
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

An Approach for Home Routers to Securely
Erase Sensitive Data

Nicolas Beneš

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

An Approach for Home Routers to Securely Erase
Sensitive Data

Ein Lösungsansatz für Heimrouter zum sicheren
Löschen empfindlicher Daten

Author: Nicolas Beneš

Supervisor: Christian Grothoff, PhD (UCLA)

Advisor: Christian Grothoff, PhD (UCLA)

Date: October 15, 2014

I assure the single handed composition of this Bachelor Thesis only supported by de-
clared resources.

München, October 15, 2014 Nicolas Beneš

Acknowledgements

First of all, I thank Christian Grothoff for his continuous encouragement and patience
throughout the creation of this Bachelor Thesis. His guidance and expertise helped me
to orient myself in the security domain to which I had no contact before.

Furthermore, I like to thank Jacob Appelbaum who proposed the initial idea for the
topic of this thesis. It was a lot of fun to work on this project.

Also, I like to thank Thomas Grübler for his willingness to answer my questions
regarding circuit design and layout, as well as Martin Saß and Andreas Hauptner from
the Department of Physics for providing me access to a water-jet vacuum pump, and
the Institute for Cognitive Systems for allowing me to use their reflow oven.

iv

Abstract

Home routers are always-on low power embedded systems and part of the Inter-
net infrastructure. In addition to the basic router functionality, they can be used to
operate sensitive personal services, such as for private web and email servers, secure
peer-to-peer networking services like GNUnet and Tor, and encrypted network file sys-
tem services. These services naturally involve cryptographic operations with the clear-
text keys being stored in RAM. This makes router devices possible targets to physical
attacks by home intruders. Attacks include interception of unprotected data on bus
wires, alteration of firmware through exposed JTAG headers, or recovery of crypto-
graphic keys through the cold boot attack.

This thesis presents Panic!, a combination of open hardware design and free software
to detect physical integrity attacks and to react by securely erasing cryptographic keys
and other sensitive data from memory. To improve auditability and to allow cheap
reproduction, the components of Panic! are kept simple in terms of conceptual design
and lines of code.

First, the motivation to use home routers for services besides routing and the need to
protect their physical integrity is discussed. Second, the idea and functionality of the
Panic! system is introduced and the high-level interactions between its components ex-
plained. Third, the software components to be run on the router are described. Fourth,
the requirements of the measurement circuit are declared and a prototype is presented.
Fifth, some characteristics of pressurized environments are discussed and the difficul-
ties for finding adequate containments are explained. Finally, an outlook to tasks left
for the future is given.

v

Contents

Acknowledgements iv

Abstract v

1. Introduction 1
1.1. Home Routers in Peer-to-Peer Networks 1
1.2. Risk of Physical-Access Attacks on Home Routers 1

1.2.1. Interception of Data on Bus Wires 2
1.2.2. Alteration of Firmware through the JTAG Interface 3
1.2.3. Memory Recovery through the Cold Boot Attack 3

1.3. Contribution of the Thesis . 4

2. The Panic! System 5
2.1. Router Platform . 6

3. Router Software 8
3.1. System Daemon panicd . 8

3.1.1. Usage . 8
3.1.2. Implementation . 9

3.2. Library libpanic . 11
3.2.1. Usage . 12
3.2.2. Implementation . 13
3.2.3. Rationale . 18
3.2.4. Verification . 20
3.2.5. Limitations . 24
3.2.6. Example: OpenSSH Daemon . 24

3.3. Memory Erasure Scripts . 26
3.3.1. Limitations . 26

4. Panic-Sense 28

vi

Contents

4.1. Required Features . 28
4.1.1. Sensors . 28
4.1.2. Backup Power Supply . 29

4.2. Circuit . 29
4.2.1. Backup Power Supply . 30
4.2.2. Microcontroller and Sensors . 31

4.3. Microcontroller Software upanic . 31
4.3.1. Scheduling . 32
4.3.2. State Machine . 33

4.4. Cost Estimation . 34
4.5. Limitations . 35

4.5.1. Backup Power Supply . 35
4.5.2. Microcontroller and Sensors . 36
4.5.3. Printed Circuit Board . 36

5. Containment 39
5.1. Requirements . 39
5.2. Characteristics of the Environment . 39
5.3. Containment Variants . 40

5.3.1. Aluminium Box . 40
5.3.2. PET Bottle . 41
5.3.3. Jar . 42

5.4. Tests . 43

6. Conclusion and Future Work 47

A. Appendix 48
A.1. Panic-Sense Schematics . 48

B. Bibliography 55

vii

1. Introduction

1.1. Home Routers in Peer-to-Peer Networks

Home routers are cheap always-on low power devices that usually connect multiple
devices in a LAN to the Internet. As technology evolves, they often have more com-
pute power and resources than actually needed for their primary purpose, i.e. routing.
Therefore, many devices provide additional functions to be used as private file, web, or
email server. Systems based on OpenWrt1 firmware and similar even allow to run any
software that can be compiled for the target platform and executed in the limits of the
hardware [3].

The special cultural and legal protection framework offered to one’s home [17] make
home routers an attractive location for sensitive private information. Because home
routers also often have a network interface that is not subject to network address trans-
lation (NAT), their location on the network makes these devices suitable for use in
privacy, anonymity, and censorship resistant peer-to-peer networks, such as GNUnet2

and Tor3. A home router may therefore be useful as a cheap Tor bridge or to oper-
ate a hidden service [27]. Additionally, these devices may also be used as transparent
proxies [27] to the network, omitting the need to install and configure the peer-to-peer
software on every local client.

1.2. Risk of Physical-Access Attacks on Home Routers

For political activists and journalists using home routers for sensitive information, this
equipment may become target to physical attacks by adversaries not respecting the
sancity of the home. However, typical home routers lack meaningful protection against
physical attacks. Making such protection available for the before mentioned cases is
important, as the use of effective security measures can be essential up to protecting an
individual’s life and limb [9, 29:58–31:53].

1https://openwrt.org
2https://gnunet.org/
3https://www.torproject.org/

1

https://openwrt.org
https://gnunet.org/
https://www.torproject.org/

1. Introduction

For this work, we assume that the software on the home router is secure and focus
on attacks that make use of physical access to the device hardware, of which some
examples are given below.

1.2.1. Interception of Data on Bus Wires

Historically [29], the CPU and the primary memory are physically located in distinct
devices, for example several DRAM ICs are soldered on a SO-DIMM module which is
attached to a connector on a PCB. The socket is then connected to the memory bus of
the CPU. Depending on the system, it is also common that the ICs are soldered directly
on the PCB without a connector.

In either case, the electrical connection between CPU and memory is vulnerable to
interception of transmitted data, for example by attaching a logic analyser to the ex-
posed SO-DIMM connector or PCB traces shown in figure 1.1. Thus, it is easy for an
attacker to read all exchanged data off the bus, including clear text encryption keys and
other sensitive information.

Figure 1.1.: PCB traces between CPU and DRAM IC on a Beaglebone Black.

2

1. Introduction

1.2.2. Alteration of Firmware through the JTAG Interface

The IEEE Joint Test Action Group defined the standard IEEE 1149.1 [1], which is com-
monly referred to as JTAG. The JTAG interface is intended for testing and programming
of integrated circuits [2]. Consequently, a JTAG pin header is exposed on many router
PCBs, similar to the one depicted in figure 1.2.

Figure 1.2.: Exposed 14-pin JTAG interface marked JP1 on a Netgear RT314 router.

Just like a legitimate tester, an attacker can use the JTAG interface to read and pro-
gram the flash IC [2] used for booting the device and install a rootkit or other mal-
ware [13].

1.2.3. Memory Recovery through the Cold Boot Attack

As third example, the cold boot attack [18] allows an attacker to recover encryption keys
stored in memory in the clear. The attack is based on the remanence effect of DRAM,
i.e. the contents of DRAM cells do not decay immediately after power-off, rather grad-
ually during the next couple of minutes. If an attacker boots prepared software from an
external device or moves the memory module to another computer, it is possible to im-
age the memory and recover cryptographic keys. Moreover, an attacker can slow down
the decay process to the range of hours and longer by cooling the DRAM modules, for
example by using cooling spray or liquid nitrogen.

3

1. Introduction

1.3. Contribution of the Thesis

This thesis presents Panic!, a combination of an open hardware design and free soft-
ware that allows users to physically secure suitable home routers (in particular models
sufficiently similar to the Beaglebone Black using a Linux kernel) against a wide range
of physical attacks. The basic idea is to trigger a customizable panic logic that erases
sensitive information whenever an attempt to compromise the physical integrity of the
system is detected.

4

2. The Panic! System

Panic!

Router SW

panicd libpanic
Memory
Erasure
Scripts

panic-sense

upanic circuit

Containment

Figure 2.1.: Panic! component breakdown structure.

As depicted in figure 2.1, Panic! can be split into three mostly independent compo-
nents:

1. Software to be run on the router, consisting of

a) the system daemon panicd to monitor a GPIO pin for a trigger signal and
inform other processes about that trigger,

b) the library libpanic to be loaded into individual processes to erase their
memory in a prioritised way in case of a trigger,

c) and several scripts adapted from Tails [12] to kill the system and finally erase
all of the system memory;

2. A panic-sense circuit to detect an attack via several sensors which are readout and
evaluated by the upanic firmware on an Atmel AVR XMEGA microcontroller;

3. An air-tight and pressurized containment to provide a protected environment for
the router and panic-sense circuit.

Figure 2.2 illustrates the interconnections of these components: the panic-sense cir-
cuit and the router are connected and screwed together, then, the module is put inside
the containment. The containment is pressurized through a valve and represents the
physical system boundary.

5

2. The Panic! System

Air-tight pressurized containment

panic-sense PCB

Router
panicd
libpanic

scripts

Backup
Power Supply

PSU

uC
upanic

Sensors:
Air Pressure,
Acceleration,

Temperature, . . . optional ex-
tension circuit

valve

pwr

gpio

RJ45

eth wlan

Figure 2.2.: Physical structure of the Panic! system.

From a software perspective, the panicd daemon monitors a GPIO pin of the router
for a falling edge. If the the pin gets triggered, processes that use libpanic imme-
diately erase their memory. After a short timeout, additional scripts get triggered and
cause erasure for the entire memory and halt of the system.

2.1. Router Platform

The router software of Panic! is intended to be run on Linux systems, such as Debian
GNU/Linux for ARM and OpenWrt for MIPS hardware, and uses non-portable Linux
specific features. Limiting the scope to ARM and MIPS platforms already covers a
large number [4] of available commercial off-the-shelf routers and cheap single-board
embedded Linux computers.

For testing and as demonstration platform, a Beaglebone Black1 (BBB) single-board
computer is used. The BBB as depicted in figure 2.3 provides a 1GHz Cortex-A8 ARM
processor with 512MB RAM and runs Debian GNU/Linux.

1https://elinux.org/Beagleboard:BeagleBoneBlack

6

https://elinux.org/Beagleboard:BeagleBoneBlack

2. The Panic! System

Figure 2.3.: Beaglebone Black rev. A5C.

7

3. Router Software

3.1. System Daemon panicd

panicdGPIO Unix domain
socket

SIGTERM
SIGQUIT

Figure 3.1.: Interfaces of panicd.

