782 J 71 pkt 0.111236 J 7.897206 J 73 pkt 0.108181 J
3 8.476406 J 73 pkt 0.116115 J 7.486454 J 73 pkt 0.102554 J
4 8.028886 J 71 pkt 0.113083 J 7.794310 J 73 pkt 0.106771 J
5 9.249046 J 71 pkt 0.130268 J 10.228070 J 73 pkt 0.140111 J
6 8.767094 J 71 pkt 0.123480 J 9.007574 J 73 pkt 0.123391 J
7 8.746870 J 71 pkt 0.123195 J 9.303782 J 73 pkt 0.127449 J
8 8.959718 J 71 pkt 0.126193 J 9.817910 J 73 pkt 0.134492 J
9 8.099862 J 71 pkt 0.114083 J 8.515414 J 73 pkt 0.116650 J

10 8.889798 J 71 pkt 0.125208 J 8.593686 J 73 pkt 0.117722 J
Mean 0.120118 J Mean 0.118756 J

Standard deviation 0.006418 J Standard deviation 0.012457 J
Savings/Packet -1.15%

Randomization
# Cryogenic2 no Cryogenic2r

1 7.013126 J 76 pkt 0.092278 J 7.505702 J 78 pkt 0.096227 J
2 8.721494 J 76 pkt 0.114757 J 8.170374 J 78 pkt 0.104748 J
3 8.303942 J 76 pkt 0.109262 J 8.032134 J 78 pkt 0.102976 J
4 6.937862 J 76 pkt 0.091288 J 9.245942 J 78 pkt 0.118538 J
5 8.176870 J 76 pkt 0.107590 J 9.807046 J 78 pkt 0.125731 J
6 8.142342 J 76 pkt 0.107136 J 9.352870 J 78 pkt 0.119909 J
7 10.273942 J 76 pkt 0.135183 J 9.777894 J 78 pkt 0.125358 J
8 8.460758 J 76 pkt 0.111326 J 9.448262 J 78 pkt 0.121132 J
9 8.685430 J 76 pkt 0.114282 J 9.706726 J 78 pkt 0.124445 J

10 7.663254 J 76 pkt 0.100832 J 8.882902 J 78 pkt 0.113883 J
Mean 0.108393 J Mean 0.115295 J

Standard deviation 0.012534 J Standard deviation 0.010479 J
Savings/Packet 5.99%

Table 4.5.: Consumption per packet for Experiment 2

Regarding the consumption per packet, the results are contradictory since we got a
smaller consumption for Cryogenic packets when using randomization but greater when
not. As we pointed for the overall consumption in the not randomized case, the standard
deviation for for the non-Cryogenic result is almost two times the deviation of the Cryo-
genic one, which may explain this unexpected result.

In order to see how Cryogenic modifies the transmission time of some packets, in this
experiment we plotted the packets sent by the test programs that are not randomized. The
result is displayed in Figure 4.4.

We can see how, for both test programs, the transmission of the packets that belong to
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client 1 and 2 coincide, since the periods are the same and none of them use Cryogenic. In
contrast, the transmissions of client 3 and 4 do not coincide, since these use Cryogenic. It
is easy to notice how packets defer or anticipate their transmission so that they coincide
with the transmission of other packets.
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Figure 4.4.: Packet transmission times for not randomized test programs
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Figure 4.5.: Current draw of non-Cryogenic test program

Due to the large number of current samples taken and the short transmission periods, it
would be difficult to see the impact of these modified transmissions on the energy con-
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sumption if we plotted the current draw for the whole experiment duration. For this
reason, Figure 4.5 illustrates the current draw between seconds 42 and 42.75 for non-
Cryogenic test program.

We can see the transmission of three packets, separated some milliseconds, correspond-
ing from left to right to client 3, 2 and 4. Each transmission provokes a peak in the current
draw, that will be translated in a peak of energy.

When running the Cryogenic test program, the packet sent by client 3 defers its trans-
mission, and the transmission of the packet that belongs to client 4 is anticipated, so that
both packets and the packet that belongs to client 2, which does not use Cryogenic, are
sent almost at the same time. This behaviour is illustrated in Figure 4.6.

As we can see, the number of current peaks decreases from three to only one, consum-
ings as a result less energy than the non-Cryogenic test program in the same period of
time.
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Figure 4.6.: Current draw of Cryogenic test program

4.4.4. Experiment 3

In order to boost the energy consumption of the WiFi device, in this experiment we mod-
ified the period of packet transmission so that packets were sent at double frequency. Ta-
ble 4.6 illustrates the new period and tolerance values. Note that we keep using prime
numbers and the tolerance is still 50% of the period.
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no Randomization Randomization
Cryogenic1 no Cryogenic1r Cryogenic2 no Cryogenic2r

client 2503 client 2503 client-rand 2503 client 2503
client 1747 client 1747 client 1747 client 1747

client-cryo 1499 751 client 1499 client-cryo 1499 751 client 1499
client-cryo 1249 631 client 1249 client-cryo 1249 631 client 1249

Table 4.6.: Transmission period and tolerance in milliseconds for Experiment 3

The results of Experiment 3 are illustrated in Table 4.7. From this experiment on, both
the overall savings and the savings per packet are displayed in the same table and only the
relevant data to interpret the result is included.

no Randomization Randomization
Cryogenic1 no Cryogenic1r Cryogenic2 no Cryogenic2r

Total consumption 122.831509 J 123.508019 J 123.456717 J 123.825835 J
Device consumption 9.328763 J 10.005273 J 9.953971 J 10.323089 J

Standard deviation 0.454201 J 0.347781 J 0.423930 J 0.478646 J
Savings 6.76% 3.58%

Consumption/Packet 0.064243 J 0.067833 J 0.066630 J 0.068227 J
Standard deviation 0.002991 J 0.002348 J 0.002904 J 0.003110 J

Savings/Packet 5.29% 2.34%

Table 4.7.: Results of Experiment 3

Although we expected to obtain a consumption two times greater than in Experiment
2, the increase is smaller than a 20% in all cases. This issue, along with the unexpected
consumption increase between Experiment 1 and Experiment 2, makes us think that a
factor not related to the network made the consumption in Experiment 2 to be greater than
usual.

On the other hand, it is easy to notice that, so far, this is the experiment with best results
in terms of standard deviation, which confirms our suppositions about the unpredictable
behaviour of eduroam. Again, the consumption is smaller for the test programs that use
Cryogenic, and the same happens for the consumption per packet.

4.4.5. Experiment 4

The target of this experiment was to test how the size of the packets sent affects to the
consumption. Thus, we increased the payload size from 512 to 1000 bytes and kept the
period untouched. The results are illustrated in Table 4.8.

