
Space-Efficient Private Search

with Applications to Rateless Codes

George Danezis and Claudia Diaz

K.U. Leuven, ESAT/COSIC,
Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium.
(george.danezis, claudia.diaz)@esat.kuleuven.be

Abstract. Private keyword search is a technique that allows for search-
ing and retrieving documents matching certain keywords without reveal-
ing the search criteria. We improve the space efficiency of the Ostrovsky
et al. Private Search [9] scheme, by describing methods that require con-
siderably shorter buffers for returning the results of the search. Our ba-
sic decoding scheme recursive extraction, requires buffers of length less
than twice the number of returned results and is still simple and highly
efficient. Our extended decoding schemes rely on solving systems of si-
multaneous equations, and in special cases can uncover documents in
buffers that are close to 95% full. Finally we note the similarity between
our decoding techniques and the ones used to decode rateless codes, and
show how such codes can be extracted from encrypted documents.

1 Introduction

Private search allows for keyword searching on a stream of documents (typical
of online environments) without revealing the search criteria. Its applications
include intelligence gathering, medical privacy, private information retrieval and
financial applications. Financial applications that can benefit from this technique
are, for example, corporate searches on a patents database, searches for financial
transactions meeting specific but private criteria and periodic updates of filtered
financial news or stock values.

Rafail Ostrovsky et al. presented in [9] a scheme that allows a server to filter a
stream of documents, based on matching keywords, and only return the relevant
documents without gaining any information about the query string. This allows
searching to be outsourced, and only relevant results to be returned, economising
on communications costs. The authors of [9] show that the communication cost
is linear in the number of results expected. We extend their scheme to improve
the space-efficiency of the returned results considerably by using more efficient
coding and decoding techniques.

Our first key contribution is a method called recursive extraction for effi-
ciently decoding encrypted buffers resulting from the Ostrovsky et al. scheme.
The second method, based on solving systems of linear equations, is applied af-
ter recursive extraction and allows for the recovery of extra matching documents

2 George Danezis and Claudia Diaz

from the encrypted buffers. Recursive extraction results in the full decoding of
buffers of length twice the size of the expected number of matches, and has a
linear time-complexity. Shorter buffers can also be decrypted with high prob-
ability. Solving the remaining equations at colliding buffer positions allows for
even more documents to be retrieved from short buffers, and in the special case
of documents only matching one keyword, we can decode buffers that are only
10% longer than the expected matches, with high probability. We present simula-
tions to assess the decoding performance of our techniques, and estimate optimal
parameters for our schemes.

In this work we also present some observations that may be of general interest
beyond the context of private search. We show how arrays of small integers
can be represented in a space efficient manner using Pailler ciphertexts, while
maintaining the homomorphic properties of the scheme. These techniques can be
used to make private search more space-efficient, but also implement other data
structures like Bloom filters, or vectors in a compact way. Finally we show how
rateless codes, block based erasure resistant multi-source codes, can be extracted
from encrypted documents, while maintaining all their desirable properties.

This paper is structured as follows: We introduce the related work in Sec-
tion 2; present more in detail in Section 3 the original Ostrovsky scheme whose
efficiency we are trying to improve; and explain in Section 4 the required mod-
ifications. Sections 5 and 6 present the proposed efficient decoding techniques,
which are evaluated in Section 7. In Section 8 we explain how our techniques
can be applied to rateless codes; and we present our conclusions in Section 9.

2 Related Work

Our results can be applied to improve the decoding efficiency of the Private
Search scheme proposed by Rafail Ostrovsky et al. in [9]. This scheme is described
in detail in Section 3. Danezis and Diaz proposed in [5] some preliminary ideas on
how to improve the decoding efficiency of the Ostrovsky Private Search scheme,
which are elaborated in this paper.