The system daemon panicdmonitors a general-purpose input/output (GPIO) pin of
the router’s processor for a logic high-to-low transition (falling edge), or the SIGTERM
and SIGQUIT signals to trigger notification of client processes. As notification mech-
anism, panicd provides a Unix domain socket to which these processes can connect
to.

3.1.1. Usage

panicd --gpio GPIO_NUM [--socket PATH][--daemon][--verbose]

Listing 3.1: panicd command line parameters

As shown in listing 3.1, panicd has four command line parameters:

• --gpio GPIO_NUM is mandatory to select the GPIO pin that shall be monitored
for the trigger. The option takes the pin’s logic number as argument to export it
to the /sys/class/gpio/ tree and configure it as edge sensitive input;

• --socket PATH can be used to override the default path of the Unix domain
socket. If this option is given, it is the users responsibility to properly set the
permissions for other processes to access the socket file and the directory.

If the option is omitted, the abstract Unix domain socket \0panicd is created
instead, allowing access from all processes without the need to configure permis-
sions;

8

3. Router Software

• --daemon instructs panicd to run as background process. This option is useful,
if the user wants to use panicd stand-alone, for example outside of shell scripts.

The option can be omitted to make panicd stay in foreground, for instance when
used together with consecutive commands within a shell script;

• --verbose increases the amount of diagnostic logging messages that are sent to
syslog.

The panicd process can be triggered and terminated by the following three sources:

• a falling edge on the selected GPIO pin,

• the reception of a SIGTERM signal,

• the reception of a SIGQUIT signal.

Depending on the trigger source, either 0 (GPIO pin, SIGQUIT) or 1 (SIGTERM) is
returned as exit status. This permits the use of panicd in a script concatenating other
commands, for example as given for the scenario of maintenance in listing 3.2.

However, processes using the Unix domain socket through libpanic will be killed
regardless of the trigger source and therefore should be terminated by the user prior to
panicd.

panicd --gpio 7 && echo "HELP!" | mail emergency@example.com &

The email is sent, if the GPIO pin is triggered

or if the user sends SIGQUIT.

The email is NOT sent, if the user sends SIGTERM.

shutdown -h now

shutdown sends processes the SIGTERM signal.

Listing 3.2: Terminating panicd for maintenance without triggering emergency
actions.

3.1.2. Implementation

int main (int argc, char **argv)

{

parse_cmd_line (...);

setup_gpio (pinnum);

setup_socket (panicd_socket);

9

3. Router Software

if (is_daemonize)

daemon (...);

cpid = fork ();

if (0 == cpid) { /* child */

while (1)

accept (...);

} else { /* parent */

check_gpio (...); /* blocks until trigger or signal */

kill (cpid, SIGKILL);

wait (...);

clean_up_socket (...);

clean_up_gpio (...);

nanosleep (500 ms);

}

exit (...);

}

Listing 3.3: panicd implementation (simplified).

As shown in listing 3.3, panicd initializes and then forks into a parent and a child
process. The child process enters an endless loop accepting connections and blocks if
none are pending. As described in section 3.2, clients call read() on the socket, but
never receive a reply from panicd. Instead, the function fails in case of a trigger.

Similarly, the parent process calls ppoll() and read() on the file descriptor of the
GPIO pin. As the pin is configured as interrupt input, the process is blocked as long
as no new events occur, thus, both the parent and the child process are blocked during
normal (non-triggered) operation.

In case one of the triggers is received, the parent process unblocks and kills the child,
thus, causing the operating system to close the connection file descriptors which in turn
force the libpanic-side read() to fail.

Finally, panicd sleeps for 500ms before exiting. This gives processes using the
libpanic library time to erase their memory and delays the execution of consecutive
commands if panicd is used in shell scripts.

10

3. Router Software

GPIO Pin

As already described, panicd uses an edge sensitive GPIO pin to interface the router
and external measurement circuit.

Compared to other hardware interfaces present on a generic router, like USB, UART,
or Ethernet, the use of one GPIO pin provides a physically and logically simple mech-
anism to transmit a binary status to the software. Moreover, using the pin in interrupt
configuration avoids busy waiting and safes CPU time.

In general, at least one GPIO pin should be available on a router, for example a switch
to enable or disable the wireless output and several status LEDs. Consequently, this
hardware requirement is easy to be met by many routers.

Unix Domain Socket

The notification mechanism of panicd relies on the Unix domain socket [21], which
provides an efficient interface for local interprocess communication. By using the Linux
specific abstract Unix domain socket, the user does not need to administer file and
directory permissions. However, if the permissions are needed, for example to iso-
late multiple program groups, the normal non-abstract Unix domain socket can still be
used.

3.2. Library libpanic

other process

libpanicUnix domain
socket

Figure 3.2.: Interfaces of libpanic.

The libpanic library interfaces the Unix domain socket from panicd and provides
generic memory erasure functionality. It can be loaded using LD_PRELOAD, or linked
during build time into almost any program. In case panicd receives a trigger, the
signal is forwarded to the library, which suspends the current program execution. By
default, libpanic then overwrites all writeable pages mapped into the virtual address
space of the process, except the stack of the thread executing libpanic code.

11

3. Router Software

3.2.1. Usage

LD_PRELOAD=libpanic.so tor --defaults-torrc /to/torrc

Listing 3.4: Example for loading libpanic into Tor.

For most programs, it should be sufficient to use LD_PRELOAD as in listing 3.4 to
make use of libpanic. This however is not possible for programs which drop en-
vironment variables at some point during execution. In that case, it is necessary to
link libpanic directly into the executable; see section 3.2.6 for an example using the
OpenSSH daemon1.

Environment Variables

As the library initializes before the actual main() function is executed, it is not pos-
sible to pass command line options to the library. Instead, the following environment
variables are used to set settings diverging from the default:

• LIBPANIC_SOCKET_PATH=PATH can be used to override the default path where
to look for panicd’s Unix domain socket. The library immediately terminates
the process if it cannot access the specified socket, for example if panicd is not
started, if the socket is not present at the given location, or if it is not accessible
due to lack of permissions of the current process.

If the option is omitted, the abstract Unix domain socket \0panicd is used in-
stead;

• Setting LIBPANIC_DEBUG increases the amount of diagnostic logging messages
that are sent to syslog. In case of a trigger, this includes the virtual memory map-
ping table prior to erasure.

API

The library provides a single API function as shown in listing 3.5, which can be used to
assign a callback function called prior to the built-in memory erasure routine. It allows
to adjust the behaviour in case of a trigger, for example to provide a custom function to
erase memory known to contain sensitive data or to shred hidden service identity key
files. It has to be noted though, that the actions of all processes using libpanic must
fit in panicd’s 500ms time frame.

1http://www.openssh.com/index.html

12

http://www.openssh.com/index.html

3. Router Software

void panic_set_callback (int (*const cb) (void));

Listing 3.5: API of libpanic.

Moreover, the callback function can be used to entirely disable libpanic’s built-in
memory erasure functionality by returning a non-zero value. In turn, built-in memory
erasure is enabled if 0 is returned.

It is possible to unset a previously set callback handler by passing NULL as argument
to the API function.

3.2.2. Implementation

The main functionality of libpanic runs as separate thread within the process the
library is loaded into. As this is an essential design decision, see section 3.2.3 for other
approaches that were considered but had to be rejected.

Library Initialization, Exiting, and Propagation

static void panic_init (void) __attribute__ ((constructor));

static void panic_exit (void) __attribute__ ((destructor));

static void atfork_child_handler (void);

static void

panic_init (void)

{

int (*orig_create) (...);

int (*orig_atfork) (...);

orig_create = (void *) dlsym (RTLD_NEXT, "pthread_create");

orig_atfork = (void *) dlsym (RTLD_NEXT, "pthread_atfork");

...

main_thread = pthread_self ();

mapsfilefd = open ("/proc/self/maps", O_RDONLY | O_CLOEXEC);

...

if (-1 == sockfd)

{

const char *panicd_sock_path = ...;

...

13

3. Router Software

sockfd = socket (AF_UNIX, SOCK_STREAM | SOCK_CLOEXEC, 0);

...

connect (sockfd, (struct sockaddr *) &panicd_addr,

sizeof (struct sockaddr_un));

...

}

orig_atfork (NULL, NULL, &atfork_child_handler);

orig_create (&panic_thread, NULL, &panic_handler, NULL);

...

}

static void

panic_exit (void)

{

int (*orig_cancel) (pthread_t);

orig_cancel = (void *) dlsym (RTLD_NEXT, "pthread_cancel");

orig_cancel (panic_thread);

clean_up ();

}

static void

atfork_child_handler (void)

{

clean_up ();

panic_init ();

}

Listing 3.6: Functions to initialize, exit, and propagate libpanic (simplified).

As can be seen in listing 3.6, initialization of libpanic takes place before entering
main() by using the constructor function attribute2 for panic_init(). Similarly,
the clean-up function panic_exit() is called after completion of main() using the
destructor attribute.

During initialization, the file /proc/self/maps "containing the currently mapped
memory regions" [22] is opened. Following a trigger, it is used to determine the virtual
memory regions to be erased.

2https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

14

https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

3. Router Software

If the library is run for the first time or after a call to exec(), it connects to panicd’s
Unix domain socket; however, an existing connection is reused in case of fork(). Al-
locating the file descriptors for maps file and socket as early as initialization allows
immediate exit on error, and prevents failures from open file descriptor limitations and
other similar failures.

At the end of initialization, a child handler is assigned through pthread_atfork().
In case a program calls fork(), the panic_init() function is not executed automat-
ically, thus, assigning the handler allows to explicitly initialize libpanic in the child
process and its propagation.

Finally, the actual functionality of libpanic is started in a new thread.

Wrapper Functions

The libpanic library hides several functions by it’s own wrappers to provide conflict
free operation:

• pthread_create() adds a freshly created thread to an internal list. The list is
used to determine the threads that need to be stopped in case of a trigger. Addi-
tionally, it wraps the start routine the user specified;

• wrapped_start_routine() is a wrapper to the user’s start routine passed to
pthread_create() and removes the thread from the library internal list on
completion. It makes use of pthread_cleanup_push()/-pop() functions to
remove the item from the list even if a thread calls pthread_exit().

• pthread_cancel() kills the given thread and removes it from the thread list;

• pthread_atfork() handles the case of a program calling pthread_atfork()
with NULL for the child handler parameter. Doing so without the wrapper re-
moves all registered functions including the atfork_child_handler() used
to propagate libpanic to forked processes. In this case, however, the wrapper
re-adds the atfork_child_handler();

• close() is wrapped to forbid other threads to close the file descriptors for the
maps file and the Unix socket. If that happens, the function returns a value indi-
cating success, but actually does nothing. An example of a program with such a
behaviour is the OpenSSH daemon illustrated in section 3.2.6;

• sigaction() acquires and releases a mutex around the call to the original func-
tion.

15

3. Router Software

Most wrappers are mutually exclusive because they manipulate the same data struc-
tures, for instance the thread list. As a result, multi-threaded programs that frequently
call these functions may have slightly reduced performance since synchronization seri-
alizes control flow.

Panic Thread Overview

static void *

panic_handler (void *args)

{

trigger_wait ();

int skip_erasure = 0;

pthread_mutex_lock (&callback_mutex);

if (callback)

skip_erasure = callback ();

pthread_mutex_unlock (&callback_mutex);

disable_other_threads ();

if (!skip_erasure)

erase_memory (mapsfilefd);

_exit (0); /* fini */

return NULL; /* make compiler happy */

}

Listing 3.7: Top-level function for the panic thread.