As we can see, the consumption not only has not increased, but has slightly decreased.
Nevertheless, we consider this decrease is not significant, since it is caused because of
the division of this experiment in two different days. We already pointed that the overall
consumption usually increases when the Pi has been on for a long time, which was the
case for runs 1 to 6. Runs 7 to 10 were performed on a different day, when the Pi had been
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on for less time. This explains the consumption decrease, as well as the worse values for
standard deviation.

no Randomization Randomization
Cryogenic1 no Cryogenic1r Cryogenic2 no Cryogenic2r

Total consumption 122.641411 J 122.945605 J 122.614053 J 123.674467 J
Device consumption 9.138665 J 9.442859 J 9.111307 J 10.171721 J

Standard deviation 1.708826 J 1.151604 J 1.138469 J 1.308511 J
Savings 3.22% 10.43%

Consumption/Packet 0.063025 J 0.063935 J 0.061150 J 0.067326 J
Standard deviation 0.011785 J 0.007803 J 0.007641 J 0.008721 J

Savings/Packet 1.42% 9.17%

Table 4.8.: Results of Experiment 4

Thus, we can conclude that the increase of the payload size did not significantly affect
to the energy consumed. Obviously, we cannot generalize this conclusion to any increase,
since the transmission of packets with size greater than the network’s MTU would cause
the fragmentation of these packets, sending as a result more packets.

In spite of obtaining values slightly greater for the standard deviation in this experiment,
the consumption is still smaller for the test programs that use Cryogenic. We can also
observe that the consumption per packet is smaller for the Cryogenic clients.

Furthermore, we notice that the values obtained are similar to the values of consumption
per packet obtained in Experiment 3, in contrast to the values obtained in Experiment 2,
which are are almost two times greater.

4.4.6. Experiment 5

For this last experiment we preserved the payload size and halved again the transmission
period. Table 4.9 shows the new used values.

no Randomization Randomization
Cryogenic1 no Cryogenic1r Cryogenic2 no Cryogenic2r

client 1249 client 1249 client-rand 1249 client 1249
client 877 client 877 client 877 client 877

client-cryo 751 373 client 751 client-cryo 751 373 client 751
client-cryo 631 313 client 631 client-cryo 631 313 client 631

Table 4.9.: Transmission period and tolerance in milliseconds for Experiment 5

The results of this experiment are displayed in Table 4.10. This time, we can observe how
increasing the transmission frequency a 100% caused an increase of energy consumption
by about 100% as well. The standard deviation slightly increased compared to Experiment
4, but the increase is smaller than the consumption increase, so we consider they are rather
significant results.
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no Randomization Randomization
Cryogenic1 no Cryogenic1r Cryogenic2 no Cryogenic2r

Total consumption 133.103653 J 133.881750 J 132.757357 J 133.363406 J
Device consumption 19.600907 J 20.379004 J 19.254611 J 19.860660 J

Standard deviation 0.698003 J 1.194147 J 1.078104 J 0.670387 J
Savings 3.82% 3.05%

Consumption/Packet 0.067543 J 0.069791 J 0.065247 J 0.066871 J
Standard deviation 0.002417 J 0.004090 J 0.003635 J 0.002257 J

Savings/Packet 3.22% 2.43%

Table 4.10.: Results of Experiment 5

As before, the energy consumption is smaller for the programs that use Cryogenic, and
the same happens for the consumption per packet. The final consumption per packet is
also similar to the values obtained in Experiments 3 and 4.
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5. Conclusions & Future Work

Throughout the experimentation we were able to notice that several factors may affect the
energy measurements. We already pointed that using different networks or performing
experiments at different times with respect to the moment when the Pi was powered on
may cause variations on the results. The WiFi device model used for the experiments may
also have an impact, as well as the current probe tolerance, its initial calibration accuracy,
or the oscilloscope’s sampling frequency.

However, there is a clear trend to reduce the energy consumed by the WiFi device. Leav-
ing apart Experiment 1, performed with a different network that led to imprecise results,
we achieved savings between 1% and 10% for the consumption specific to the WiFi device.
We also made sure that these savings were not a consequence of doing less work by mea-
suring the consumption per packet sent. The results are similar: between 1% and 9% of
savings.

The reduction achieved is moderate, but the modifications applied on the original ap-
plication are simple and localized, as we presented in Section 3.3. Therefore, the effort
needed to benefit from Cryogenic is fair compared to the savings obtained. Besides, this
reduction also accomplishes our initial expectations, since our goal was the achievement
of savings while performing the same amount of work. It is important to point as well that
the Cryogenic test programs were not completely flexible to obtain savings, since only half
the packets sent were actually using Cryogenic.

As a further step, we plan to perform more energy measurements using a GSM radio,
a common device nowadays for smartphones. We are also willing to integrate Cryogenic
with more existing applications and to submit the patch to the Linux Kernel Mailing List,
in order to achieve the inclusion of Cryogenic in the mainline Linux kernel.
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A. Module

This chapter presents the source code of Cryogenic.

1 #include <linux/module.h>
2 #include <linux/cdev.h>
3 #include <linux/kallsyms.h>
4 #include <linux/netdevice.h>
5 #include <linux/poll.h>
6 #include <scsi/scsi_device.h>
7 #include <scsi/scsi_eh.h>
8

9 #define MAX_DEVICES 10
10 #define FREE_SLOT -1
11 #define DEVICE_NAME "cryogenic"
12 #define PM_IOC_MAGIC ’k’
13 #define SET_DELAY_AND_TIMEOUT _IOW(PM_IOC_MAGIC, 1, struct pm_times)
14 #define SCSI_TIMEOUT (2*HZ)
15 #define MAX_SERIAL_NUMBER_SIZE 21
16

17

18 struct pm_device {
19 int minor;
20 const char *name;
21 struct cdev pm_cdev;
22 struct device *dev;
23 wait_queue_head_t event_queue;
24 int unplugged;
25 request_fn_proc *scsi_request_fn_address;
26 unsigned char serial_number[MAX_SERIAL_NUMBER_SIZE];
27 int scsi_cdev_open;
28 struct net_device_ops my_ops;
29 const struct net_device_ops *old_ops;
30 };
31

32

33 struct pm_private {
34 int first_poll;
35 unsigned long min_delay;
36 struct timer_list timer;
37 int timer_added;
38 struct pm_device *pm_dev;
39 };
40

41

42 struct pm_times {
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43 unsigned long delay_msecs;
44 unsigned long timeout_msecs;
45 };
46

47

48 static int major;
49 static int device_open;
50 static struct class *pm_class;
51 static struct pm_device *pm_devices;
52 static void *scsi_uevent_address;
53 static void *net_uevent_address;
54 static unsigned int scsi_inq_timeout = SCSI_TIMEOUT/HZ + 18;
55

56 static int pm_open(struct inode *, struct file *);
57 static int pm_release(struct inode *, struct file *);
58 static unsigned int pm_poll(struct file *, struct poll_table_struct *);
59 static long pm_ioctl(struct file *, unsigned int, unsigned long);
60