Bethencourt et al. [1, 2] have independently proposed several modifications
to the Ostrovsky private search scheme which include solving a system of linear
equations to recover the documents. As such, the time complexity of their ap-
proach is O(n3), while our base technique, recursive extraction, is O(n). Their
technique also requires some changes to the original scheme [9], such as the ad-
dition of an encrypted buffer that acts as a Bloom filter [3]. This buffer by itself
increases by 50% the data returned. Some of our techniques presented in sec-
tion 6.2, that allow for efficient space representation of concatenated data, are
complementary to their work, and would greatly benefit the efficiency of their
techniques.

The rateless codes for big downloads proposed by Maymounkov and Mazières
in [8] use a technique similar to ours for efficient decoding, indicating that our
ideas can be applied beyond private search applications. We explore further this

Space-efficient Private Search 3

relation in Section 8, where we show how homomorphic encryption can be used
to create rateless codes for encrypted data.

Pfitzmann and Wainer [13] also notice that collisions in DC networks [4] do
not destroy all information transmitted. They use this observation to allow n
messages to be transmitted in n steps despite collisions.

3 Private Search

The Private Search scheme proposed by Ostrovsky et al. [9] is based on the prop-
erties of the homomorphic Paillier public key cryptosystem [10], in which the
multiplication of two ciphertexts leads to the encryption of the sum of the corre-
sponding plaintexts (E(x) · E(y) = E(x + y)). Constructions with El-Gamal [6]
are also possible but do not allow for full recovery of documents.

The searching party provides a dictionary of terms and a corresponding Pail-
lier ciphertext, that is the encryption of one (ti = E(1)), if the term is to be
matched, or the encryption of zero (t′i = E(0)) if the term is of no interest. Be-
cause of the semantic security properties of the Paillier cryptosystem this leaks
no information about the matching criteria.

The dictionary ciphertexts corresponding to the terms in the document dj

are multiplied together to form gj =
∏

k tk = E(mj), where mj is the number
of matching words in document dj . A tuple (gj , g

E(dj)
j) is then computed. The

second term will be an encryption of zero (E(0)) if there has been no match, and
the encryption E(mjdj) otherwise. Note that repeated words in the document
are not taken into account, meaning that each matching word is counted only
once, and mj represents the number of different matching words found in a
document.

Each document tuple is then multiplied into a set of l random positions in a
buffer of size b (smaller than the total number of searched documents, but bigger
than the number of matching documents). All buffer positions are initialized with
tuples (E(0), E(0)). The documents that do not match any of the keywords, do
not contribute to changing the contents of these positions in the buffer (since
zero is being added to the plaintexts), but the matched documents do.

Collisions will occur when two matching documents are inserted at the same
position in the buffer. These collisions can be detected by adding some redun-
dancy to the documents. The color survival theorem [9] can be used to show
that the probability that all copies of a single document are overwritten be-
comes negligibly small as the number of l copies and the size of the buffer b
increase (the suggested buffer length is b = 2 · l · M , where M is the expected
number of matching documents). The searcher can decode all positions, ignoring
the collisions, and dividing the second term of the tuples by the first term to
retrieve the documents.

4 George Danezis and Claudia Diaz

4 Modifications to the Original Scheme

A prerequisite for more efficient decoding schemes is to reduce the uncertainty of
the party that performs the decoding. At the same time, the party performing
the search should gain no additional information with respect to the original
scheme. In order to make sure of this, we note that the modifications to the
original scheme involve only information flows from the searching (encoding)
party back to the matching (decoding) party, and therefore cannot introduce
any additional vulnerabilities in this respect.

Our basic decoding algorithm (presented in Section 5) only requires that the
document copies are stored in buffer positions known to the decoder. In practice,
the mapping of documents to buffer positions can be done using a good hash
function H(·) that can be agreed by both parties or fixed by the protocol. We
give an example of how this function can be constructed.

Notation:

– l is the total of copies stored per document;
– dij is the j-th copy of document di (j = 1 . . . l) – note that all copies of di

are equal;
– b is the size of the buffer;
– q is the number of bits needed to represent b (2q−1 < b ≤ 2q);
– pij is the position of document copy dij in the buffer (0 ≤ pij < b).