As shown in listing 3.7, the panic thread first starts with waiting for a trigger, i.e. call-
ing read() on the socket. The call blocks as panicd does not respond to it, and it fails
when panicd receives a trigger signal and the connection is closed. As a consequence,
no additional CPU time is needed during normal (non-triggered) operation.

After the thread is being awoken, a possibly set callback handler is executed, see
section 3.2.1.

The third step calls a function to put all threads but panic_thread into sleep().
This measure prevents severe errors during erasure of the threads’ memory, for exam-
ple race conditions or SIGILL errors that may lead to the process being aborted and

16

3. Router Software

cryptographic keys remaining exposed in memory. The disable_other_threads()
function works by assigning a signal handler with sleep() to the process and send-
ing each of the other threads a corresponding signal. See section 3.2.3 for an elaborate
reasoning on the use of signals.

Finally, either _exit() or the built-in memory erasure function is called. In the latter
case, the program does not return from the function.

Built-in Memory Erasure

void

erase_memory (const int mapsfilefd)

{

char buffer[BUFFER_SIZE];

memset (buffer, 0, sizeof (buffer));

unsigned int num_entries;

num_entries = count_erasable_regions (buffer, BUFFER_SIZE-1,

mapsfilefd);

num_entries = 2 * (num_entries + 1);

struct proc_maps_entry entries[num_entries];

memset (&entries, 0, num_entries * sizeof (entries[0]));

proc_maps_read (entries, num_entries,

buffer, BUFFER_SIZE - 1, mapsfilefd);

/* clear all private pages */

for (unsigned int i = 0; i < num_entries; ++i)

if (entries[i].addr_start && entries[i].addr_end

&& PRIVATE == entries[i].type)

mymemset ((void *) entries[i].addr_start, 0,

entries[i].addr_end - entries[i].addr_start);

/* clear all shared pages */

for (unsigned int i = 0; i < num_entries; ++i)

if (entries[i].addr_start && entries[i].addr_end

&& SHARED == entries[i].type)

17

3. Router Software

mymemset ((void *) entries[i].addr_start, 0,

entries[i].addr_end - entries[i].addr_start);

/* force SIGSEGV to cleanup the program

-- we won’t return from here! */

int *null_ptr_violation = NULL;

*null_ptr_violation = 42;

}

Listing 3.8: Built-in memory erasure (simplified).

The built-in memory erasure function is executed, if either no callback handler is as-
signed or if it is set and the returned value is 0.

First of all, variables are allocated on the panic thread’s stack to avoid delayed mem-
ory allocation which could result in the page mappings being altered.

Second, the number of relevant memory regions is determined during the first read
pass through the maps file. All writeable regions except the panic thread’s own stack
are counted. Then, a buffer for more than twice as many memory regions as previously
determined is allocated. This preallocation scheme should ensure a large enough buffer
when the file is read again.

Third, the maps file is read a second time and the final memory region boundaries for
erasure are stored in the buffer. After this point it is not possible anymore to call external
functions as their correct execution cannot be guaranteed due to access of invalid data.

Fourth, memory regions are overwritten using a local memset()-like function. Pri-
vate pages are erased before shared pages as the latter might cause other processes
accessing such a page to fail. However, if all these processes use libpanic, the library
has more time to process the trigger signal and stop all relevant threads, thus, more
likely preventing crashes.

Finally, a null pointer access provokes a segmentation fault and forces removal of the
process by the kernel.

3.2.3. Rationale

Implementation of libpanic Functionality as Thread

The main functionality in libpanic, for example reading from the socket and erasure
of memory, is executed as thread. This essential design decision succeeded compared
to two alternatives:

18

3. Router Software

• ptrace() with PTRACE_POKEDATA, and

• writing to /proc/[pid]/mem from another process.

The ptrace() syscall is used by debuggers, such as the GNU Debugger3, to at-
tach to another process and control its execution. Using the PTRACE_POKEDATA com-
mand [23], it is possible to write data into the process memory. As such, it is suitable for
memory erasure; however, a process can detect being traced and change its behaviour
or disable debugger attachment [26, Line 1999].

The latter option, involves writing to the /proc/[pid]/mem file from another pro-
cess. As allowing processes to access each other’s memory is generally considered a
security flaw [14], it is usually not possible and prohibited by the kernel especially on
hardened systems.

Therefore, the only reasonable option is to run libpanic within the process to be
protected, i.e. as thread.

Disabling of other Threads

As libpanic creates its own thread, each program it is loaded into is multi-threaded
with at least two threads. If memory were erased while other threads are still run-
ning, the complete process including panic thread could crash because of undefined
behaviour resulting from threads accessing erased memory. As a result of such a crash
(which would terminate the panic thread early), part of the original content could re-
main in memory.

Alternatively, it is possible to kill individual threads using pthread_cancel().
Thereby, only the panic thread survives and can access the memory exclusively. Even
though this approach seems attractive, not all writeable process memory can be erased
with this method: each thread has its own stack and those pages are unmapped when
the thread is cancelled; henceforth, a cancelled thread’s stack cannot be erased.

As outlined, it is clearly necessary to stop or halt the execution of non-panic threads
while they stay in memory. During development, the two following options were con-
sidered but needed to be rejected:

• vfork(), and

• sending of SIGSTOP to specific threads.

3https://www.gnu.org/software/gdb/

19

https://www.gnu.org/software/gdb/

3. Router Software

The vfork() syscall [25] almost has the same effect as fork() [24], i.e. it "creates
a child process of the calling process" [25]. In contrast to fork(), vfork() does not
copy the page tables of the parent and suspends it "until the child terminates [...], or [...]
makes a call to execve(2)" [25]. In principle, vfork() therefore could be used to stop
non-panic threads by not terminating and not calling execve(); nonetheless, "the pro-
grammer cannot rely on the parent remaining blocked until the child either terminates
or calls execve(2), and cannot rely on any specific behaviour with respect to shared
memory" [25]. Moreover, vfork() is implemented using copy-on-write pages [25], so
even if it had blocked the parent process reliably, memory erasure from the child would
not have had overwritten the parent’s data, but rather a freshly created copy.

The second option calls pthread_kill() to send a SIGSTOP signal to all non-panic
threads. The advantage using SIGSTOP is that it cannot be caught by the receiving pro-
cess, so the process is stopped reliably. However, even if SIGSTOP is sent to a specific
thread, it still always stops the whole process including the panic thread.

Finally, the implemented approach is derived from the second option but instead
of SIGSTOP, SIGSEGV is used and an appropriate process wide signal handler is in-
stalled. To prevent other threads from overriding the signal handler, a wrapper for
sigaction() is provided and blocks when the corresponding mutex lock is acquired,
see section 3.2.2.

3.2.4. Verification

Simple verification of libpanic is conducted using the GNU Debugger and the Bea-
glebone Black connected to a circuit as depicted in figure 3.3. The pull-up resistor R1
and switch SW1 provide a high or low signal depending on the switch state. In case
the GPIO pin on the BBB is misconfigured, for instance as output, resistor R2 prevents
excessive currents. The trigger signal is attached to GPIO0_7 which corresponds to pin
42 on the BBB’s P9 expansion header [6, Table 12].

The program to be used for testing is shown in listing 3.9. It creates three threads and
prints messages from each thread and the main thread in 1 s periods.

In addition, listing 3.10 illustrates the test procedure in GDB. First, panicd and the
test program are started. Then, the GPIO pin is triggered and GDB interrupts for each
non-panic thread that receives SIGSEGV from the panic thread. Next, the entries for the
memory regions to be erased are printed to syslog and the program is interrupted at a
breakpoint before erasure. Now, an address from the syslog is chosen and its contents
are printed. Finally, memory is erased and the same section is printed again showing
overwritten data.

20

3. Router Software

SW1

R1
10k

R2
10k

GPIO0_7 / P9.42

DC_3.3V / P9.3

GND / P9.45

Beaglebone Black

Figure 3.3.: Circuit on a breadboard to simulate the toggle signal.

#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/syscall.h>

#include <pthread.h>

#define NUM_THREADS 3

void * printer (void *arg) {

for (int i = 0; i < 30; ++i) {

printf ("(%d, %ld) is still running\n", getpid (),

syscall (SYS_gettid));

sleep (1);

}

return NULL;

}

int main (int argc, char *argv[]) {

pthread_t th[NUM_THREADS];

for (int i = 0; i < NUM_THREADS; ++i)

pthread_create (th + i, NULL, printer, NULL);

printer (NULL);

21

3. Router Software

for (int i = 0; i < NUM_THREADS; ++i)

pthread_join (th[i], NULL);

exit (EXIT_SUCCESS);

}

Listing 3.9: A simple multi-threaded test program.

$ gcc -O2 -g --std=c99 -Wall -Werror -pthread -o some_process

↪→ some_process.c

$ sudo panicd --gpio 7 --daemon

$ cat gdb.conf

set environment LIBPANIC_DEBUG 1

set environment LD_PRELOAD libpanic.so

set breakpoint pending on

directory ~/libpanic-0.0/src/

break proc_maps.c:282

run

$ gdb -x gdb.conf ./some_process

...

[New Thread 0xb6ec5470 (LWP 686)]

[New Thread 0xb66c5470 (LWP 687)]

(682, 687) is still running

[New Thread 0xb5ec5470 (LWP 688)]

(682, 688) is still running

[New Thread 0xb56c5470 (LWP 689)]

(682, 682) is still running

(682, 689) is still running

...

push-button is pressed

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 0xb56c5470 (LWP 689)]

...

(gdb) continue

Continuing.

repeats three more times, once for each thread and the main

↪→ thread

22

3. Router Software

(gdb) continue

Continuing.

[Switching to Thread 0xb6ec5470 (LWP 686)]

Breakpoint 1, erase_memory (mapsfilefd=<optimized out>) at

↪→ proc_maps.c:282

282 for (unsigned int i = 0; i < num_entries; ++i)

‘tail /var/log/syslog’ shows the mapped regions; one line is

↪→ chosen,

for example ‘... b6fce000-b6fcf000 ...

↪→ /lib/.../libpthread-2.13.so’

(gdb) x/32xw 0xb6fce000

0xb6fce000: 0x00017ef0 0xb6ffa000 0xb6fef984 0xb6fb9b24

0xb6fce010: 0xb6fb9b24 0xb6fb9b24 0xb6fb9b24 0xb6f43ced

0xb6fce020: 0xb6fb9b24 0xb6fb9b24 0xb6fb9b24 0xb6fb9b24

0xb6fce030: 0xb6fb9b24 0xb6fb9b24 0xb6ef5e10 0xb6f61ba0

0xb6fce040: 0xb6fb9b24 0xb6fb9b24 0xb6fb9b24 0xb6f2bcb0

0xb6fce050: 0xb6fb9b24 0xb6fb9b24 0xb6fb9b24 0xb6fb9b24

0xb6fce060: 0xb6f6d4e9 0xb6fb9b24 0xb6fb9b24 0xb6f5e839

0xb6fce070: 0xb6f5f681 0xb6fb9b24 0xb6fb9b24 0xb6fb9b24

(gdb) continue

Continuing.