61 static int scsi_uevent_interceptor(struct device *dev,
62 struct kobj_uevent_env *env);
63 static int net_uevent_interceptor(struct device *dev,
64 struct kobj_uevent_env *env);
65 static void request_fn_interceptor(struct request_queue *);
66 static netdev_tx_t ndo_start_xmit_interceptor(struct sk_buff *,
67 struct net_device *);
68

69 static int create_device(struct pm_device *, struct device *, int);
70 static int remove_device(struct pm_device *);
71 static void clean_module(void);
72 static int assign_scsi_devices(struct device *, void *);
73 static int set_scsi_serial_number(struct scsi_device *,
74 unsigned char *);
75 static int for_each_net_device(int *);
76 static void wake_up_tasks(wait_queue_head_t *);
77 static void timeout_wake_up(unsigned long);
78 static void enable_hotplugging(void);
79 static void disable_hotplugging(void);
80 static void plug_device(struct device *);
81 static void unplug_device(struct device *);
82 static int scsi_device_reconnected(struct device *);
83

84 MODULE_AUTHOR("A. Morales Ruiz");
85 MODULE_LICENSE("GPL");
86

87 extern struct bus_type scsi_bus_type;
88

89 static struct file_operations pm_fops = {
90 .owner = THIS_MODULE,
91 .open = pm_open,
92 .release = pm_release,
93 .poll = pm_poll,
94 .unlocked_ioctl = pm_ioctl
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95 };
96

97

98 /* ***** init/exit methods ***** */
99

100

101 /*
102 * Gets a range of minor numbers [0..MAX_DEVICES],
103 * creates the device class, allocates an array for
104 * MAX_DEVICES devices and marks all slots as free,
105 * creates existing devices, enables hotplugging
106 * and marks the device as not open
107 */
108 static int __init pm_init(void)
109 {
110 dev_t tmp_dev;
111 int err;
112 int i;
113 int n;
114

115 tmp_dev = 0;
116 err = alloc_chrdev_region(&tmp_dev, 0, MAX_DEVICES, DEVICE_NAME);
117 if (err < 0) {
118 printk(KERN_WARNING "Cryogenic could not be loaded
119 [alloc_chrdev_region() failed].\n");
120 return err;
121 }
122

123 major = MAJOR(tmp_dev);
124

125 pm_class = class_create(THIS_MODULE, DEVICE_NAME);
126 if (IS_ERR(pm_class)) {
127 clean_module();
128 printk(KERN_WARNING "Cryogenic could not be loaded
129 [class_create() failed].\n");
130 return PTR_ERR(pm_class);
131 }
132

133 pm_devices = (struct pm_device *)kzalloc(MAX_DEVICES*sizeof(struct
pm_device), GFP_KERNEL);

134 if (pm_devices == NULL) {
135 clean_module();
136 printk(KERN_WARNING "Cryogenic could not be loaded
137 [kzalloc() failed].\n");
138 return -ENOMEM;
139 }
140 for (i = 0; i < MAX_DEVICES; ++i) {
141 pm_devices[i].minor = FREE_SLOT;
142 pm_devices[i].unplugged = FREE_SLOT;
143 }
144

145 n = 0;

65



A. Module

146 err = bus_for_each_dev(&scsi_bus_type, NULL, (void *) &n,
147 assign_scsi_devices);
148 if (err < 0) {
149 clean_module();
150 printk(KERN_WARNING "Cryogenic could not be loaded
151 [assign_scsi_devices() failed].\n");
152 return err;
153 }
154

155 err = for_each_net_device(&n);
156 if (err < 0) {
157 clean_module();
158 printk(KERN_WARNING "Cryogenic could not be loaded
159 [for_each_net_device_() failed].\n");
160 return err;
161 }
162

163 enable_hotplugging();
164

165 device_open = 0;
166

167 printk(KERN_INFO "Cryogenic was loaded [MAJOR number %d].\n",
168 major);
169

170 return 0;
171

172 }
173

174

175 /*
176 * Cleans all the module data and disables hotplugging
177 */
178 static void __exit pm_exit(void)
179 {
180 if (!device_open) {
181 clean_module();
182 disable_hotplugging();
183 printk(KERN_INFO "Cryogenic was unloaded.\n");
184 }
185 else printk(KERN_INFO "Cryogenic is in use.\n");
186

187 }
188

189

190 /* ***** new system call methods ***** */
191

192

193 /*
194 * Allocates and initialises private_data and increases the counter
195 */
196 static int pm_open(struct inode *inode, struct file *filp)
197 {
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198 struct pm_private *priv;
199 int minor = iminor(filp->f_dentry->d_inode);
200

201 priv = kzalloc (sizeof (struct pm_private), GFP_KERNEL);
202 if (priv == NULL) {
203 printk(KERN_WARNING "Cryogenic: Device could not be opened
204 [kzalloc() failed].\n");
205 return -ENOMEM;
206 }
207

208 filp->private_data = priv;
209 priv->pm_dev = &pm_devices[minor];
210 priv->timer.function = timeout_wake_up;
211 priv->timer.data = (unsigned long) priv;
212 priv->timer_added = 0;
213 init_timer(&priv->timer);
214

215 if (scsi_is_sdev_device(pm_devices[minor].dev))
216 pm_devices[minor].scsi_cdev_open++;
217 device_open++;
218 try_module_get(THIS_MODULE);
219

220 return 0;
221 }
222

223

224 /*
225 * Frees private_data and decreases the counter
226 */
227 static int pm_release(struct inode *inode, struct file *filp)
228 {
229 struct pm_private *priv = filp->private_data;
230 int minor = iminor(filp->f_dentry->d_inode);
231

232 if (priv->timer_added) {
233 del_timer(&priv->timer);
234 priv->timer_added = 0;
235 }
236 kfree(priv);
237

238 /* We check if it is a scsi device this way because
239 * if the device has been unplugged, the call to
240 * scsi_is_sdev_device may return NULL */
241 if (pm_devices[minor].scsi_request_fn_address != NULL) {
242 pm_devices[minor].scsi_cdev_open--;
243 if (pm_devices[minor].unplugged == 1 &&
244 pm_devices[minor].scsi_cdev_open == 0) {
245 remove_device(&pm_devices[minor]);
246 printk(KERN_INFO "Cryogenic: Device %s was removed.\n",
247 pm_devices[minor].serial_number);
248 pm_devices[minor].minor = FREE_SLOT;
249 pm_devices[minor].unplugged = FREE_SLOT;
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250 }
251 }
252 device_open--;
253 module_put(THIS_MODULE);
254

255 return 0;
256 }
257

258

259 /*
260 * Returns whether a device can be used (> 0) or not (0)
261 * In case it can’t be used, the call is queued and a timer is added
262 */
263 static unsigned int pm_poll(struct file *filp, struct poll_table_struct

*table)
264 {
265 struct pm_private *priv = filp->private_data;
266 int minor = iminor(filp->f_dentry->d_inode);
267

