
Technical University of Munich
Department of Informatics

Master’s Thesis in Informatics

Implementing Privacy Preserving
Auction Protocols

Markus Teich

Technical University of Munich
Department of Informatics

Master’s Thesis in Informatics

Implementing Privacy Preserving
Auction Protocols

Implementierung von privatsphäreerhaltenden
Auktionsprotokollen

Author Markus Teich
Supervisor Prof. Dr.-Ing. Georg Carle
Advisors Sree Harsha Totakura, M. Sc.

Dr. Christian Grotho�
Prof. Dr. Felix Brandt

Date February 15, 2017

Informatik VIII
Chair of Network Architectures and Services

I con�rm that this master’s thesis is my own work and I have documented all sources
and material used.

Garching b. München, February 15, 2017

Signature

Abstract

In this thesis we translate Brandt’s privacy preserving sealed-bid online auction pro-
tocol from RSA to elliptic curve arithmetic and analyze the theoretical and practical
bene�ts. With Brandt’s protocol, the auction outcome is completely resolved by the
bidders and the seller without the need for a trusted third party. Loosing bids are not
revealed to anyone. We present libbrandt, our implementation of four algorithms
with di�erent outcome and pricing properties, and describe how they can be incorpo-
rated in a real-world online auction system. Our performance measurements show a
reduction of computation time and prospective bandwidth cost of over 90% compared
to an implementation of the RSA version of the same algorithms. We also evaluate
how libbrandt scales in di�erent dimensions and conclude that the system we have
presented is promising with respect to an adoption in the real world.

Zusammenfassung

In dieser Arbeit übersetzen wir Brandt’s datenschutzfreundliches Online-Auktions-
Protokoll mit verschlossenen Geboten von RSA zu Elliptische-Kurven Arithmetik und
analysieren die theoretischen und praktischen Vorteile. Bei Brandt wird das Aukti-
onsergebnis ausschließlich von den Bietern und dem Verkäufer berechnet ohne die
Mithilfe von vertrauenswürdigen Dritten. Verlierende Gebote bleiben stets geheim. Wir
präsentieren libbrandt, unsere Implementierung von vier Algorithmen mit verschie-
denen Eigenschaften für Ergebnis-Ö�entlichkeit und Gewinnpreis-Bestimmung, und
beschreiben, wie diese im Rahmen eines echten Online-Auktionssystemes eingebun-
den werden können. Unsere Auswertung zeigt eine Rechenzeit- und voraussichtliche
Nachrichtenlängen-Reduktion von mehr als 90% im Vergleich zu einer Implementierung
derselben Algorithmen in RSA Arithmetik. Zusätzlich evaluieren wir die Skalierbar-
keit von libbrandt in Bezug auf unterschiedliche Dimensionen und kommen zu dem
Schluss, dass die Anwendung des präsentierten Systems in echten Anwendungen er-
folgversprechend ist.

I

Contents

1 Motivation 1
1.1 Auction Formats . 2
1.2 Main Contributions . 4

2 Background 5
2.1 Introduction to RSA and Elliptic Curve Similarities 5
2.2 Overview of Brandt’s Algorithms . 6
2.3 Switching to the Ed25519 Elliptic Curve 8
2.4 Privacy and Security Properties . 8
2.5 Zero Knowledge Proofs . 9

2.5.1 Proof 1: Knowledge of an ECDL 10
2.5.2 Proof 2: Equality of Two ECDL 10
2.5.3 Proof 3: An Encrypted Value is One out of Two Values 11

2.6 Prologue . 12
2.6.1 Generate Public Key Y . 12
2.6.2 Round 1: Encrypt Bid . 12

2.7 First Price Auction Protocol with Private Outcome 14
2.7.1 Round 2: Compute Outcome . 14
2.7.2 Round 3: Decrypt Outcome . 14
2.7.3 Epilogue: Outcome Determination 15

2.8 First Price Auction Protocol with Public Outcome 16
2.8.1 Round 2: Compute Outcome . 16
2.8.2 Round 3: Decrypt Outcome . 16
2.8.3 Epilogue: Outcome Determination 17

2.9 M + 1st Price Auction Protocol with Private Outcome 18
2.9.1 Addition to Round 1: Encrypt Bid 19
2.9.2 Fixes for Minor Issues in M + 1st Price Auctions 20
2.9.3 Round 2: Compute Outcome . 20
2.9.4 Round 3: Decrypt Outcome . 21
2.9.5 Epilogue: Outcome Determination 21