Cannot find user-level thread for LWP 686: generic error

(gdb) x/32xw 0xb6fce000

0xb6fce000: 0x00000000 0x00000000 0x00000000 0x00000000

0xb6fce010: 0x00000000 0x00000000 0x00000000 0x00000000

0xb6fce020: 0x00000000 0x00000000 0x00000000 0x00000000

0xb6fce030: 0x00000000 0x00000000 0x00000000 0x00000000

0xb6fce040: 0x00000000 0x00000000 0x00000000 0x00000000

0xb6fce050: 0x00000000 0x00000000 0x00000000 0x00000000

0xb6fce060: 0x00000000 0x00000000 0x00000000 0x00000000

0xb6fce070: 0x00000000 0x00000000 0x00000000 0x00000000

(gdb) kill

Kill the program being debugged? (y or n) y

23

3. Router Software

(gdb) quit

Listing 3.10: Verification of panicd and libpanic using GDB.

3.2.5. Limitations

Naturally, the implementation of libpanic imposes some constraints with regard to
the application:

1. The library only works with multi-threaded programs that use POSIX threads4; a
program must not call clone() directly;

2. Every program libpanic is loaded into is multi-threaded since the library’s
main functionality is executed in its own thread;

3. A system using the library must not use paging or a swap partition, respectively.
As the library does not force all pages into RAM, allowing paging can slow down
memory erasure and leaves vulnerable data on the hard disk or flash IC [30], even
if overwritten by libpanic;

4. The system has to ensure that all writeable private pages physically belong to
one process only. If writeable memory, for instance memory of a shared object, is
marked as private in the /proc/self/maps file of different processes but phys-
ically maps to the same shared frame, processes might crash due to invalid data.

3.2.6. Example: OpenSSH Daemon

For most programs, it should suffice to be started using the LD_PRELOAD environment
variable in order to load libpanic. However, some programs change or drop envi-
ronment variables at some point during execution, for example the OpenSSH daemon5

sshd. In those cases, a simple approach to load libpanic is by editing the Makefile
and explicitly linking to the library as listing 3.11 illustrates.

$ tar xzf openssh-6.7p1.tar.gz

$ cd openssh-6.7p1/

$./configure

$ grep -A1 -n -E ’^sshd’ Makefile

162:sshd$(EXEEXT): libssh.a $(LIBCOMPAT) $(SSHDOBJS)

4man 7 pthreads
5http://www.openssh.com/index.html

24

http://www.openssh.com/index.html

3. Router Software

163- $(LD) -o $@ $(SSHDOBJS) $(LDFLAGS) -lssh

↪→ -lopenbsd-compat $(SSHDLIBS) $(LIBS) $(GSSLIBS) $(K5LIBS)

insert ‘-lpanic’ into line 163

$ grep -A1 -n -E ’^sshd’ Makefile

162:sshd$(EXEEXT): libssh.a $(LIBCOMPAT) $(SSHDOBJS)

163- $(LD) -o $@ $(SSHDOBJS) $(LDFLAGS) -lssh

↪→ -lopenbsd-compat -lpanic $(SSHDLIBS) $(LIBS) $(GSSLIBS)

↪→ $(K5LIBS)

$ make

$ ldd sshd | grep panic

libpanic.so.0 => /usr/lib/libpanic.so.0 (0xb6f1c000)

Listing 3.11: Editing the Makefile of sshd.

If this modified version is run as in listing 3.12, it can be seen that each sshd process
has a panic thread attached. Moreover, the panic thread is preserved across fork()
boundaries within sshd, but it is not added to bash and below since these programs
neither explicitely link to libpanic nor is the LD_PRELOAD variable set.

$ sudo panicd --gpio 7 --daemon

$ pstree

systemd-+-login---bash---pstree

|-panicd---panicd

‘-...

$ sudo $PWD/sshd

$ ssh localhost

$ pstree

systemd-+-login---bash---ssh

|-panicd---panicd

|-sshd-+-sshd-+-sshd-+-bash---pstree

| | | ‘-{sshd}

| | ‘-{sshd}

| ‘-{sshd}

‘-...

Listing 3.12: Propagation of panic thread in sshd.

25

3. Router Software

3.3. Memory Erasure Scripts

As previously explained, the purpose of libpanic is to erase the memory of selected
programs almost immediately after the trigger has been received. In a second phase
initiated by the termination of panicd, a set of shell scripts is executed and causes
erasure of the entire memory.

This feature reuses some scripts from Tails [12], a Debian GNU/Linux distribution
with an emphasis on privacy and anonymity. Among other types of media, it can be
started from a USB stick and runs as live operating system in RAM. During runtime,
a watchdog program checks whether the boot medium is still present. If the user, for
instance a journalist, is done with her work, it is sufficient to remove the boot medium
and the memory erasure scripts are triggerd, thus, leaving no trace of the activities on
the computer.

In both Panic! and Tails, an init-premount script is added to the initramfs. The script
checks the kernel command line for an sdmem= argument, and if found, executes sdmem
which erases the memory. On Debian, sdmem can be obtained from the secure-delete6

package.
While it is possible to use sdmem as is and erase most of the memory, the contents of

the running kernel remain vulnerable. Therefore, a panicd-kexec init script similar to
tails-kexec can be started and calls kexec from kexec-tools7 to load a fresh kernel
image to memory. Then, panicd is started. If it terminates or the panicd-kexec

script is stopped on shutdown, kexec is called again to execute the previously loaded
kernel with the added sdmem= argument. This way, the memory contents either consist
of a fresh kernel image or are erased by sdmem.

3.3.1. Limitations

In order to use the kexec userspace tools, the kernel has to have been compiled with
the kexec() syscall enabled. Besides, the kexec-tools packages in the current De-
bian stable and testing are too old and lack important features added in recent releases
specifically for the ARM platform. As a result, kexec-tools must be compiled and in-
stalled from source. For Panic!, kexec-tools-2.0.7 is used.

Since the panicd-kexec init script starts a new kernel, memory erasure via sdmem
is not started immediately. During the tests, the delay was between 5 s and 6 s.

6https://packages.debian.org/wheezy/secure-delete
7http://horms.net/projects/kexec/

26

https://packages.debian.org/wheezy/secure-delete
http://horms.net/projects/kexec/

3. Router Software

In addition, panicd-kexec has several hardcoded parameters, in particular, the
paths for the kernel image, initrd file, and device tree blob.

27

4. Panic-Sense

The panic-sense component of Panic! consists of a PCB with similar dimensions as the
Beaglebone Black and is used to measure several physical properties and as backup
power supply. An Atmel ATxmega32A4U [8] AVR XMEGA [7] microcontroller contin-
uously reads and evaluates the measurements, to then decide whether to trigger the
router’s GPIO pin. To provide a protected environment, router and panic-sense PCB
are placed together in an air-tight and pressurized containment, see chapter 5.

The herein discussed panic-sense v0.2 is a prototype and not yet ready for use be-
sides testing. Nonetheless, it allows to gain experience and to express the limitations
described in section 4.5.

4.1. Required Features

4.1.1. Sensors

The following sensor types are required for the Panic! system:

• one or more temperature sensors to detect cold-boot attacks;

• one absolute air pressure sensor to detect violations of the containment integrity;

• one three-degrees-of-freedom (3 DoF) acceleration sensor to detect if an attacker
moves the entire containment;

• an indicator of the currently active power source to detect if an attacker removed
the external supply.

The main integrity indicator is the different absolute air pressure in the containment
compared to the environment since it allows to detect attacks very reliably. If the con-
tainment is opened by an attacker, the pressures even out almost immediately. The
pressure should be selected to be outside the natural range of weather phenomenons
and an additional safety margin; of course the concrete value, i.e. whether overpressure

28

4. Panic-Sense

or underpressure is used and at which intensity, depends on the containment and the
available tools, see chapter 5 for a broader discussion.

Air pressure as a physical property is chosen since it can be easily adjusted and mea-
sured. Other properties, for instance light intensity and magnetic field strength, can be
imitated by an attacker with simple means, or are more difficult to distinguish between
healthy and compromised state, for example gas sensors where it can take a long time
for the fluids to mix.

Furthermore, it is important to measure only physical properties that can be trusted,
i.e. the sensors and electrical connections are physically inside the containment and
do either measure local properties like temperature and air pressure or global static
properties like the force of gravity.

The accelerometer is added as input source because otherwise an attacker could place
the containment in a pressure chamber, imitate a similar pressure as inside the contain-
ment and open it. One might argue that it would be sufficient to use just the accelerom-
eter and temperature sensors; however, the accelerometer is likely to have a high rate of
false positives, for instance people walking nearby or doors being opened/closed may
cause vibrations. Consequently, the trigger thresholds need to be selected wider than
just the noise of the sensor, but still small enough to raise the effort for an attacker to
move the containment.

4.1.2. Backup Power Supply

Another essential feature is a backup power supply for the router and panic-sense cir-
cuit. It guarantees a sufficient supply voltage for at least the time needed for memory
erasure on the router; otherwise, an attacker could remove the external power supply,
thereby disabling all monitoring and protection measures.

4.2. Circuit

This section refers to the v0.2 prototype schematic and layout for panic-sense as shown
in appendix A. Note that v0.2 has limitations and bugs that require at least another
iteration, see section 4.5.

The circuit schematics and PCB manufacturing files are drawn using the gEDA1 suite
of GPL-licensed electronic design automation (EDA) tools.

1http://geda-project.org/

29

http://geda-project.org/

4. Panic-Sense

Figure 4.1.: Panic-sense v0.2 PCB with only SMD parts (left), and fully assembled with
SMD and THT parts (right).

Figure 4.1 shows the PCBs in different stages of assembly. The two-layer PCBs mea-
sure 50mm by 70mm with the parts on the top side. Although most parts can be sol-
dered by hand, four parts only exist in small no-lead packages, for instance QFN16,
LGA16, and WSON14; thus a reflow oven is needed.

4.2.1. Backup Power Supply

The backup power supply circuit is located on the PCB’s upper third and uses two
stacked supercaps with 2.7V/10F per cell for energy storage. An LTC3226 [11] charges
the supercap stack up to 5.3V after an external supply voltage is attached. Just as
stacked lithium-ion polymer battery (LiPo) cells, supercaps need to be balanced dur-
ing charging, as otherwise the specific surge voltage might be exceeded and is likely to
cause permanent damage. Besides actively balancing the supercaps, the LTC3226 pro-
vides an ideal diode controller to drive a p-channel MOSFET. Depending on a resistor
divider programmable voltage, the external supply voltage is switched on or off via the
MOSFET, and a status signal of the active power source is routed to the microcontroller.

In case the external supply is removed, the IC switches over to discharge the super-
caps through an internal low-dropout (LDO) regulator. Therefore, an attached router
and the panic-sense circuit still receive power for at least 5 s at a current of 1A, even if

30

4. Panic-Sense

no external power source is available. The regulator is capable of supplying a current
up to 2A [11], but as a result of the LDO characteristic it is not possible to deliver a
constant voltage of 5V if the voltage of the supercap stack falls below approximately
5.1V. This issue is discussed in more detail in section 4.5.

4.2.2. Microcontroller and Sensors

The lower two thirds of the PCB contain the microcontroller and sensors, which are:

• LM95234 [19]: 11 bit temperature sensor with one local channel and four remote
channels. For temperature sensing on the remote channels, cheap MMBT3904 [10]
transistors are used. They can be soldered on small PCBs and attached to a pin
header on the main PCB;

• MPXH6400A [15]: absolute air pressure sensor for 20kPa to 400kPa range with
analog output;

• FXOS8700CQ [16]: three axis 14 bit accelerometer for±2g (smallest measurement
range) and three axis 16 bit magnetometer for ±1200µT;

• L3G4200D [28]: three axis 16 bit gyroscope for ±250 ° s−1 (smallest measurement
range).