268 /*
269 * unplugged == 1 -> return that poll is ready, delegate error

handling
270 *
271 * first_poll == 0 -> timeout expired or call from interceptor
272 * otherwise -> first time we call poll
273 */
274 if (pm_devices[minor].unplugged == 1 ||
275 ((jiffies >= priv->min_delay) && !priv->first_poll)) {
276 if (priv->timer_added) {
277 del_timer(&priv->timer);
278 priv->timer_added = 0;
279 }
280

281 return POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM;
282 }
283

284 priv->first_poll = 0;
285 poll_wait(filp, &pm_devices[minor].event_queue, table);
286

287 /* If timeout == MAX, do NOT add_timer */
288 if (!priv->timer_added && priv->timer.expires > jiffies) {
289 add_timer(&priv->timer);
290 priv->timer_added = 1;
291 }
292

293 return 0;
294 }
295

296

297 /*
298 * Sets the min delay and the maximum timeout
299 * We assume time is given in milliseconds
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300 * jiffies = msec*HZ/1000
301 */
302 static long pm_ioctl(struct file *filp, unsigned int cmd, unsigned long

arg)
303 {
304 unsigned long j;
305 struct pm_times *times;
306 struct pm_private *priv = filp->private_data;
307 priv->first_poll = 1;
308 if (priv->timer_added) {
309 del_timer(&priv->timer);
310 priv->timer_added = 0;
311 }
312 switch(cmd) {
313 case SET_DELAY_AND_TIMEOUT:
314 if (!access_ok(VERIFY_WRITE, (void *) arg, sizeof(struct

pm_times)))
315 return -EFAULT;
316 times = (struct pm_times *) arg;
317 if (times->delay_msecs > times->timeout_msecs)
318 return -EINVAL;
319 j = jiffies;
320 priv->min_delay = j + (times->delay_msecs * HZ)/1000;
321 priv->timer.expires = j + (times->timeout_msecs * HZ)/1000;
322 break;
323 default:
324 return -ENOTTY;
325 }
326

327 return 0;
328 }
329

330

331 /* ***** interceptors ***** */
332

333

334 /*
335 * Dynamically adds or removes scsi devices when
336 * these are plugged/unplugged
337 */
338 static int scsi_uevent_interceptor(struct device *dev,
339 struct kobj_uevent_env *env)
340 {
341 typedef int uevent(struct device *dev, struct kobj_uevent_env *env);
342 uevent *original_uevent;
343 int res;
344

345 if (scsi_is_sdev_device(dev) &&
346 !strncmp(env->envp[0], "ACTION=add", 10)) {
347 plug_device(dev);
348

349 }
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350 else if (scsi_is_sdev_device(dev) &&
351 !strncmp(env->envp[0], "ACTION=remove", 13))
352 unplug_device(dev);
353

354 original_uevent = (uevent *) scsi_uevent_address;
355 res = original_uevent(dev, env);
356 return res;
357 }
358

359

360 /*
361 * Dynamically adds or removes network devices when
362 * these are plugged/unplugged
363 */
364 static int net_uevent_interceptor(struct device *dev,
365 struct kobj_uevent_env *env)
366 {
367 typedef int uevent(struct device *dev, struct kobj_uevent_env *env);
368 uevent *original_uevent;
369 int res;
370

371 if (env->envp_idx > 0 &&
372 !strncmp(env->envp[0], "ACTION=add", 10))
373 plug_device(dev);
374 else if (env->envp_idx > 0 &&
375 !strncmp(env->envp[0], "ACTION=remove", 13))
376 unplug_device(dev);
377

378 original_uevent = (uevent *) net_uevent_address;
379 res = original_uevent(dev, env);
380 return res;
381 }
382

383

384 /*
385 * Intercepts the call to the request_fn method
386 * for every disk and calls its original method
387 */
388 static void request_fn_interceptor(struct request_queue *q)
389 {
390 int i;
391 request_fn_proc *address = NULL;
392 typedef void request(struct request_queue *);
393 request *original_request;
394

395 for (i = 0; (i < MAX_DEVICES) && address == NULL; ++i) {
396 if (pm_devices[i].minor != FREE_SLOT) {
397 if (scsi_is_sdev_device(pm_devices[i].dev)) {
398 struct scsi_device *sdev =
399 to_scsi_device(pm_devices[i].dev);
400 if (sdev->request_queue == q)
401 address = pm_devices[i].scsi_request_fn_address;
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402 }
403 }
404 }
405

406 if (address == NULL)
407 printk(KERN_WARNING "Cryogenic: Requested device
408 was unplugged.");
409 else {
410 --i;
411 wake_up_tasks(&pm_devices[i].event_queue);
412 original_request = (request *) address;
413 original_request(q);
414 }
415 }
416

417

418 /*
419 * Intercepts the call to the ndo_start_xmit method
420 * for every network device and calls its original method
421 */
422 static netdev_tx_t ndo_start_xmit_interceptor(struct sk_buff *skb,
423 struct net_device *dev)
424 {
425 void *address = NULL;
426 typedef netdev_tx_t xmit(struct sk_buff *skb, struct net_device *dev

);
427 xmit *original_xmit;
428

429 int i;
430 for (i = 0; (i < MAX_DEVICES) && address == NULL; ++i) {
431 if (pm_devices[i].minor != FREE_SLOT) {
432 if (!scsi_is_sdev_device(pm_devices[i].dev)) {
433 struct net_device *netdev =
434 to_net_dev(pm_devices[i].dev);
435 if (netdev == dev) {
436 address = pm_devices[i].old_ops->ndo_start_xmit;
437 }
438 }
439 }
440 }
441

442 if (address == NULL) {
443 printk(KERN_WARNING "Cryogenic: Requested device
444 was unplugged.");
445 return NETDEV_TX_BUSY;
446 }
447 --i;
448 wake_up_tasks(&pm_devices[i].event_queue);
449 original_xmit = (xmit *) address;
450 return original_xmit(skb, dev);
451 }
452

71



A. Module

453

454 /* ***** other methods ***** */
455

456

457 /*
458 * Sets fields of the pm_device struct and creates
459 * a new character device
460 */
461 static int create_device(struct pm_device *pm_dev,
462 struct device *dev, int minor)
463 {
464 int err;
465 struct device *device;
466 const char *name;
467 dev_t current_dev = MKDEV(major, minor);
468

469 pm_dev->minor = minor;
470 pm_dev->name = dev_name(dev);
471 pm_dev->unplugged = 0;
472 pm_dev->scsi_cdev_open = 0;
473

474 if (scsi_is_sdev_device(dev)) {
475 struct scsi_device *sdev = to_scsi_device(dev);
476 if (set_scsi_serial_number(sdev, pm_dev->serial_number) == 1)
477 name = pm_dev->serial_number;
478 else {
479 /* The scsi inquiry that gets the serial number of the
480 * device may sometimes fail. In this case, we name the
481 * char device after the scsi address and set the
482 * seral_number field to the null character */
483 name = pm_dev->name;
484 pm_dev->serial_number[0] = ’\0’;
485 }
486 }
487 else
488 name = pm_dev->name;
489