The hash function is applied to the sum of the the document di and the
copy number j, H(di + j). The position pij is then represented by the q most
significant bits of the result of the hash. If there is index overflow (i.e., b ≤ pij),
then we apply the hash function again (H(H(di + j))) and repeat the process,
until we obtain a result pij < b. This is illustrated in Figure 1(a).

With this method, once the decoding party sees a copy of a matched doc-
ument, di, it can compute the positions of the buffer where all l copies of di

have been stored (and thus extract them from those positions) by applying the
function to di + j, with j = 1 . . . l.

We present in Section 6 an extension to our decoding algorithm that further
improves its decoding efficiency. The extension requires that the total number
N of searched documents is known to the decoder, and that the positions of all
(not just matched) searched documents are known by the decoder. This can be
achieved by adding a serial number si to the documents, and then deriving the
position pij of the document copies as a function of the document serial number
and the number of the copy H(si||j), as shown in Figure 1(b). We then take the
q most significant bits of the result and proceed as in the previous case.

With respect to the original Ostrovsky scheme, our basic algorithm only
requires the substitution of the random function U [0, b − 1] used to select the
buffer positions for the document copies by a pseudorandom function dependent
on the document and the copy number, that can be computed by the decoder.

The extension requires that the encoder transmits to the decoder the total
number N of documents searched. The encoder should also append a serial

Space-efficient Private Search 5

(a) in the basic algorithm (b) in the extended algorithm

Fig. 1. Function to determine the position of a document copy dij .

number to the documents (before encrypting them). We assume that the serial
numbers take values between 1 and N (i.e., si = i).

5 Basic Decoding Algorithm: Recursive Extraction

Given the minor modifications above, we note that much more efficient decoding
algorithms can be used, that would allow the use of significantly smaller buffers
for the same recovery probability.

While collisions are ignored in the original Ostrovsky scheme, our key in-
tuition is that collisions are in fact not destroying all information, but merely
adding together the encrypted plaintexts. This property can be used to recover
a plaintext if the values of the other plaintexts with which it collides are known.

The decoder decrypts the buffer, and thanks to the redundancy included in
the documents, it can discern three states of a particular buffer position: whether
it is empty, contains a single document, or contains a collision.

In this basic scheme, the empty buffer positions are of no interest to the
decoder (they do provide useful information in the extended algorithm, as we
shall see in the next section). In the case of it containing a single document di,
then the document can be recovered. By applying the hash function as described
in Section 4 to di + j with j = 1 . . . l, the decoder can locate all the other
copies of di and extract them from the buffer. This hopefully uncovers some
new buffer positions containing only one document. This simple algorithm is

6 George Danezis and Claudia Diaz

repeated multiple times until all documents are recovered or no more progress
can be made.

In the example shown in Figure 2(a), we match 9 documents and store 3
copies of each in a buffer of size 24. Documents ‘3’, ‘5’, ‘7’ and ‘8’ can be trivially
recovered (note that these four documents would be the only ones recovered in
the original scheme). All copies of these documents are located and extracted
from the buffer. At this point, documents ‘1’, ‘2’, ‘4’ and ‘9’ appear alone in at
least one position, and can therefore be extracted. Once they are removed from
the buffer, document ‘6’ can be also retrieved.

(a) Example of full buffer with 9 matched documents, 3
copies.

(b) Buffer after documents ‘3’, ‘5’, ‘7’ and ‘8’ have been
removed.

(c) Buffer after documents ‘1’, ‘2’, ‘4’ and ‘9’ have been
removed.

Fig. 2. Example of recursive extraction.

This very simple algorithm already provides an improvement of a factor l
(number of document copies) over the original Ostrovsky scheme, as we show in
our evaluation in Section 7.

6 Extended Decoding Algorithm: Solving Equations

Our basic decoding algorithm may terminate without recovering all matching
documents if we run into a situation where a group of documents is copied
to the same set of buffer positions. Figure 3 gives an example of such a case:
3 matching documents (2 copies each) have been stored in 3 colliding buffer
positions. Our key observation is that by expressing these buffer positions as
linear equations, we can still retrieve the 3 colliding documents.