Moreover, an optocoupler allows isolated information exchange primarily intended
for the trigger signal from the panic-sense circuit to the router, but also for bidirectional
UART communication and an additional output reserved for future purposes.

4.3. Microcontroller Software upanic

The upanic software is derived from the code2 of the Fiber-Optic Vibration Sensing
Experiment3 (FOVS), which was launched 2014 as part of RX154 mission of the REXUS5

sounding rocket program.
It is executed by an Atmel ATxmega32A4U [8] AVR XMEGA [7] microcontroller at a

CPU frequency of 32MHz and is responsible for reading and analysing the sensor data,
as well as control of the state machine and the output signals.

2https://gitorious.org/fovs/fovsuc
3http://fovs.de/
4http://www.dlr.de/rd/en/desktopdefault.aspx/tabid-5282/8854_read-37635/
5http://www.rexusbexus.net/

31

https://gitorious.org/fovs/fovsuc
http://fovs.de/
http://www.dlr.de/rd/en/desktopdefault.aspx/tabid-5282/8854_read-37635/
http://www.rexusbexus.net/

4. Panic-Sense

Air Pressure

10ms

Temperature

20ms

Angular
Rate

30ms

Acceleration
Mag. Field

40ms

Power
Source

50ms

60ms 70ms 80ms

Debug
Serial

90ms

Trigger,
State Ctrl

100ms

0ms

50ms

Figure 4.2.: Assignment of tasks to slots.

The current version of the software only supports underpressure environments since
it was not possible to find a suited containment for overpressure.

4.3.1. Scheduling

As has been shown by the FOVS experiment [5] for a reliable and easily verifiable ap-
proach, a time-triggered static non-preemptive scheduling scheme is used.

A timer periodically generates interrupt requests and causes an interrupt service rou-
tine (ISR) to be executed. Inside the ISR, a counter keeps track of the current slot and
determines the task to be executed from an array of function pointers. As illustrated
by figure 4.2, a slot has a length of 10ms and a cycle repeats every ten slots or 100ms,
respectively. Currently, the unallocated slots are not needed and reserved for future
use.

Unlike event-triggered systems, the static and time-triggered nature of the schedul-
ing simplifies verification of real-time constraints and sensor sampling rate, even in
overload situations. Assuming immediate response to an event by the sensors, the
worst case latency to a reaction in software is determined by the time for one schedul-
ing cycle (100ms) and an additional small jitter in the magnitude of a few tens of CPU
cycles between interrupt request and call of the ISR.

The scope of the functionality of tasks is strictly isolated: tasks located at the be-
ginning of a cycle initialize the sensors, read their measurements and store the data in
the microcontroller’s RAM, whereas the last task of a cycle processes these data and de-
cides whether to trigger output signals. Moreover, an additional task is used to simplify
testing by emitting the current data through the UART interface.

32

4. Panic-Sense

4.3.2. State Machine

While input oriented tasks provide a generic interface of the respective sensor, the trig-
ger and state control task implements the Panic!-specific decision rules and behaviour.
After power-on-reset the task executes the following state machine:

1. The status LEDs light up for 2 s and show the user that the system is powered-on.
During this time, the sensors are initialized and sampling is started. The trigger
line is pulled low to signal the router that the system is not yet in a safe state.

2. The current air pressure is measured for a period of 6.4 s and the average envi-
ronmental pressure penv is calculated. Using penv, the thresholds are determined
by equations 4.1 and 4.2.

prising = penv − 200hPa (4.1)

pfalling = prising · 0.75 (4.2)

Since the environmental pressure depends on the elevation of the current location,
it is generally not possible to set static limits during compile time. Therefore, the
thresholds are determined during runtime using the environmental pressure as
reference. Nonetheless, an absolute difference of 200hPa for the rising limit is
enforced.

3. The system is now ready to be evacuated and only switches into the next state if
the interior pressure falls below the pfalling limit.

4. Once the pfalling limit is reached, the system tries to determine the end of evacu-
ation process. If the pressure does not change by more than 50hPa within a 30 s
time frame, the system advances to the next state.

5. To allow the user to remove attached tubes, tools needed during evacuation and
to place the system to its final location, it waits for 60 s.

6. The system is at its final location and must not be moved anymore.

7. Similar to the beginning, the accelerometer and magnetometer values are aver-
aged for 6.4 s. The system triggers, if values outside the boundaries of equa-
tions 4.3 and 4.4 occur. Likewise, if any measured temperature is out of range

33

4. Panic-Sense

of equation 4.5 or the backup power supply is active.

|aavg − a| ≤ 0.1g (4.3)

|Bavg −B| ≤ 50µT (4.4)

5 ◦C ≤ ϑ ≤ 85 ◦C (4.5)

By the end of this state, the trigger line is pulled high, indicating that services on
the router can be started.

8. The status LEDs start flashing regularly as the system is operational and in safe
condition.

9. As the pressure increases over time due to leakage or because of an attack, the trig-
ger line is pulled low as soon as the interior pressure exceeds the prising threshold.

Note that upanic as described here does not permit to re-pressurize the contain-
ment as part of maintenance because it cannot distinguish between the device owner
attaching tubes and causing vibrations and an adversary. To mitigate this restriction, a
modification to the circuit is necessary, see section 4.5.2.

4.4. Cost Estimation

Providing own hardware equipped with sensors and backup power supply, yields ex-
penses for electronic parts, manufacturing of PCBs, and additional tools. If these costs
can be kept low, it enables more people to assemble their panic-sense circuit and phys-
ically secure their router.

Naturally, cost per piece tends to decline the larger the quantity of purchased parts
are. Therefore, cost estimations for a single panic-sense circuit as well as for 50 cir-
cuits are listed in tables 4.1 and 4.2. The prices for electronic parts are taken from
the Farnell element146 distributor in Germany and prices for PCB manufacturing from
Multi Circuit Boards7 at 2014-10-13.

Nonetheless, the information in these tables does not guarantee to yield the lowest
price possible and does not include additional costs for tools like soldering equipment.

6http://de.farnell.com/
7http://www.multi-circuit-boards.eu/

34

http://de.farnell.com/
http://www.multi-circuit-boards.eu/

4. Panic-Sense

4.5. Limitations

The panic-sense v0.2 circuit is a prototype with several limitations that prevent its use
in a productive environment. Still, the experiences gained while working with this ver-
sion allow to describe the problems to be solved by the next iteration and the additional
capabilities that it needs to provide.

4.5.1. Backup Power Supply

First of all, the current circuit does not provide protection against reverse input volt-
age, overvoltage, and overcurrent. As a result, it might be possible for an attacker to
apply an input voltage that destroys the LTC3226 backup supply controller, but not the
voltage regulators on the Beaglebone Black.

Second, there is currently no mechanism to electrically switch on or off an attached
router. While this is safe, the ability to control the power state of the main load can be
useful, for instance to enable the router after initial pressurization of the containment.

Third, the voltage in backup supply mode is regulated by a low-dropout (LDO) reg-
ulator; hence, it cannot provide voltages above the input voltage from the supercaps
and the output voltage decreases as the supercaps are being discharged. The Beagle-
bone Black is still operational below an input voltage of approximately 4.2V; however,
other routers may be more sensitive and may brown-out too early for the memory era-
sure to complete. Depending on the type of backup energy storage, for example bat-
teries or supercaps, a successor design could use a buck-boost switching regulator to
guarantee the correct operational voltage for the router even when no external supply
is attached.

Fourth, the air pressure sensor uses the same 5V voltage rail than the router, which
causes voltage ripple in the supply voltage to show in the measurements. As a conse-
quence, a successor circuit shall provide a separate voltage regulator for the air pressure
sensor. In particular, charge pumps seem to be suited.

Last, the current circuit is designed for a router supply voltage of 5V only because it
is intended as proof-of-concept using a Beaglebone Black. In the future, the panic-sense
circuit should be compatible with ordinary home routers that run at 12V supply voltage
and have higher power requirements.

35

4. Panic-Sense

4.5.2. Microcontroller and Sensors

An important feature to add is an isolated input from the router to the panic-sense
circuit. This line can be used to instruct upanic to temporarily inhibit triggering al-
though sensors exceed their thresholds, for example, if the containment needs to be
re-pressurized and is moved when tubes are attached.

Second, several sensors should be replaced. For instance, the gyroscope is one of the
most expensive parts in the circuit, yet it does not provide much additional information
not covered by the accelerometer.

Third, the FXOS8700CQ accelerometer and magnetometer cannot tri-state the MISO
pin [16, Page 20] of the SPI bus, thus, only one slave (the sensor itself) can be attached
to the bus. Choosing another similar device that supports multiple slaves on the same
bus increases extensibility for additional sensors if needed.

Fourth, the LM95234 temperature sensor uses the I2C bus which requires nodes to
exchange ACK and NACK bits and allows them to pause the communication (clock
stretching). While I2C may be suited for a variety of applications, it complicates veri-
fication of hard real-time deadlines and the implementation of the respective upanic
task because of its interactive nature and the resulting number of control flows. In-
stead, it may be simpler to use sensors on the SPI bus, or measure analog voltages via
the microcontroller’s ADC.

Finally, a separate Ethernet isolator should be added since there is no guarantee that
the Ethernet transceivers on a generic router are isolated.

4.5.3. Printed Circuit Board

The current circuit uses four parts in small packages that are difficult to solder and
require special tools like a reflow oven. Consequently, these parts should be replaced
with parts in packages that can be soldered by hand. In contrast, the packages of most
capacitors and resistors could be reduced from size 1206 to 0805 since the latter should
still be easy to solder and occupies less PCB area.

In addition, the panic-sense PCB could be split into physically separate modules for
the backup power supply and the sensor circuit. The identical sensor circuit could then
be reused for different supply circuits, for instance for 5V and 12V routers.