490 cdev_init(&pm_dev->pm_cdev, &pm_fops);
491 pm_dev->pm_cdev.owner = THIS_MODULE;
492 err = cdev_add(&(pm_dev->pm_cdev), current_dev, 1);
493 if (err < 0) {
494 printk(KERN_WARNING "Cryogenic: Error [cdev_add() failed].\n");
495 return err;
496 }
497

498 device = device_create(pm_class, NULL, current_dev, NULL,
499 "cryogenic/%s", name);
500 if (IS_ERR(device)) {
501 cdev_del(&(pm_dev->pm_cdev));
502 printk(KERN_WARNING "Cryogenic: Error
503 [device_create() failed].\n");
504 return PTR_ERR(device);
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505 }
506

507 pm_dev->dev = dev;
508

509 /* Initialise event wait queue */
510 init_waitqueue_head(&pm_dev->event_queue);
511

512 if (scsi_is_sdev_device(dev)) {
513 /* Save the original request_fn address and set
514 * the interceptor address */
515 struct scsi_device *sdev = to_scsi_device(dev);
516 pm_dev->scsi_request_fn_address =
517 sdev->request_queue->request_fn;
518 sdev->request_queue->request_fn = &request_fn_interceptor;
519 /* Unused fields */
520 memset(&pm_dev->my_ops, 0, sizeof(struct net_device_ops));
521 pm_dev->old_ops = NULL;
522 }
523 else {
524 /* Save the original ndo_start_xmit address and
525 * set the interceptor address */
526 struct net_device *netdev = to_net_dev(dev);
527 const struct net_device_ops *ops = netdev->netdev_ops;
528 pm_dev->old_ops = ops;
529 pm_dev->my_ops = *ops;
530 pm_dev->my_ops.ndo_start_xmit = &ndo_start_xmit_interceptor;
531 netdev->netdev_ops = &pm_dev->my_ops;
532 /* Unused field */
533 pm_dev->scsi_request_fn_address = NULL;
534 }
535

536 return 0;
537 }
538

539

540 /*
541 * If the device can be removed: restores addresses,
542 * wakes ups waiting tasks and destroys the character
543 * device. Returns 1. Otherwise, wakes up waiting
544 * tasks and returns 0.
545 */
546 static int remove_device(struct pm_device *pm_dev)
547 {
548 /* We check if it is a scsi device this way because
549 * if the device has been unplugged, the call to
550 * scsi_is_sdev_device may return NULL */
551 if (pm_dev->scsi_request_fn_address != NULL) {
552 /* pm_dev->serial_number[0] == ’\0’ means that the
553 * char device is named after the scsi address and
554 * it is destroyed even though it is open */
555 if (pm_dev->scsi_cdev_open > 0 &&
556 pm_dev->serial_number[0] != ’\0’) {
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557 wake_up_tasks(&pm_dev->event_queue);
558 return 0;
559 }
560 /* If device has not been unplugged, restore its address */
561 if (pm_dev->unplugged == 0) {
562 struct scsi_device *sdev = to_scsi_device(pm_dev->dev);
563 sdev->request_queue->request_fn =
564 pm_dev->scsi_request_fn_address;
565 }
566 pm_dev->scsi_request_fn_address = NULL;
567 }
568 else {
569 /* If device has not been unplugged, restore its address */
570 if (pm_dev->unplugged == 0) {
571 struct net_device *netdev = to_net_dev(pm_dev->dev);
572 netdev->netdev_ops = pm_dev->old_ops;
573 }
574 memset(&pm_dev->my_ops, 0, sizeof(struct net_device_ops));
575 pm_dev->old_ops = NULL;
576 }
577

578 wake_up_tasks(&pm_dev->event_queue);
579

580 device_destroy(pm_class, MKDEV(major, pm_dev->minor));
581 cdev_del(&(pm_dev->pm_cdev));
582

583 return 1;
584 }
585

586

587 /*
588 * Cleans data before unloading the module
589 */
590 static void clean_module()
591 {
592 int i;
593

594 if (pm_devices) {
595 for (i = 0; i < MAX_DEVICES; ++i) {
596 if (pm_devices[i].minor != FREE_SLOT)
597 remove_device(&pm_devices[i]);
598 }
599 kfree(pm_devices);
600 }
601

602 if (pm_class)
603 class_destroy(pm_class);
604

605 unregister_chrdev_region(MKDEV(major, 0), MAX_DEVICES);
606 }
607

608
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609 /*
610 * Creates scsi devices
611 */
612 static int assign_scsi_devices(struct device *dev, void *d)
613 {
614 int *idx = ((int*) d);
615

616 if (scsi_is_sdev_device(dev) && !strcmp(dev->driver->name, "sd")) {
617

618 if (*idx < MAX_DEVICES) {
619 int err;
620 struct pm_device *pm_dev = &pm_devices[*idx];
621 err = create_device(pm_dev, dev, *idx);
622 if (err < 0) {
623 pm_dev->minor = FREE_SLOT;
624 return err;
625 }
626 ++(*idx);
627 }
628 else {
629 struct scsi_device *sdev = to_scsi_device(dev);
630 unsigned char buf[MAX_SERIAL_NUMBER_SIZE];
631 set_scsi_serial_number(sdev, buf);
632 printk(KERN_WARNING "Cryogenic: Device %s could not be
633 created [No available slot].\n", buf);
634 }
635 }
636

637 return 0;
638 }
639

640

641 /*
642 * Sets the scsi device serial number on buf
643 */
644 static int set_scsi_serial_number(struct scsi_device *sdev, unsigned

char *buf)
645 {
646 struct scsi_sense_hdr sshdr;
647 unsigned char inq_result[255];
648 int result, resid;
649 unsigned char scsi_cmd[16];
650 int length = 255;
651 int i;
652 int j;
653 int k;
654

655 scsi_cmd[0] = INQUIRY;
656 scsi_cmd[1] = 0x01;
657 scsi_cmd[2] = 0x80;
658 scsi_cmd[4] = length;
659
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660 for (k = 0; k < 3; ++k) {
661 result = scsi_execute_req(sdev, scsi_cmd, DMA_FROM_DEVICE,
662 inq_result, length, &sshdr,
663 HZ / 2 + HZ * scsi_inq_timeout,
664 3, &resid);
665 if (!result) {
666 j = 0;
667 for (i = 0; i < MAX_SERIAL_NUMBER_SIZE-1; ++i) {
668 if (inq_result[i+4] > 32) {
669 buf[j] = inq_result[i+4];
670 ++j;
671 }
672 }
673 buf[j] = ’\0’;
674 return 1;
675 }
676 }
677 return 0;
678 }
679