Space-efficient Private Search 7

Fig. 3. Example of buffer with 2 copies of 3 documents colliding in 3 buffer positions

Our basic decoding based on recursive extraction algorithm takes advantage
of the fact that, once one document copy is retrieved, all other copies can be
extracted from the buffer. This does not require the buffer positions of the doc-
ument copies to be predictable for the decoder, and he needs to see at least one
copy of the document before being able to compute the positions of the other
copies.

Making predictable the positions of the document copies in the buffer, fur-
ther reduces uncertainty and allows us to further improve the decoding efficiency.
In order to achieve this we include, as pointed out in Section 4, a serial num-
ber in the document and tell the decoder the total number N of documents
searched. Then we make the document copy position dependent on its serial and
copy numbers (as shown in Figure 1(b)), so that the position of each searched
document copy is known a priori to the decoder.

The end resulting buffer can be modeled as a system of simultaneous equa-
tions. Each equation represents a buffer position, which leads to at most b equa-
tions. Each document that has a copy in this buffer position is a variable in the
equation, and the sum of the actual matched documents equals the value of the
bucket. Note that non-matching documents are set to zero, and therefore they
do not contribute to the sum.

The example shown in Figure 3 represents a mapping of three documents d1,
d2 and d3 into three buckets b3, b5 and b7. The corresponding set of equations
would be:

d1 + d2 = b3 (1)
d2 + d3 = b5 (2)
d1 + d3 = b7 (3)

We can solve the system of linear equations as long as the number of un-
knowns (i.e., documents) is lower or equal than the number of equations (i.e.,
buffer positions).

Note that, if a non-matching document d4 is also allocated in two of the
buffer positions (say, b3 and b7), we cannot retrieve any document because there
are more unknowns that equations. Therefore the key to the success of this
decoding technique is applying first the recursive extraction decoding to identify
as many matching and non-matching documents possible; empty buffer positions
give key information about non-matching documents. This aims to reduce the
number of unknown documents to be less than the available equations, allowing
us to solve the linear system. As such, solving equations is complementary to
the first decoding technique, and it is always applied after recursive extraction.

8 George Danezis and Claudia Diaz

6.1 Special Case: Searching for One Keyword

In some applications, the decoder may be interested in searching only one key-
word in the documents. For example, when retrieving pseudonymous email [11],
the decoder would provide his email address as the only keyword for searching
in the documents.

In these cases, we can further improve the decoding efficiency to the extent
that the buffer length needs to be less than 10% larger than the expected number
of matches. As we show in Section 7, with this technique we can with high
probability retrieve more than 900 matched documents from a buffer with 1000
positions.

The technique works as follows: the serial number is appended to the lower
end of the document, leaving enough space to accommodate the sum of serial
numbers of documents present in the bucket. The modified documents d′i are
computed as: d′i = di · 2S + i, where S is the number of bits needed to make
sure that the serial numbers add up without overflowing the appended bit space.
Given that the total number of searched documents is N , the worst case would be
that all searched documents match and that there is a bucket that contains a copy
of each document. In this case, the sum of all serial numbers is

∑N
i=1 i = N(N+1)

2 .
Therefore, it suffices to append S = 2 log2(N) bits to the document, where the
serial number i is included. Note that a lower number of bits between log2(N)
and 2 log2(N) may be sufficient, since the average number of matched documents
in a buffer position is generally much lower than the worst case.

As we are considering the special case in which only one keyword is being
searched, matching documents would be multiplied by a one, while non-matching
documents are multiplied by a zero (as opposed to the general case of searching
K keywords, where the document may be multiplied by up to K if all searched
keywords are contained in it). The serial numbers, as part of the document, are
also multiplied by either a one or a zero.