36

4. Panic-Sense

Part Name Ref Qty Farnell No EUR/pcs EUR MOQ
ATXMEGA32A4U-AU U1 1 206-6309 2.8000 2.8000
L3G4200D U6 1 187-2924 8.8800 8.8800
KP-3216SURCK D1 1 229-0335 0.0920 0.0920
KP-3216CGCK D3 1 229-0333 0.1150 0.1150
KP-3216SYCK D2 1 229-0336 0.1120 0.1120
KP-3216QBC-D D4 1 221-7976 0.1870 0.1870
FXOS8700CQR1 U5 1 237-7757 3.0700 3.0700
HV1030-2R7106-R C10, C11 2 214-8486 4.4400 8.8800
SI2333CDS-T1-GE3 Q1 1 177-9259 0.4410 0.4410
LTC3226EUD#PBF U3 1 203-3980 5.2800 5.2800
XC6222D331MR-G U4 1 183-0952 0.4590 0.4590
MMBT3904 Q2-Q5 4 984-6727 0.0581 0.2324
ACPL-247-500E U2 1 163-4758 1.4000 1.4000
MPXH6400AC6T1 U7 1 223-8141 8.8600 8.8600
LM95234CISD U8 1 155-4779 1.6500 1.6500
BAS40-05,215 D5 1 873-4313 0.0700 0.3500 *
WCR1206-10KFI R1,R9,R19-R23 6 110-0218 0.0590 0.5900 *
MC0125W120612M70 R13 1 214-2359 0.0530 0.0530
MC0125W120611M60 R11 1 214-2348 0.0530 0.0530
CR1206-FX-1004ELF R14 1 233-3552 0.0530 0.0530
CRCW120662K0FKEA R16 1 165-3159 0.0320 0.0320
WCR1206-150RFI R6-R8 3 110-0169 0.0140 0.1400 *
CR1206-FX-75R0ELF R2-R4 3 233-3550 0.0510 0.1530
MC0125W1206133K2 R10 1 214-2264 0.0530 0.0530
MC0125W120613K16 R22 1 214-2208 0.0530 0.0530
WCR1206-27KFI R24-R25 2 110-0229 0.0150 0.1500 *
WCR1206-1K3FI R26-R27 2 110-0195 0.0140 0.1400 *
C1206C476M8PACTU C6 1 157-2639 1.1900 5.9500 *
1206YD475KAT2A C13 1 132-7729 0.8370 4.1850 *
CC1206JRNPOABN470 C22 1 128-4140 0.2340 2.3400 *
MC1206B103K500CT C17 1 175-9350 0.0380 0.3800 *
MC1206F474Z250CT C18 1 175-9321 0.0430 0.4300 *
MC1206B106K160CT C5,C7-C9,C20,C25 6 232-0921 0.1290 1.2900 *
MC1206N101J500CT C26-C30 5 175-9327 0.0470 0.4700 *
MCPWR06FTEO4703 R12,R17-R18 3 188-7522 0.0210 0.5250 *
12065C104MAT2A C1-C4, C12, C14-C16, 12 233-2881 0.1990 2.3880

C19,C21,C23-C24
MCPWR06FTEO2703 R15 1 188-7514 0.0220 0.5500 *

Sum Parts (excl. VAT) 62.7864
Wires, Pin Headers,. . . (est.) 16.2136
PCB Manufacturing 1 41.0000

Sum (excl. VAT) 120.0000
Sum for a single unit (excl. VAT) 120.00

Table 4.1.: Bill of materials and estimation of part and manufacturing cost for a single
panic-sense v0.2 PCB.

37

4. Panic-Sense

Part Name Ref Qty Farnell No EUR/pcs EUR MOQ
ATXMEGA32A4U-AU U1 50 206-6309 1.8500 92.5000
L3G4200D U6 50 187-2924 6.8900 344.5000
KP-3216SURCK D1 50 229-0335 0.0770 3.8500
KP-3216CGCK D3 50 229-0333 0.1010 5.0500
KP-3216SYCK D2 50 229-0336 0.0862 4.3100
KP-3216QBC-D D4 50 221-7976 0.1460 7.3000
FXOS8700CQR1 U5 50 237-7757 2.6400 132.0000
HV1030-2R7106-R C10, C11 100 214-8486 3.6200 362.0000
SI2333CDS-T1-GE3 Q1 50 177-9259 0.3660 18.3000
LTC3226EUD#PBF U3 50 203-3980 3.5000 175.0000
XC6222D331MR-G U4 50 183-0952 0.3780 18.9000
MMBT3904 Q2-Q5 200 984-6727 0.0270 5.4000
ACPL-247-500E U2 50 163-4758 1.2300 61.5000
MPXH6400AC6T1 U7 50 223-8141 7.8200 391.0000
LM95234CISD U8 50 155-4779 1.5700 78.5000
BAS40-05,215 D5 50 873-4313 0.0590 2.9500
WCR1206-10KFI R1,R9,R19-R23 300 110-0218 0.0360 10.8000
MC0125W120612M70 R13 50 214-2359 0.0240 1.2000
MC0125W120611M60 R11 50 214-2348 0.0240 1.2000
CR1206-FX-1004ELF R14 50 233-3552 0.0390 1.9500
CRCW120662K0FKEA R16 50 165-3159 0.0160 0.9000
WCR1206-150RFI R6-R8 150 110-0169 0.0090 1.3500
CR1206-FX-75R0ELF R2-R4 150 233-3550 0.0230 3.4500
MC0125W1206133K2 R10 50 214-2264 0.0240 1.2000
MC0125W120613K16 R22 50 214-2208 0.0240 1.2000
WCR1206-27KFI R24-R25 100 110-0229 0.0110 1.1000
WCR1206-1K3FI R26-R27 100 110-0195 0.0100 1.0000
C1206C476M8PACTU C6 50 157-2639 0.6380 31.9000
1206YD475KAT2A C13 50 132-7729 0.4480 22.4000
CC1206JRNPOABN470 C22 50 128-4140 0.2340 11.7000
MC1206B103K500CT C17 50 175-9350 0.0380 1.9000
MC1206F474Z250CT C18 50 175-9321 0.0430 2.1500
MC1206B106K160CT C5,C7-C9,C20,C25 300 232-0921 0.0880 26.4000
MC1206N101J500CT C26-C30 250 175-9327 0.0400 10.0000
MCPWR06FTEO4703 R12,R17-R18 150 188-7522 0.0180 2.7000
12065C104MAT2A C1-C4,C12,C14-C16, 600 233-2881 0.0755 45.3000

C19,C21,C23-C24
MCPWR06FTEO2703 R15 50 188-7514 0.0220 1.1000

Sum Parts (excl. VAT) 1883.9600
Wires, Pin Headers,. . . (est.) 50 13.0008 650.0400
PCB Manufacturing 50 2.8000 140.0000

Sum (excl. VAT) 53.4800 2674.0000
Sum for a single unit (excl. VAT) 53.48

Table 4.2.: Bill of materials and estimation of part and manufacturing cost for 50
panic-sense v0.2 PCBs.

38

5. Containment

To physically protect the router and panic-sense circuit from an adversary, both are put
in an air-tight containment, which contains joins for a non-return valve and electrical
connections. During normal operation, the containment is pressurized, i.e. the internal
pressure is either lower or higher than the environment. This difference in air pressure
serves as indicator whether the containment is in a safe state or needs to be considered
compromised.

5.1. Requirements

Regardless of a concrete realization, each containment should meet some generic re-
quirements:

1. It needs to withstand the pressure it gets exposed to;

2. Its dimensions must be large enough to contain the router and panic-sense PCBs;

3. The leakage rate should be low to reduce overhead for maintenance to regularly
pressurize the containment;

4. It should permit creation of joins in the containment surface;

5. It should permit wireless communication to pass;

6. It should be made out of widely available components to simplify reproduction
and replacement, for example an object of everyday life or made out of commer-
cial off-the-shelf components;

7. It should be cheap.

5.2. Characteristics of the Environment

The decision between an overpressure or an underpressure environment yields differ-
ent consequences for the containment as well as the usable hardware.

39

5. Containment

The use of overpressure permits differential pressures greater than 1 bar; hence, it is
easier to distinguish the compromised from the non-compromised state compared to
an underpressure atmosphere. There, the upper limit of air pressure is determined by
the elevation of the location, and the lower limit by the minimum pressure the contain-
ment withstands. Given also the necessity for a safety margin, the range of operational
pressure inside the containment is rather small. As a consequence, frequent evacuation
of the containment might be necessary, thus, increasing the work load for the user of
the Panic! system.

Another aspect to consider is reduced heat dissipation in an environment close to
vacuum because of reduced convection. In the extreme of no convection, only radiation
and heat spreading into the PCB remain. This condition is even stronger than passive
cooling, which is met by many home routers.

Also, a bicycle tyre inflator is a widely available tool to create overpressure. Though
pumps suitable for evacuation are less common, they can be found in many public
institutions, for example water-jet vacuum pumps and diaphragm pumps in physics
and chemistry labs at schools and universities.

So in general, an overpressure atmosphere seems to be preferable over underpres-
sure. However, selection of an adequate containment tends to be difficult as the next
section explains. In fact, it was not possible during this thesis to identify an appropriate
containment for overpressure atmosphere.

5.3. Containment Variants

5.3.1. Aluminium Box

The first type of containment examined is a 220mm·120mm·80mm aluminium box
with IP68 ingress protection rating. It consists of a top and a bottom part that can be
screwed together and a seal in between, see figure 5.1.

Three holes are drilled in the top part, one for a car valve and two for enamelled
copper wires for power supply and panic-sense debug UART. With the wires put in
place, the holes are sealed using epoxy adhesive.

An overpressure test was carried out by placing the panic-sense PCB is the box,
screwing the parts together, and then pressurizing the containment using a bicycle tyre
inflator to an absolute pressure of 6 bar. As this pressure is out of the measurement
range of the panic-sense’s air pressure sensor, the less accurate manometer of the tyre
inflator was used to determine the end pressure. Monitoring the data from panic-sense

40

5. Containment

Figure 5.1.: Upper part of the aluminium containment with 3mm thick silicone rubber
sponge seal.

showed a rapid decrease in pressure. A further test with the box submerged into water
confirmed leakage between the upper and lower part of the box and no leakage at the
sealed holes. Within less than 4h, the pressures evened out.

This test demonstrates that the aluminium box withstands high pressures, but also
that the silicone rubber sponge seal is insufficient for an overpressure environment.
Due to the high leakage, the box in this configuration is not a suitable containment for
Panic!. In addition, the metal shields wireless communication and reduces the possible
applications of the system.

5.3.2. PET Bottle

PET bottles are very robust and available at practically no cost. These properties make
them a commonly used part in water rockets, for instance as pressure vessels for the
rocket boosters [20] withstanding pressures above 10 bar. By the same arguments, they
are interesting to Panic! as well.

While bottles with a large enough cap for the valve and the wires can be found, inser-
tion of the PCBs tends to be difficult. However, there exist techniques and manuals [20]
for splicing and reinforcing bottles that afterwards still support high pressures. The
author tried to follow these instructions, but did not succeed in building a functioning
containment based on PET bottles.

41

5. Containment

Figure 5.2.: Jars with non-return valve and electrical interface in the cap (left: 580ml,
right: 1 l).

5.3.3. Jar

The last type of containment are jars as commonly used for groceries, for instance jam
and gherkins. Jars are built for an underpressure atmosphere and seal themselves when
the cap gets sucked in. Moreover, the caps are made out of thin metal that can be
modified using a cutter or a hand drill. Figure 5.2 shows some jars altered for Panic!.

Since the cap should seal itself, the work focused on the interfaces.

Valve

The first variant depicted in figure 5.3 features a Dunlop bike valve (outward direction
of the airflow). Initially, the valve used a short tube that gets expanded when air flows
through the valve, and covers the openings when the pressure has the reverse direction.
However, the force of the water-jet vacuum pump used for evacuation was too low for
the tube to open; hence, the valve was disabled by removing the tube entirely. Instead,
a section of a silicone tube with larger diameter was adhered to the cap and blocked
after evacuation using a cable strap.

The second variant uses another type of Dunlop valve containing a ball that allows
air to pass in one direction and blocks in the other one. As a result, leakage through
the valve is lower the greater the differential pressure and vice-versa. If the differential
pressure is too low, the valve opens irrevocably.

42

5. Containment

Figure 5.3.: Cap with pin header and blocked tube instead of a valve.

Electrical Interface

The first tests for a containment used enamelled copper wires as electrical interface
because they do not have a thick isolation layer where air could leak. That design was
dropped for simpler variants since the majority of leakage seems to be caused by cap
and valve.