680

681 /*
682 * Creates net devices
683 */
684 static int for_each_net_device(int *n)
685 {
686 struct net_device *netdev = first_net_device(&init_net);
687

688 while (netdev) {
689 const char *name = netdev->name;
690 if (!strncmp (name, "eth", 3) || !strncmp (name, "wlan", 4)) {
691 if (*n < MAX_DEVICES) {
692 int err;
693 struct pm_device *pm_dev = &pm_devices[*n];
694 err = create_device(pm_dev, &netdev->dev, *n);
695 if (err < 0) {
696 pm_dev->minor = FREE_SLOT;
697 return err;
698 }
699 ++(*n);
700 }
701 else
702 printk(KERN_WARNING "Cryogenic: Device %s could not be
703 created [No available slot].\n", name);
704 }
705 netdev = next_net_device(netdev);
706 }
707

708 return 0;
709 }
710

711
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712 /*
713 * Checks if queue is active and wakes up processes
714 */
715 static void wake_up_tasks(wait_queue_head_t *queue)
716 {
717 if (waitqueue_active(queue))
718 wake_up(queue);
719 }
720

721

722 /*
723 * Function called when the timer expires
724 * Wakes up devices that were waiting on the event_queue
725 */
726 static void timeout_wake_up(unsigned long private_data)
727 {
728 struct pm_private *priv = (struct pm_private *) private_data;
729 wake_up_tasks(&priv->pm_dev->event_queue);
730 }
731

732

733 /*
734 * Set the interceptors addresses to the scsi bus and
735 * class net uvent functions
736 */
737 static void enable_hotplugging(void)
738 {
739 struct net_device *netdev;
740 struct class *netclass;
741

742 scsi_uevent_address = scsi_bus_type.uevent;
743 scsi_bus_type.uevent = &scsi_uevent_interceptor;
744

745 netdev = first_net_device(&init_net);
746 netclass = netdev->dev.class;
747 net_uevent_address = netclass->dev_uevent;
748 netclass->dev_uevent = &net_uevent_interceptor;
749 }
750

751

752 /*
753 * Set the original addresses to the scsi bus and net
754 * class uevent functions
755 */
756 static void disable_hotplugging(void)
757 {
758 struct net_device *netdev = first_net_device(&init_net);
759 struct class *netclass;
760

761 scsi_bus_type.uevent = scsi_uevent_address;
762 netdev = first_net_device(&init_net);
763 netclass = netdev->dev.class;
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764 netclass->dev_uevent = net_uevent_address;
765 }
766

767

768 /*
769 * Adds a device that has been hotplugged (but not reconnected)
770 */
771 static void plug_device(struct device *dev)
772 {
773 int i;
774 int err;
775 int free_slot = 0;
776

777 if (!scsi_is_sdev_device(dev) || scsi_device_reconnected(dev) == 0)
{

778 for (i = 0; i < MAX_DEVICES && !free_slot; ++i) {
779 if (pm_devices[i].minor == FREE_SLOT) {
780 struct pm_device *pm_dev = &pm_devices[i];
781 err = create_device(pm_dev, dev, i);
782 if (err < 0) {
783 printk(KERN_WARNING "Cryogenic: Device could not be
784 added [create_device() failed].\n");
785 pm_dev->minor = FREE_SLOT;
786 }
787 else {
788 const char *name;
789 if (scsi_is_sdev_device(dev))
790 name = pm_dev->serial_number;
791 else
792 name = pm_dev->name;
793 printk(KERN_INFO "Cryogenic: New device %s was
794 added.\n", name);
795 }
796 free_slot = 1;
797 }
798 }
799 if (!free_slot)
800 printk(KERN_INFO "Cryogenic: Device could not be added
801 [No available slot].\n");
802 }
803 }
804

805

806 /*
807 * Removes a device that has been unplugged
808 */
809 static void unplug_device(struct device *dev)
810 {
811 int i;
812 int device_found = 0;
813

814 for (i = 0; i < MAX_DEVICES && !device_found; ++i) {
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815 if ((pm_devices[i].minor != FREE_SLOT) &&
816 !strcmp(pm_devices[i].name, dev_name(dev))) {
817 pm_devices[i].unplugged = 1;
818 if (remove_device(&pm_devices[i])) {
819 const char *name;
820 if (scsi_is_sdev_device(dev))
821 name = pm_devices[i].serial_number;
822 else
823 name = pm_devices[i].name;
824 printk(KERN_INFO "Cryogenic: Device %s was
825 removed.\n", name);
826 pm_devices[i].minor = FREE_SLOT;
827 pm_devices[i].unplugged = FREE_SLOT;
828 }
829 else
830 printk(KERN_INFO "Cryogenic: Device %s was unplugged
831 but not removed because it is being used.\n",
832 pm_devices[i].serial_number);
833 device_found = 1;
834 }
835 }
836 }
837

838

839 /*
840 * Checks if a scsi device has been reconnected. If so, resets
841 * the necessary fields and returns 1. Otherwise, returns 0.
842 */
843 static int scsi_device_reconnected(struct device *dev)
844 {
845 int i;
846 char tmp_serial[MAX_SERIAL_NUMBER_SIZE];
847

848 struct scsi_device *sdev = to_scsi_device(dev);
849 set_scsi_serial_number(sdev, tmp_serial);
850

851 for (i = 0; i < MAX_DEVICES; ++i) {
852 if (pm_devices[i].unplugged == 1 && !strcmp(tmp_serial,

pm_devices[i].serial_number)) {
853 struct scsi_device *sdev = to_scsi_device(dev);
854 pm_devices[i].unplugged = 0;
855 /* The following fields may change after the reconnection.
856 * Thus, we must reset them */
857 pm_devices[i].name = dev_name(dev);
858 pm_devices[i].dev = dev;
859 pm_devices[i].scsi_request_fn_address =
860 sdev->request_queue->request_fn;
861 sdev->request_queue->request_fn = &request_fn_interceptor;
862 printk(KERN_INFO "Cryogenic: Device %s was reconnected.\n",
863 pm_devices[i].serial_number);
864 return 1;
865 }
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866 }
867 return 0;
868 }
869

870

871 module_init(pm_init);
872 module_exit(pm_exit);
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B. Test programs

In this chapter we include the full version of the C programs that were modified in Sec-
tion 3.3 in order to use Cryogenic. We also present other C programs and shellscripts used
to perform the experimentation of this work.