This scheme has the following property: given that 2 matching documents di

and dj are colliding in a buffer position bk, the serial number bits of the collision
will contain i + j. More generally, the sum of serial numbers in a given buffer
position is given by: R =

∑N
i=1(i · xi · yi), where xi is one if a document copy

has been stored in that buffer position and zero otherwise (the values of xi are
known a priori to both the encoder and the decoder); and the variable yi takes
the value one if the document has been matched and zero otherwise (the value
of yi is unknown both to the encoder and the decoder). Note that in the general
case of searching K keywords yi takes values between zero and K.

In order to perform the decoding, we use the following information:

– M : number of matching documents in a buffer position (given by the de-
cryption of the multiplication of first parts of the tuple (gi, g

di
i) for each

document di in the buffer position, M = D(
∏

i(gi)) =
∑

i(xi · yi))
– R: result of summing all serial numbers of matching documents in the posi-

tion, R =
∑N

i=1(i · xi · yi).

Space-efficient Private Search 9

We then seek the subset of M documents stored in the position whose serial
numbers sum R. We illustrate the method with the example shown in Figure 4.
In this example, we can express the equations for the buffer positions as:

d1 + d2 + d3 = b3 (4)
d2 + d4 + d5 = b5 (5)

d1 + d3 + d4 + d5 = b7 (6)

Fig. 4. Example of buffer with 2 copies of 5 documents colliding in 3 buffer positions

If there are two matches in b3, b5 and three in b7 (i.e., M = 2 for b3 and b5;
and M = 3 for b7); and the accumulative serial numbers R of b3, b5 and b7 are
4, 7 and 9, respectively, then we know that d2 and d4 are zeros and we can solve
the system of 3 linear equations with 3 unknowns.

This technique may still be applicable in cases where 2 or 3 keywords are
searched, but given that the complexity grows exponentially with the number
K of searched keywords, it quickly becomes infeasible to use it, even with a
moderate K.

6.2 Tight Packing of Encrypted Lists and Bit Fields

In the previous section we described how we can use a single Paillier ciphertext
to encode, space permitting, both the serial number of the document and the
document itself. This encoding still allows for the homomorphic property; i.e., for
the different plaintext parts of the message to be added together field-wise, when
two ciphertexts are multiplied. This is a special case of a generic mechanism we
can use to further improve the space-efficiency of the original Ostrovsky et al.
scheme [9], the encoding of the Bloom filter buffer in Bethencourt et al. [1, 2],
and our decoding schemes.

A Paillier ciphertext can fully represent a plaintext of up to dlog(n) − 1e
bits of length. In many cases (e.g., the first element of each buffer position in
the Ostrovsky scheme, the representation of the serial number, or the Bloom
filter entry) only a small plaintext is to be represented. We can do this by using
only one Paillier ciphertext and packing as many elements as possible into it.
Consider that we have two ciphertexts E(i) and E(j), representing two fields.
We assume that the cryptographic protocols we shall perform will never result
in a sum of those fields being greater than b bits long. We can then encode these
two ciphertexts as:

E(i) · E(j)2
b

= E(j · 2b + i) (7)

10 George Danezis and Claudia Diaz

It is possible to add a value to any element of the encrypted list. First,
the ciphertext is shifted to the appropriate position and then multiplied to the
tightly packed buffer. For example:

E(j · 2b + i) · E(i′) = E(j · 2b + (i + i′)) (8)

E(j · 2b + i) · E(j′)2
b

= E((j + j′) · 2b + i) (9)

As long as the sum of each element can be represented using only b bits (which
is much smaller than the bits needed to represent the modulus n) we prevent
the carry interfering with other fields in the ciphertext and achieve a significant
gain in space efficiency.

7 Experimental Results

We present in Figures 5 and 6 simulation results1 illustrating the performance
of recursive extraction and solving equations for different sets of parameters.