The second variant used stranded wires soldered to a connector adhered to the cap.
This option is more user friendly as it uses standard components and reduces the time
for preparation of individual enamelled copper wires. Still, it is necessary to drill com-
paratively large holes for the connector and parts need to be positioned accurately to
prevent short-circuit with the cap.

The final variant is a further reduction of previous designs by omitting the connector.
Instead, the wires are fed through a slit in the cap as shown in figure 5.4 and sealed
using epoxy adhesive. To attach other circuits to the wire, a standard crimp connector
can be used.

5.4. Tests

To assess the performance of the jars as containment, several tests were performed by
placing a panic-sense PCB for measurement and a power resistor for heat dissipation
inside the jar. The tests started with the evacuation of the jar and ended when the
pressures evened out. In between, the resistor was activated several times and the
measurements were logged.

The plots in figure 5.5 show measurements from the pressure sensor and the PCB

43

5. Containment

Figure 5.4.: Cap with simplified feedthrough for wires.

temperature sensor. During the first 12h without thermal test, the pressure increased
due to leakage from the containment. When the resistor was enabled and the temper-
ature increased, the pressure increased likewise. The containment tested used the ball
based Dunlop valve variant. Therefore, the leakage increased on rising pressure up
to the moment of the last thermal test where the minimum differential pressure was
exceeded and the valve opened.

In comparison, figure 5.6 depicts the measurements of another test using a jar with
tube and cable strap instead of a bike valve. In this configuration, the leakage was
much less than in the previous example. Although the start pressure was higher, the
test could have been continued for more than two days, if the jar was not opened by
removing the cable strap.

Both pressure data sets also show small negative spikes that appear in regular inter-
vals. These are measurement errors caused by the voltage ripple of the sensor’s supply
voltage. The LTC3226 supercap controller recharges the supercaps to adjust for leakage
currents, and thus, causes additional load. As the pressure sensor uses the same voltage
rail as the LTC3226, the pressure seems to decrease during this period. This limitation
is already described in section 4.5.

44

5. Containment

0 5 10 15 20 25

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

t/h

p/
hP

a

0 5 10 15 20 25

20
30

40
50

60
70

80

t/h

ϑ
/°

C

Figure 5.5.: Plots of pressure and PCB temperature measurements (jar size: 580ml).

45

5. Containment

0 10 20 30 40

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

t/h

p/
hP

a

0 10 20 30 40

20
30

40
50

60
70

80

t/h

ϑ
/°

C

Figure 5.6.: Plots of pressure and PCB temperature measurements (jar size: 400ml).

46

6. Conclusion and Future Work

This thesis introduced Panic!, a system to physically secure home routers against a wide
range of physical attacks. It’s components are distributed across various layers of ab-
straction, ranging from pure software, to software closely coupled with electronics, to
pure hardware.

Panic! offers a proof of concept that can be a basis for future work. This includes veri-
fication of panicd and libpanic (especially the memory erasure code), verification of
the compatibility between libpanic and third-party programs, as well as compatibil-
ity tests for non-ARM platforms. Furthermore, another iteration of the panic-sense cir-
cuit is necessary to overcome its current limitations and the usability and performance
of containments needs to be improved. All three categories gain additional relevance,
if Panic! shall be made usable with ordinary commercial off-the-shelf home routers and
at a larger scale.

47

A. Appendix

A.1. Panic-Sense Schematics

The following pages show the schematics for panic-sense v0.2.

48

A. Appendix

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

LE

V
IN

13
G

A
T

E
5

V
O

U
T

1

P
F

I
3

C
+

15
C

-
12

P
R

O
G

9

E
N

_C
H

G
8

P
F

O
2

R
S

T
7

C
A

P
G

O
O

D
11

LD
O

_F
B

4
R

S
T

_F
B

6

C
P

O
16

V
M

ID
14

C
P

O
_F

B
10

G
N

D 17

U
3

LT
C

32
26

+
5V

_p
su

:1
+

5V
:1

G
N

D
:1

G
N

D
:1

G
N

D
:1

R
10

33
.2

k

C
5

10
u

R
11

1.
6M

R
12

47
0k

G
N

D
:1

G
N

D
:1V

_C
P

O
 =

 5
.3

V

I_
C

H
G

,IN
,L

IM
 =

 3
15

m
A

V
_I

N
,P

F
O

_H
I_

LO
 =

 4
.4

4V

R
13

2.
7M

R
14

1M

V
_O

U
T

,L
D

O
 =

 4
.3

V

R
15

27
0k

R
16

62
k

G
N

D
:1

C
6

47
u

G
N

D
:1

C
7

10
u

G
N

D
:1

+
5V

:1
+

3.
3V

:1

C
8

10
u

C
9

10
u

G
N

D
:1

G
N

D
:1

SUPPLY_CAPGOOD

SUPPLY_PFO
R

17
47

0k

R
18

47
0k

+
3.

3V
:1

D

S

G

S
i2

33
3C

D
S

Q
1

V
S

S
2

V
IN

1
V

O
U

T
5

C
E

3

U
4

X
C

62
22

D

R
19

10
k

R
20

10
k

SUPPLY_ENABLE

1
2

3

D
5

B
A

S
40

-0
5

+
5V

_p
su

:1

1 2

C
10

10
F

1 2

C
11

10
F

11 22 33 44

J4
11 22 33 44

J5

G
N

D
:1

G
N

D
:1

B
ac

ku
p

P
ow

er
 S

up
pl

y,
 P

ow
er

 P
at

h
C

on
tr

ol
le

r,
 a

nd
 S

en
so

r
P

C
B

 S
up

pl
y

po
w

er
-s

up
pl

y.
sc

h

1
1

1 N
ic

ol
as

 B
en

es

Figure A.1.: Power supply schematic.

49

A. Appendix

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

LE

V
C

C
1

9
V

C
C

2
19

V
C

C
3

31

A
V

C
C

39

G
N

D
1

8
G

N
D

2
18

G
N

D
3

30
G

N
D

4
38

R
E

S
E

T
/P

D
I_

C
LO

C
K

35
P

D
I_

D
A

T
A

34

P
R

1
37

P
R

0
36

P
A

0
40

P
A

1
41

P
A

2
42

P
A

3
43

P
A

4
44

P
A

5
1

P
A

6
2

P
A

7
3

P
B

0
4

P
B

1
5

P
B

2
6

P
B

3
7

P
C

0
10

P
C

1
11

P
C

2
12

P
C

3
13

P
C

4
14

P
C

5
15

P
C

6
16

P
C

7
17

P
D

0
20

P
D

1
21

P
D

2
22

P
D

3
23

P
D

4
24

P
D

5
25

P
D

6
26

P
D

7
27

P
E

0
28

P
E

1
29

P
E

2
32

P
E

3
33

A
T

xm
eg

a3
2A

4U
-A

U
U

1

C
1

10
0n

C
2

10
0n

C
3

10
0n

C
4

10
0n

+
3.

3V
:1

G
N

D
:1

1 3 5

42 6

J1

G
N

D
:1+

3.
3V

:1 R
1

10
k

P
re

ss
ur

e_
A

D
C

T
em

pe
ra

tu
re

_S
D

A
T

em
pe

ra
tu

re
_S

C
L

11 22 33 44

J2

A
cc

M
ag

_C
LKA
cc

M
ag

_M
O

S
I

A
cc

M
ag

_M
IS

O

A
cc

M
ag

_C
S

G
yr

o_
C

LK

G
yr

o_
M

O
S

I
G

yr
o_

M
IS

OG
yr

o_
C

S

P
re

ss
ur

e_
2.

5V
,A

D
C

R
E

F

R
X

D

T
X

D

TXD RXD

G
N

D
:1

11 22 33 44

J3

WARN FAIL

S
U

P
P

LY
_P

F
O

S
U

P
P

LY
_C

A
P

G
O

O
D

S
U

P
P

LY
_E

N
A

B
LE

D
1

R
2

75 R
3

75
R

4
75

R
5

0

D
2

D
3

D
4

G
N

D
:1

re
d

ye
llo

w
gr

ee
n

bl
ue

16 15

1 2

14 13

3 4

12 11

5 6

10 9

7 8

A
C

P
L-

24
7-

50
0E

U
2

+
3.

3V
:1

R
6

15
0

R
7

15
0

R
8

15
0

R
9

10
k

N
ic

ol
as

 B
en

es

1

1
1

uc
.s

ch

M
ic

ro
co

nt
ro

lle
r,

 P
ro

gr
a

m
m

in
g

an
d

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

Figure A.2.: Microcontroller schematic.

50

A. Appendix

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

LE

+
5V

:1

V
_O

U
T

4
V

S
2

M
P

X
H

64
00

A

G
N

D
3

N
C

1
N

C
5

N
C

6
N

C
7

N
C

8

U
7

C
21

10
0n

G
N

D
:1

R
22

3.
2k

R
23

10
k

P
re

ss
ur

e_
2.

5V
,A

D
C

R
E

F

C
22

47
p

R
24

27
k

R
25

27
k

G
N

D
:1

P
re

ss
ur

e_
A

D
C

C
23

10
0n

+
3.

3V
:1

N
ic

ol
as

 B
en

es

1

1
1

se
ns

or
s-

pr
es

su
re

.s
ch

A
bs

ol
ut

e
P

re
ss

ur
e

S
en

so
r

an
d

A
D

C
 R

ef
er

en
ce

 V
ol

ta
ge

Figure A.3.: Pressure sensor schematic.

51

A. Appendix

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

LE

V
D

D
IO

1

R
es

er
ve

d_
1

3
R

es
er

ve
d_

2
13

N
C

15
B

Y
P

2

S
C

L/
S

C
LK

4

G
N

D
_1

5

S
D

A
/M

O
S

I
6

S
A

0/
M

IS
O

7

C
rs

t
8

IN
T

2
9

S
A

1/
C

S
_B

10

IN
T

1
11

G
N

D
_2

12

V
D

D
14

F
X

O
S

87
00

C
Q

R
1

N S

E
W R
S

T
16

U
5

C
12

10
0n

C
13

4.
7u

C
14

10
0n

+
3.

3V
:1

G
N

D
:1

G
N

D
:1

C
15

10
0n

C
16

10
0n

G
N

D
:1

A
cc

M
ag

_C
LK

A
cc

M
ag

_M
O

S
I

A
cc

M
ag

_M
IS

O
A

cc
M

ag
_C

S

A
cc

el
er

om
et

er
 a

nd
 M

a
gn

et
om

et
er

se
ns

or
s-

ac
cm

ag
.s

ch

1
1

1 N
ic

ol
as

 B
en

es

Figure A.4.: Acceleration and magnetic field sensor schematic.

52

A. Appendix

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

LE

9
R

E
S

14
P

LL
F

IL
T

16
V

D
D

7
IN

T
1

10
R

E
S

12
R

E
S

15
R

E
S

11
R

E
S

13
G

N
D

1
V

D
D

_I
O

8
R

E
S

5
C

S

6
D

R
D

Y
/IN

T
2

2
S

C
L/

S
P

C

3
S

D
A

/S
D

I/S
D

O

4
S

D
O

/S
A

0

L3
G

42
00

D
U

6

G
N

D
:1

C
17

10
n

R
21

10
k

C
18

47
0n

G
N

D
:1

+
3.