B.1. UDP client

B.1.1. client-rand.c

1 #include <arpa/inet.h>
2 #include <netinet/in.h>
3 #include <stdio.h>
4 #include <sys/types.h>
5 #include <sys/socket.h>
6 #include <unistd.h>
7 #include <stdlib.h>
8 #include <string.h>
9

10 #include <time.h>
11

12 #define BUFLEN 512
13 #define PORT 666
14 #define SRV_IP "131.159.74.67"
15

16 int main(int argc, char *argv[])
17 {
18 struct sockaddr_in sock;
19 char buf[BUFLEN];
20 int sock_fd;
21 int i;
22

23 sock_fd = socket(PF_INET, SOCK_DGRAM, 0);
24 if (sock_fd < 0) {
25 perror("socket() failed\n");
26 exit(1);
27 }
28

29 memset((char *) &sock, 0, sizeof(sock));
30 sock.sin_family = AF_INET;
31 sock.sin_port = htons(PORT);
32 if (inet_aton(SRV_IP, &sock.sin_addr) == 0) {
33 fprintf(stderr, "inet_aton() failed\n");
34 exit(1);
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35 }
36

37 unsigned long period;
38 struct timeval exec_t;
39 struct tm *t;
40

41

42 period = atoi(argv[1]);
43

44 i = 1;
45 while(1) {
46

47 sprintf(buf, "%02d\0\n", i);
48

49 struct sockaddr *saddr = (struct sockaddr *) &sock;
50 if (sendto(sock_fd, buf, BUFLEN, 0, saddr, sizeof(sock)) < 0) {
51 perror("sendto() failed\n");
52 exit(1);
53 }
54 gettimeofday(&exec_t, NULL);
55 t = localtime(&exec_t.tv_sec);
56 printf("Sent %02d [%02d:%02d:%02d.%03d]\n", i, t->tm_hour,
57 t->tm_min, t->tm_sec, (int) exec_t.tv_usec/1000);
58 fflush(stdout);
59 ++i;
60

61 double r = drand48();
62 useconds_t d = (useconds_t) (r * period * 1000.0 * 2);
63 usleep(d);
64 }
65

66 close(sock_fd);
67

68 return 0;
69 }

B.1.2. client-cryo.c

1 #include <arpa/inet.h>
2 #include <netinet/in.h>
3 #include <stdio.h>
4 #include <sys/types.h>
5 #include <sys/socket.h>
6 #include <unistd.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <time.h>

10

11 #define BUFLEN 512
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12 #define PORT 666
13 #define SRV_IP "131.159.74.67"
14

15 #include <sys/stat.h>
16 #include <fcntl.h>
17

18 #include <sys/ioctl.h>
19 #include <sys/select.h>
20 #include <sys/time.h>
21

22 #define PM_MAGIC ’k’
23 #define PM_SET_DELAY_AND_TIMEOUT _IOW(PM_MAGIC, 1, struct pm_times)
24

25 struct pm_times {
26 unsigned long delay_msecs;
27 unsigned long timeout_msecs;
28 };
29

30 int main(int argc, char *argv[])
31 {
32 struct sockaddr_in sock;
33 char buf[BUFLEN];
34 int sock_fd;
35 int i;
36

37 sock_fd = socket(PF_INET, SOCK_DGRAM, 0);
38 if (sock_fd < 0) {
39 perror("socket() failed\n");
40 exit(1);
41 }
42

43 memset((char *) &sock, 0, sizeof(sock));
44 sock.sin_family = AF_INET;
45 sock.sin_port = htons(PORT);
46 if (inet_aton(SRV_IP, &sock.sin_addr) == 0) {
47 fprintf(stderr, "inet_aton() failed\n");
48 exit(1);
49 }
50

51 struct timeval exec_t;
52 struct tm *t;
53

54 int fd = open("/dev/cryogenic/eth0", O_RDWR);
55 if (fd < 0) {
56 perror("open() failed");
57 exit(1);
58 }
59

60 struct pm_times times;
61 times.delay_msecs = 4000;
62 times.timeout_msecs = 6000;
63
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64

65 i = 1;
66 while(1) {
67

68 int r;
69 r = ioctl(fd, PM_SET_DELAY_AND_TIMEOUT, &times);
70 if (r < 0) {
71 perror("ioctl() failed");
72 exit(1);
73 }
74

75 fd_set wr;
76 FD_ZERO(&wr);
77 FD_SET(fd, &wr);
78

79 r = select(fd+1, NULL, &wr, NULL, NULL);
80 if (r < 0) {
81 perror("select() failed");
82 exit(1);
83 }
84

85 if (FD_ISSET(fd, &wr)) {
86 sprintf(buf, "%02d\0\n", i);
87

88 struct sockaddr *saddr = (struct sockaddr *) &sock;
89 if (sendto(sock_fd, buf, BUFLEN, 0, saddr, sizeof(sock)) <

0) {
90 perror("sendto() failed\n");
91 exit(1);
92 }
93 gettimeofday(&exec_t, NULL);
94 t = localtime(&exec_t.tv_sec);
95 printf("Sent %02d [%02d:%02d:%02d.%03d]\n", i, t->tm_hour, t

->tm_min, t->tm_sec, (int) exec_t.tv_usec/1000);
96 ++i;
97 }
98 }
99

100 close(fd);
101 close(sock_fd);
102

103 return 0;
104 }

B.2. Filesystem synchronization

B.2.1. sync-cryo.c

1 #include <arpa/inet.h>
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2 #include <netinet/in.h>
3 #include <stdio.h>
4 #include <sys/types.h>
5 #include <sys/socket.h>
6 #include <unistd.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <time.h>

10

11 #define BUFLEN 512
12

13 #include <sys/stat.h>
14 #include <fcntl.h>
15

16 #include <sys/ioctl.h>
17 #include <sys/select.h>
18 #include <sys/time.h>
19

20 #define PM_MAGIC ’k’
21 #define PM_SET_DELAY_AND_TIMEOUT _IOW(PM_MAGIC, 1, struct pm_times)
22

23 struct pm_times {
24 unsigned long delay_msecs;
25 unsigned long timeout_msecs;
26 };
27

28 int main(int argc, char *argv[])
29 {
30 char buf[BUFLEN];
31 int i;
32

33 int fd_file = open(argv[1], O_RDWR|O_CREAT, S_IRUSR|S_IWUSR);
34 if (fd_file < 0) {
35 perror("open() failed");
36 exit(1);
37 }
38

39 struct timeval exec_t;
40 struct tm *t;
41

42 int fd = open("/dev/cryogenic/WD-WCAU46069319", O_RDWR);
43 if (fd < 0) {
44 perror("open() failed");
45 exit(1);
46 }
47

48 unsigned long tolerance = 2000;
49 struct pm_times times;
50 times.delay_msecs = 5000 - tolerance/2.0;
51 times.timeout_msecs = 5000 + tolerance/2.0;
52

53 struct timeval start_t;
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54 gettimeofday(&start_t, NULL);
55

56 i = 1;
57 while(1) {
58

59 int r;
60 r = ioctl(fd, PM_SET_DELAY_AND_TIMEOUT, &times);
61 if (r < 0) {
62 perror("ioctl() failed");
63 exit(1);
64 }
65