Figure 5 illustrates how the recovery rate for recursive extraction changes,
as the number of matched documents increases in a buffer of 100 places (fig-
ure 5(a)), and 1000 places (figure 5(c)). The recovery rate is defined as the
fraction of documents retrieved from the buffer. When the number of matches
is lower than half the size of the buffer, the recovery of all matching documents
is virtually guaranteed. We plot the recovery rate for a number of documents
that is greater than half the size of the buffer, in order to better illustrate the
limits of our technique. We also plot the recovery rate for the original decoding
scheme proposed by Ostrovsky et al., in order to show the improvement offered
by our techniques.

Figures 5(b) and 5(d) show the probability of success of our techniques based
on solving equations, for buffers of length 100 and 1000, respectively. We show
the probability of success for the general case (K searched keywords), and for the
special case (one searched keyword). These “probabilities of success” have to be
interpreted differently from the recovery rates of recursive extraction: whether
a set of equations in a buffer can be solved is an all-or-nothing event – meaning
that either all remaining unknown variables are extracted or none. Since solv-
ing equations can only be done after recursive extraction, these probabilities of
success have to be seen as providing the possibility to get all documents (in
addition to the documents already retrieved as shown in figures 5(a) and 5(c)).

Figure 6 illustrates the effect that different number of copies have on the re-
covery rate of the documents, for all techniques. We graph “measures of success”
computed over numbers of matches that range from half the size of the buffer to
slightly more than the buffer size (i.e., edge cases). For this reason, the graphs
cannot be used to compare techniques, but rather the relative performance of the
number of copies in each technique. As we expect, recursive extraction provides

1 The full source code to produce all experiments and graphs is publicly available at
http://homes.esat.kuleuven.be/~gdanezis/

Space-efficient Private Search 11

70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance of recursive extraction

(100 buckets, 10 samples per point.)
Matching documents

F
ra

ct
io

n
of

 d
oc

um
en

ts
 u

nc
ov

er
ed

●

●

●

●

●

●

●

●

●

●

Recursion.
Ostrovsky et al.

(a) Comparing Recursive Extrac-
tion vs. the original Ostrovsky et
al. scheme for 100 buckets.

70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance of solving equations

(100 buckets, 10 samples per point.)
Matching documents

P
ro

b.
 o

f S
uc

ce
ss

.

●

●

●

● ●

● ●

●

● ●

Prob. of Solving Eq.
Prob. for 1−match.

(b) The probability of success
of solving simultaneous equations,
and the special case of one key-
word match, for 100 buckets.

650 700 750 800 850 900 950 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance of recursive extraction

(1000 buckets, 10 samples per point.)
Matching documents

F
ra

ct
io

n
un

co
ve

re
d

an
d

P
ro

b.
 o

f S
uc

ce
ss

.

● ● ●

●

●

●

●

●

●

●

●
●

●
●

●
●Recursion.

Ostrovsky et al.

(c) Comparing Recursive Extrac-
tion vs. the original Ostrovsky et
al. scheme for 1000 buckets.

650 700 750 800 850 900 950 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance of solving equations

(1000 buckets, 10 samples per point.)
Matching documents

P
ro

b.
 o

f S
uc

ce
ss

.

● ● ●

●

● ● ● ●

● ● ● ● ● ●

● ●

Prob. of Solving Eq.
Prob. for 1−match.

(d) The probability of success
of solving simultaneous equations,
and the special case of one key-
word match, for 1000 buckets.

Fig. 5. Performance evaluation of our techniques and comparison with the original
scheme.

12 George Danezis and Claudia Diaz

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect of number of copies

(100 buckets)
Number of Copies

P
er

fo
rm

an
ce

.

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ● ●●

●

●

●

●

●
● ● ●●

●

●

●

●

●

● ● ●

Recursion
Ostrovsky et al.
Solving
1−match

(a) Comparison for 100 buckets.

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect of number of copies

(1000 buckets)
Number of Copies

P
er

fo
rm

an
ce

.

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ● ●● ●

●

●

●

● ● ● ●● ●

●

● ●

●

●

●

●

Recursion
Ostrovsky et al.
Solving
1−match

(b) Comparison for 1000 buckets.