2.10 M + 1st Price Auction Protocol with Public Outcome 22
2.10.1 Round 2: Compute Outcome . 22

II Contents

2.10.2 Round 3: Decrypt Outcome . 22
2.10.3 Epilogue: Outcome Determination 23

3 Architecture 25
3.1 Sellers and Bidders . 26
3.2 Platform . 26
3.3 GNUnet Auction . 27

3.3.1 GNUnet Auction Service . 28
3.3.2 The gnunet-auction-create Command 29
3.3.3 The gnunet-auction-info Command 30
3.3.4 The gnunet-auction-join Command 30
3.3.5 A Runtime Estimation Script 31
3.3.6 libbrandt . 31

3.4 GNU Taler as an Escrowed Payment Service 31

4 libbrandt 33
4.1 Requirements . 33
4.2 Handling Corner Cases . 34

4.2.1 No Bidders . 34
4.2.2 M + 1st Price Auctions with fewer Bidders than Items to Sell . 34
4.2.3 First Price Auctions with only one Bidder 35

4.3 On the Synchronous Protocol Structure 35
4.4 Application Programming Interface . 36

4.4.1 BRANDT_CbResult . 36
4.4.2 BRANDT_CbDeliver . 37
4.4.3 BRANDT_CbStart . 37
4.4.4 BRANDT_new . 38
4.4.5 BRANDT_join . 40
4.4.6 BRANDT_parse_desc . 41
4.4.7 BRANDT_got_message . 42

4.5 Implementation Details and Status . 43

5 Related Work 45
5.1 Brandt’s Work . 45

5.1.1 Wassenberg Diploma Thesis and Implementation 45
5.1.2 Security Analysis . 48
5.1.3 Stanford Implementation . 48

5.2 Other Auction Systems . 49
5.2.1 Secure Vickrey Auctions without Threshold Trust 49
5.2.2 t-Private and t-Secure Auctions 50
5.2.3 A Sealed-Bid Knapsack Auction 50

Contents III

6 Experimental Results 51
6.1 Algorithm Execution Time Test Setup 51

6.1.1 Notes on Measuring the Wassenberg Implementation 52
6.2 First Price Auctions Results . 53

6.2.1 Private Outcome . 53
6.2.2 Public Outcome . 53

6.3 Multi-Unit Formats . 56
6.3.1 Private Outcome . 56
6.3.2 Public Outcome . 58
6.3.3 Wassenberg’s Heuristic for Tie Breaking 58
6.3.4 libbrandt with a Reasonable Price Pool Size 61

6.4 Bandwidth Usage . 62

7 Discussion and Conclusion 65
7.1 Improvements . 65
7.2 Usability . 65
7.3 Open Questions . 66
7.4 Future Work . 67

A Appendix 69
A.1 Measurement RSA Parameters . 69
A.2 Raw Measurement Data . 70

Bibliography 79

V

List of Figures

2.1 Round Based Protocol Overview. 7

3.1 System Architecture. 25
3.2 A Bidder Successfully Registers for an Auction. 32

5.1 Possible (t ,u) Pairs for M = 3, n = 7 and any k ≥ n. 46

6.1 First Price Private Outcome Auction with �ve Prices. 54
6.2 First Price Private Outcome Auction with �ve Bidders. 54
6.3 First Price Public Outcome Auction with �ve Prices. 55
6.4 First Price Public Outcome Auction with �ve Bidders. 55
6.5 M + 1st Price Private Outcome Auction (M = 1) with three Prices. . . . 57
6.6 M + 1st Price Private Outcome Auction (M = 1) with three Bidders. . . 57
6.7 M + 1st Price Public Outcome Auction (M = 1) with �ve Prices. 59
6.8 M + 1st Price Public Outcome Auction (M = 1) with �ve Bidders. . . . 59
6.9 M + 1st Price Private Outcome Auction with n = k = M + 2. 60
6.10 All libbrandt Algorithms with 512 Prices. 61

VII

List of Tables

1.1 Auction schemes available in libbrandt. 3

6.1 Bandwidth Cost for libbrandt in bytes. 63

A.1 First Price Private Outcome Auction with �ve Prices (Measured all Bidders). 71
A.2 First Price Private Outcome Auction with �ve Bidders (Measured all