66 fd_set wr;
67 FD_ZERO(&wr);
68 FD_SET(fd, &wr);
69

70 r = select(fd+1, NULL, &wr, NULL, NULL);
71 if (r < 0) {
72 perror("select() failed");
73 exit(1);
74 }
75

76 if (FD_ISSET(fd, &wr)) {
77

78 int b = sprintf(buf, "%d\n", i);
79

80 if (write(fd_file, buf, b) < 0) {
81 perror("write() failed\n");
82 exit(1);
83 }
84 sync();
85 gettimeofday(&exec_t, NULL);
86 t = localtime(&exec_t.tv_sec);
87 printf("Written %02d [%02d:%02d:%02d.%03d]\n", i, t->tm_hour

,
88 t->tm_min, t->tm_sec, (int) exec_t.tv_usec/1000);
89 ++i;
90

91 unsigned long start_t_msecs = (start_t.tv_sec*1000) + (
start_t.tv_usec/1000);

92 unsigned long exec_t_msecs = (exec_t.tv_sec*1000) + (exec_t.
tv_usec/1000);

93 times.delay_msecs = start_t_msecs + 5000*i - exec_t_msecs -
tolerance/2.0;

94 times.timeout_msecs = times.delay_msecs + tolerance;
95 printf(" - New delay: %lu\n", times.delay_msecs);
96 printf(" - New timeout: %lu\n", times.timeout_msecs);
97 }
98

99 }
100

101 close(fd);
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102 close(fd_file);
103

104 return 0;
105 }

B.3. Shellscripts

The following sections present the shellscripts used during our experimentation. Note that
the periods that appear in Sections B.3.2, B.3.3, B.3.4 and B.3.5 correspond to Experiments
1 and 2. The periods used in Experiments 3 and 4 are displayed in Table 4.6. The periods
for Experiment 5 are illustrated in Table 4.9.

B.3.1. baseline.sh

1 #!/bin/sh
2 echo "Starting baseline..."
3 ../pins/set-pin # setting R-Pi pin
4 sleep 60
5 ../pins/unset-pin # unsetting R-Pi pin
6 echo "Test completed"

B.3.2. test1.sh

1 #!/bin/sh
2 echo "Starting test WITH cryogenic using interface $1..."
3 ../pins/set-pin # setting R-Pi pin
4 ./client 5003 > client-1.log1 & # every ˜5s,
5 pid1=$!
6 ./client 3533 > client-2.log1 & # every ˜3.5s
7 pid2=$!
8 # Note use of prime numbers to make collisions unlikely...
9 ./client-cryo $1 3001 1511 > client-cryo-3.log1 & # every 3s, 50% tolerance

10 pid3=$!
11 ./client-cryo $1 2503 1249 > client-cryo-4.log1 & # every 2.5s, 50% tolerance
12 pid4=$!
13 sleep 60
14 kill -9 $pid1
15 kill -9 $pid2
16 kill -9 $pid3
17 kill -9 $pid4
18 ../pins/unset-pin # unsetting R-Pi pin
19 echo "Test completed"

B.3.3. test1r.sh

1 #!/bin/sh
2 echo "Starting test WITH cryogenic and randomization using interface $1..."
3 ../pins/set-pin # setting R-Pi pin
4 ./client-rand 5003 > client-1.log1 & # every ˜5s,
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5 pid1=$!
6 ./client 3533 > client-2.log1 & # every ˜3.5s
7 pid2=$!
8 # Note use of prime numbers to make collisions unlikely...
9 ./client-cryo $1 3001 1511 > client-cryo-3.log1 & # every 3s, 50% tolerance

10 pid3=$!
11 ./client-cryo $1 2503 1249 > client-cryo-4.log1 & # every 2.5s, 50% tolerance
12 pid4=$!
13 sleep 60
14 kill -9 $pid1
15 kill -9 $pid2
16 kill -9 $pid3
17 kill -9 $pid4
18 ../pins/unset-pin # unsetting R-Pi pin
19 echo "Test completed"

B.3.4. test2.sh

1 #!/bin/sh
2 echo "Starting test WITHOUT cryogenic..."
3 ../pins/set-pin # setting R-Pi pin
4 ./client 5003 > client-1.log2 & # every ˜5s,
5 pid1=$!
6 ./client 3533 > client-2.log2 & # every ˜3.5s
7 pid2=$!
8 # Note use of prime numbers to make collisions unlikely...
9 ./client 3001 > client-3.log2 & # every 3s, NO tolerance

10 pid3=$!
11 ./client 2503 > client-4.log2 & # every 2.5s, NO tolerance
12 pid4=$!
13 sleep 60
14 kill -9 $pid1
15 kill -9 $pid2
16 kill -9 $pid3
17 kill -9 $pid4
18 ../pins/unset-pin # unsetting R-Pi pin
19 echo "Test completed"

B.3.5. test2r.sh

1 #!/bin/sh
2 echo "Starting test WITHOUT cryogenic and randomization..."
3 ../pins/set-pin # setting R-Pi pin
4 ./client-rand 5003 > client-1.log2 & # every ˜5s,
5 pid1=$!
6 ./client 3533 > client-2.log2 & # every ˜3.5s
7 pid2=$!
8 # Note use of prime numbers to make collisions unlikely...
9 ./client 3001 > client-3.log2 & # every 3s, NO tolerance

10 pid3=$!
11 ./client 2503 > client-4.log2 & # every 2.5s, NO tolerance
12 pid4=$!
13 sleep 60
14 kill -9 $pid1
15 kill -9 $pid2
16 kill -9 $pid3
17 kill -9 $pid4
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B.3. Shellscripts

18 ../pins/unset-pin # unsetting R-Pi pin
19 echo "Test completed"
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C. Raspberry Pi GPIO pins

The C programs included in this chapter are used, respectively, to set and unset the high
value of the GPIO 11 of the Raspberry Pi.

C.1. set-pin.c

1 #include <stdio.h>
2 #include <bcm2835.h>
3

4 #define PIN RPI_GPIO_P1_11
5

6 int main(int argc, char **argv)
7 {
8 if (!bcm2835_init()) {
9 printf("bcm2835_init() failed\n");

10 return 1;
11 }
12

13 bcm2835_gpio_fsel(PIN, BCM2835_GPIO_FSEL_OUTP);
14

15 bcm2835_gpio_write(PIN, HIGH);
16

17 return 0;
18 }

C.2. unset-pin.c

1 #include <stdio.h>
2 #include <bcm2835.h>
3

4 #define PIN RPI_GPIO_P1_11
5

6 int main(int argc, char **argv)
7 {
8 if (!bcm2835_init()) {
9 printf("bcm2835_init() failed\n");

10 return 1;
11 }
12
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C. Raspberry Pi GPIO pins

13 bcm2835_gpio_fsel(PIN, BCM2835_GPIO_FSEL_OUTP);
14

15 bcm2835_gpio_write(PIN, LOW);
16

17 return 0;
18 }
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