Fig. 6. The effect of the number of copies used on the performance of all techniques.

no advantage over the Ostrovsky scheme when only one copy of the document is
used. Using three copies seems to be optimal for most cases (and hence we used
it for our experiments shown in figure 5).

We observe that too few or too many copies, reduce the recovery rate of
documents. In the first case not enough copies of the document are present to
guarantee retrieval by ensuring [9] that at least one copy is alone in the buffer.
In the latter case too many documents are inserted, which lowers the probability
that any document is found on its own in the buffer. The original claim in [9],
that recovery becomes better as the number of copies increases may also mislead
implementers. This is only the case if one assumes a buffer of infinite size – and
therefore an optimal parameter for the number of copies has to be calculated for
each set of practical values of buffer size and expected matches.

8 Applications to Rateless Codes

Maymounkov and Mazires in [8] introduce “rateless codes”, a method for erasure
resistant, multi-source coding. These codes have been designed to be used in a
peer-to-peer context, where Alice maybe downloading the same file from multi-
ple sources, with no coordination between sources. The network is assumed to
be unreliable and dropping packets transporting message blocks with some prob-
ability. We have already pointed out that the recursive decoding technique we
use to decode the buffer resulting from private search is similar to the decoding
strategy for such codes.

Space-efficient Private Search 13

Many proposals for censorship resistant peer-to-peer systems [12] rely on
peers storing encrypted files. We show that we can produce rateless codes from
Paillier encrypted files, or using other homomorphic schemes like El-Gamal.
Furthermore we can combine blocks received from multiple sources in order to
retrieve the original file. Since Paillier encryption is probabilistic, the encrypted
files on the different peers are unlinkable to each other for anyone not knowing
the private decryption key.

We consider that Bob stores the file blocks Fi of a file, as Paillier encrypted
ciphertexts, under the public key of Alice, i.e. EA(F0), EA(F1), . . . EA(Fn). As
in the original proposal, Bob generates the rateless code in two phases. First, the
message is expanded into a composite message by appending auxiliary blocks.
Each auxiliary block is the multiplication encrypted message blocks selected
uniformly at random from all message blocks using a pseudo-random number
generator (for more details see [7]). In the second phase, an “infinite” stream of
check blocks can be generated. Those are the blocks to be transmitted to Alice,
along with their serial numbers and all the seeds of the pseudo-random number
generators used to generate them. Each check block is generated as follows: a
random degree d is chosen using a pseudo-random number generator from a
distribution ρd defined in [8]. A number d of blocks chosen uniformly at random
using a pseudo-random number generator are then multiplied together to form
the check block. In both cases, due to the Paillier homomorphic properties, the
product of the ciphertexts becomes the ciphertext corresponding to the sum of
the plaintexts.

Bob sends check blocks to Alice, that decodes them. First of all, Alice de-
crypts the check block and recovers the sum of the auxiliary blocks from which
it is composed. A similar algorithm as for the recursive decoding is then ap-
plied: check blocks that contain only one unknown auxiliary block are simplified
by subtracting all the known blocks. As shown in [8], after a linear number of
applications the message is recovered.

Allowing the computation of codes on encrypted data provides two key ad-
vantages:

– Alice can accept check blocks from two different sources, that are not in
any way coordinating with each other, and use both streams to recover the
original file. Yet, because of the randomized nature of Paillier, the different
sources cannot know that the encrypted files correspond to the same source
file.

– Alice knows when she has received sufficient blocks to recover the original
message (from any number of sources), even if she is not able to decrypt
the blocks and recover it. The mapping between auxiliary blocks and check
blocks is determined only by the pseudo-random number sequences for which
the seeds are known, and therefore she is able to tell when a decryption would
be successful.

El-Gamal [6] encryption can also be used instead of Paillier, with certain
advantages. In the El-Gamal variant ciphertexts are multiplied, which leads to

14 George Danezis and Claudia Diaz

the encryption of the product of the corresponding plaintexts. The decoder de-
crypts all blocks, as before, and divides (instead of subtracting) known blocks
to simplify others.