3V
:1

C
19

10
0n

C
20

10
u

G
N

D
:1

G
yr

o_
C

LK
G

yr
o_

M
O

S
I

G
yr

o_
M

IS
O

G
yr

o_
C

S

G
yr

os
co

pe

se
ns

or
s-

gy
ro

.s
ch

1
1

1 N
ic

ol
as

 B
en

es

Figure A.5.: Gyroscope schematic.

53

A. Appendix

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

LE

V
D

D
2

N
C

1

D
4+

3
D

3+
4

D
2+

6
D

1+
7

D
-

5

G
N

D
8

A
0

9

T
C

R
IT

1
10

T
C

R
IT

2
11

S
M

B
D

A
T

12
S

M
B

C
LK

13

T
C

R
IT

3
14

U
8

LM
95

23
4

C
24

10
0n

C
25

10
u

C
26

10
0p

+
3.

3V
:1

G
N

D
:1

G
N

D
:1

1
2

3
4

5
6

7
8

J6

C
27

10
0p

C
28

10
0p

C
29

10
0p

C
30

10
0p

T
em

pe
ra

tu
re

_S
D

A
T

em
pe

ra
tu

re
_S

C
L

R
26

1.
3k

R
27

1.
3k

+
3.

3V
:1

3 2

1
M

M
B

T
39

04
Q

2
1 2

J7

3 2

1
M

M
B

T
39

04
Q

3
1 2

J8

3 2

1
M

M
B

T
39

04
Q

4
1 2

J9

3 2

1
M

M
B

T
39

04
Q

5
1 2

J1
0

T
em

pe
ra

tu
re

 S
en

so
rs

se
ns

or
s-

te
m

pe
ra

tu
re

.s
ch

1
1

1 N
ic

ol
as

 B
en

es

Figure A.6.: Temperature sensors schematic.

54

B. Bibliography

[1] IEEE Standard for Test Access Port and Boundary-Scan Architecture. IEEE Std
1149.1-2013 (Revision of IEEE Std 1149.1-2001), pages 1–444, May 2013.

[2] JTAG. http://wiki.openwrt.org/doc/hardware/port.jtag, 2014-07-03.
Accessed: 2014-08-11.

[3] About OpenWrt. https://wiki.openwrt.org/about/start, 2014-07-15.
Accessed: 2014-08-10.

[4] Table of Hardware. http://wiki.openwrt.org/toh/start, 2014-10-09. Ac-
cessed: 2014-10-09.

[5] Nicolas Benes. FOVS – Software. http://fovs.de/the-experiment/

software/, 2014. Accessed: 2014-10-11.

[6] Gerald Coley and Robert P. J. Day. BeableBone Black System Reference Man-
ual. https://github.com/CircuitCo/BeagleBone-Black/blob/rev_

a5c/BBB_SRM.pdf?raw=true, 2013-06-15. Accessed: 2014-10-08.

[7] Atmel Corporation. Atmel AVR XMEGA AU MANUAL. http://www.atmel.
com/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-

XMEGA-AU_Manual.pdf, April 2013. Accessed: 2014-10-10.

[8] Atmel Corporation. ATxmega16A4U/32A4U/64A4U/128A4U. http:

//www.atmel.com/images/Atmel-8387-8-and16-bit-AVR-

Microcontroller-XMEGA-A4U_Datasheet.pdf, October 2014. Accessed:
2014-10-10.

[9] British Broadcasting Corporation. Inside the Dark Web – Episode 4. http://

www.bbc.co.uk/programmes/b04grp09, 2014. Accessed: 2014-10-09.

[10] Fairchild Semiconductor Corporation. 2N3904 / MMBT3904 / PZT3904 NPN Gen-
eral Purpose Amplifier. https://www.fairchildsemi.com/datasheets/

MM/MMBT3904.pdf, October 2011. Accessed: 2014-10-10.

55

http://wiki.openwrt.org/doc/hardware/port.jtag
https://wiki.openwrt.org/about/start
http://wiki.openwrt.org/toh/start
http://fovs.de/the-experiment/software/
http://fovs.de/the-experiment/software/
https://github.com/CircuitCo/BeagleBone-Black/blob/rev_a5c/BBB_SRM.pdf?raw=true
https://github.com/CircuitCo/BeagleBone-Black/blob/rev_a5c/BBB_SRM.pdf?raw=true
http://www.atmel.com/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf
http://www.atmel.com/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf
http://www.atmel.com/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf
http://www.atmel.com/images/Atmel-8387-8-and16-bit-AVR-Microcontroller-XMEGA-A4U_Datasheet.pdf
http://www.atmel.com/images/Atmel-8387-8-and16-bit-AVR-Microcontroller-XMEGA-A4U_Datasheet.pdf
http://www.atmel.com/images/Atmel-8387-8-and16-bit-AVR-Microcontroller-XMEGA-A4U_Datasheet.pdf
http://www.bbc.co.uk/programmes/b04grp09
http://www.bbc.co.uk/programmes/b04grp09
https://www.fairchildsemi.com/datasheets/MM/MMBT3904.pdf
https://www.fairchildsemi.com/datasheets/MM/MMBT3904.pdf

B. Bibliography

[11] Linear Technology Corporation. LTC3226 – 2-Cell Supercapacitor Charger with
Backup PowerPath Controller. http://www.linear.com/docs/40027, 2011.
Accessed: 2014-10-10.

[12] Tails Developers. Tails – Memory erasure. https://tails.boum.org/

contribute/design/memory_erasure/, 2014-06-26. Accessed: 2014-07-22.

[13] Jeroen Domburg. Hard disk hacking. http://spritesmods.com/?art=

hddhack, 2013. Accessed: 2014-10-09.

[14] Jason A. Donenfeld. Linux Local Privilege Escalation via SUID /proc/pid/mem
Write. http://blog.zx2c4.com/749, 2012-01-22. Accessed: 2014-10-07.

[15] Freescale Semiconductor, Inc. High Temperature Accuracy Integrated Silicon
Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned,
Temperature Compensated and Calibrated. http://cache.freescale.com/
files/sensors/doc/data_sheet/MPXH6400A.pdf, November 2009. Ac-
cessed: 2014-10-10.

[16] Freescale Semiconductor, Inc. Xtrinsic FXOS8700CQ 6-Axis Sensor with Inte-
grated Linear Accelerometer and Magnetometer. http://cache.freescale.
com/files/sensors/doc/data_sheet/FXOS8700CQ.pdf, March 2014. Ac-
cessed: 2014-10-10.

[17] Jonathan L. Hafetz. "A Man’s Home is His Casle?": Reflections on the Home,
the Family, and Privacy During the Late Nineteenth and Early Twentieth Cen-
turies. Wm. & Mary J. Women & L., 8, 2002. http://scholarship.law.wm.

edu/wmjowl/vol8/iss2/2.

[18] J. A. Halderman, S. D. Schoen, N Heninger, W. Claskson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot
attacks on encryption keys. In Proc. 2008 USENIX Security Symposium, 2008-02-21.

[19] Texas Instruments Incorporated. LM95234 Quad Remote Diode and Local Temper-
ature Sensor with SMBus Interface and TruThermTM Technology. http://www.
ti.com/lit/ds/symlink/lm95234.pdf, March 2013. Accessed: 2014-10-10.

[20] George Katz. Water Rocket Construction - Advanced Tutorials. http://www.

aircommandrockets.com/construction_2.htm, 2014. Accessed: 2014-10-
14.

56

http://www.linear.com/docs/40027
https://tails.boum.org/contribute/design/memory_erasure/
https://tails.boum.org/contribute/design/memory_erasure/
http://spritesmods.com/?art=hddhack
http://spritesmods.com/?art=hddhack
http://blog.zx2c4.com/749
http://cache.freescale.com/files/sensors/doc/data_sheet/MPXH6400A.pdf
http://cache.freescale.com/files/sensors/doc/data_sheet/MPXH6400A.pdf
http://cache.freescale.com/files/sensors/doc/data_sheet/FXOS8700CQ.pdf
http://cache.freescale.com/files/sensors/doc/data_sheet/FXOS8700CQ.pdf
http://scholarship.law.wm.edu/wmjowl/vol8/iss2/2
http://scholarship.law.wm.edu/wmjowl/vol8/iss2/2
http://www.ti.com/lit/ds/symlink/lm95234.pdf
http://www.ti.com/lit/ds/symlink/lm95234.pdf
http://www.aircommandrockets.com/construction_2.htm
http://www.aircommandrockets.com/construction_2.htm

B. Bibliography

[21] The Linux man-pages project. UNIX, 2008-12-01. man 7 unix

[22] The Linux man-pages project. PROC, 2009-03-30. man 5 proc

[23] The Linux man-pages project. PTRACE, 2009-03-30. man 2 ptrace

[24] The Linux man-pages project. FORK, 2009-04-27. man 2 vfork

[25] The Linux man-pages project. VFORK, 2009-06-21. man 2 vfork

[26] The Tor Project. common/compat.c. https://gitweb.torproject.org/

tor.git/blob/HEAD:/src/common/compat.c#l1999, 2013. Accessed:
2014-10-07.

[27] The Tor Project. Codename: Torouter. https://trac.torproject.org/

projects/tor/wiki/doc/Torouter, 2014-04-30. Accessed: 2014-08-10.

[28] STMicroelectronics. L3G4200D – MEMS motion sensor: ultra-stable three-axis dig-
ital output gyroscope. http://www.st.com/st-web-ui/static/active/

en/resource/technical/document/datasheet/CD00265057.pdf, De-
cember 2010. Accessed: 2014-10-10.

[29] Andrew S. Tanenbaum and Todd Austin. Structured Computer Organization (6th
Edition). Pearson Education, 2013.

[30] Michael Wei, Laura M. Grupp, Frederick E. Spada, and Steven Swanson. Reli-
ably Erasing Data From Flash-Based Solid State Drives. In FAST ’11: 9th USENIX
Conference on File and Storage Technologies, 2011.

57

https://gitweb.torproject.org/tor.git/blob/HEAD:/src/common/compat.c#l1999
https://gitweb.torproject.org/tor.git/blob/HEAD:/src/common/compat.c#l1999
https://trac.torproject.org/projects/tor/wiki/doc/Torouter
https://trac.torproject.org/projects/tor/wiki/doc/Torouter
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00265057.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00265057.pdf

	Acknowledgements
	Abstract
	Introduction
	Home Routers in Peer-to-Peer Networks
	Risk of Physical-Access Attacks on Home Routers
	Interception of Data on Bus Wires
	Alteration of Firmware through the JTAG Interface
	Memory Recovery through the Cold Boot Attack

	Contribution of the Thesis

	The Panic! System
	Router Platform

	Router Software
	System Daemon panicd
	Usage
	Implementation

	Library libpanic
	Usage
	Implementation
	Rationale
	Verification
	Limitations
	Example: OpenSSH Daemon

	Memory Erasure Scripts
	Limitations

	Panic-Sense
	Required Features
	Sensors
	Backup Power Supply

	Circuit
	Backup Power Supply
	Microcontroller and Sensors

	Microcontroller Software upanic
	Scheduling
	State Machine

	Cost Estimation
	Limitations
	Backup Power Supply
	Microcontroller and Sensors
	Printed Circuit Board

	Containment
	Requirements
	Characteristics of the Environment
	Containment Variants
	Aluminium Box
	PET Bottle
	Jar

	Tests

	Conclusion and Future Work
	Appendix
	Panic-Sense Schematics

	Bibliography