A key observation is that the division necessary to reconstruct the original
message can actually be performed on the encrypted check blocks, even without
the knowledge of the secret key. As a result of this property of El-Gamal cipher-
texts, not only messages encrypted blockwise using this cipher can be expanded
into rateless codes served from multiple sources, but also the receiver of these
blocks can perform the decoding and reconstruct a valid El-Gamal encrypted
representation of the original message. The new representation of the message
can in turn be rendered unlinkable to the two (or more) source representations
by re-encrypting (also called self-blinding) the recovered ciphertexts.

9 Conclusions

We have presented in this paper efficient decoding mechanisms for private search.
The very simple basic mechanism consists of recursively extracting documents
from the returned buffer. The extended mechanism additionally solves equations
in order to retrieve the remaining colliding documents in the buffer.

The size of the returned buffer with matched documents is the key to the
success of private search schemes. If the size of this buffer is too long, any scheme
can simply be reduced to transmitting back all the documents, which would save
in complexity and cryptographic costs.

Our proposed decoding methods reduce by a significant constant factor the
buffer sizes required by the Ostrovsky et al. Private Search [9] scheme. They
require buffers less than twice the size of the matched documents, and a lin-
ear decoding complexity, meaning that the buffers at at least three times shorter
than in the original scheme. Recursive extraction and solving equations are com-
plementary and can be applied sequentially to extract a maximum number of
documents from short buffers. Compression can be achieved by packing lists of
values more efficiently, as presented in Section 6.2, further halving the base cost
of the original scheme. In the important special case of matching documents
that only contain one keyword, we achieve an overhead of less than 10%, making
private search very practical.

We have presented simulation results to assess the decoding performance and
estimate optimal parameters for our schemes.

Finally, we have shown how rateless codes can be constructed from encrypted
data, while preserving the unlinkability of files across multiple sources.

Acknowledgements

This work has benefited from discussions with Paul Syverson at the Dagstuhl Seminar
on Anonymous Communications (October 9-14, 2005). This work was partially sup-
ported by IST FP6 AEOLUS and IWT SBO ADAPID. George Danezis is sponsored
by the F.W.O (Fund for Scientific Research) Flanders (Belgium).

Space-efficient Private Search 15

References

1. John Bethencourt, Dawn Song, and Brent Waters. New constructions and practi-
cal applications for private stream searching (extended abstract). In SP ’06: Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy (S&P’06), pages
132–139, Washington, DC, USA, 2006. IEEE Computer Society.

2. John Bethencourt, Dawn Song, and Brent Waters. New techniques for private
stream searching. Technical report, Carnegie Mellon University, 2006.

3. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

4. David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65–75, 1988.

5. George Danezis and Claudia Diaz. Improving the decoding efficiency of private
search. Dagstuhl Seminar on Anonymity and its Applications, October 2005.

6. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In CRYPTO, pages 10–18, 1984.

7. P. Maymounkov. Online codes. Technical report, New York University, 2003.
8. Petar Maymounkov and David Mazieres. Rateless codes and big downloads. In Pro-

ceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS03),
LNCS 2735, pages 247–255. Springer, 2003.

9. Rafail Ostrovsky and William E. Skeith III. Private searching on streaming data.
In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 223–240. Springer, 2005.

10. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238, 1999.

11. Len Sassaman, Bram Cohen, and Nick Mathewson. The pynchon gate: A secure
method of pseudonymous mail retrieval. In Proceedings of the Workshop on Privacy
in the Electronic Society (WPES 2005), Arlington, VA, USA, November 2005.

12. Andrei Serjantov. Anonymizing censorship resistant systems. In Proceedings of the
1st International Peer To Peer Systems Workshop (IPTPS 2002), March 2002.

13. Michael Waidner and Birgit Pfitzmann. The dining cryptographers in the disco:
unconditional sender and recipient untraceability with computationally secure ser-
vicability. In Proceedings of EUROCRYPT 1989. Springer-Verlag, LNCS 434, 1990.