Bidders). 72
A.3 First Price Public Outcome Auction with �ve Prices (Measured all Bidders). 73
A.4 First Price Public Outcome Auction with �ve Bidders (Measured all

Bidders). 73
A.5 M + 1st Price Private Outcome Auction (M = 1) with three Prices (Mea-

sured all Bidders). 74
A.6 M + 1st Price Private Outcome Auction (M = 1) with three Bidders

(Measured all Bidders). 74
A.7 M+1st Price Public Outcome Auction (M = 1) with �ve Prices (Measured

all Bidders). 74
A.8 M + 1st Price Public Outcome Auction (M = 1) with �ve Bidders (Mea-

sured all Bidders). 75
A.9 M + 1st Price Private Outcome Auction with n = k = M + 2 (Measured

all Bidders). 76
A.10 First Price Private Outcome Auction with 512 Prices (Measured all Bidders). 77
A.11 First Price Public Outcome Auction with 512 Prices (Measured all Bidders). 77
A.12 M + 1st Price Private Outcome Auction with 512 Prices (Measured all

Bidders). 77
A.13 M + 1st Price Public Outcome Auction with 512 Prices (Measured all

Bidders). 77

IX

Acknowledgements

First of all, I thank my advisors Sree Harsha Totakura, Christian Grotho� and Felix
Brandt for their guidance and support during the making of this thesis. Christian
discussed the cryptographic details with me and was quick to spot and explain any
wrong turns I was thinking about. Sree Harsha helped me structure and focus my
intermediary talk and was available for questions together with Christian in a weekly
telephone conference. Felix came up with the whole concept of the protocols I was
implementing and also referred me to two other implementations of his work which I
did not know about in the beginning.

My thanks additionally go to the Google Summer of Code program and all people
involved with my project for giving this thesis the initial momentum it needed.

For still being available and able to discuss openly his own and my new results nine
years after his thesis I appreciate Philip Wassenberg.

I like to acknowledge my proofreaders Christian Grotho�, Sree Harsha Totakura, my
father Werner Teich and Sven Hertle for their corrections and also insights.

Last but not least I thank all of my family and friends for their tremendous support and
patience.

1

Chapter 1

Motivation

Since the Internet has become widely available to the public, auctions have migrated
from the real to the virtual world [1]. From the early platforms to the ones used today,
these platforms require bidders and sellers to trust the platform operator in two ways:
First, clients have to assume that the auction service operator is determining auction’s
outcomes correctly. One can easily imagine how any collusion between operator and
sellers or bidders would allow the operator to modify the outcome for the bene�t of
the colluding parties. Additionally, users need to trust the platform operator to handle
information gained from the auctions con�dentially (e.g., bids, winning price, winner
identity). The resulting “big data” attacks are more subtle than direct collusion with
a buyer or seller. With detailed market pro�les, a platform operator can selectively
compete in areas where sellers are having high pro�t margins, or target price-insensitive
buyers with advertisements for overpriced products.

Due to these trust issues and increased interest in solving them, research emerged trying
to reduce the required trust in platform operators by creating new cryptographic auction
resolution algorithms. In Chapter 2 we describe Brandt’s foundational algorithms [2] in
this domain, and contribute a few minor improvements of our own. We discuss some
approaches to online auctions with di�erent focus in more detail in Chapter 5.

The main focus of our work is to provide a practical implementation of a secure auction
protocol that eliminates the need for a trusted third party. This includes achieving
reasonable performance in terms of runtime and bandwidth, and a well-documented
API that application developers can directly use. We have chosen Brandt’s work [2] as
the base for our libbrandt implementation (Chapter 4), because it provides the complete
independence of a trusted third party and shifts the trust issue from the platform to the
seller and bidders themselves.

The architecture in which libbrandt should be used to best incorporate it’s privacy
properties is described in Section 3.

2 Chapter 1. Motivation

Results from an experimental evaluation comparing di�erent auction protocols can be
found in Chapter 6. We discuss issues relating to the system’s usability in Chapter 7.

Contemporary popular auction platforms not only determine the outcome of the auction,
but they also provide the infrastructure where auctions are published and users can
search for goods they intend to buy. For this thesis, we ignore this market making
operation and leave the problem that market making platforms are able to analyze the
market volume for future work.

1.1 Auction Formats

There are several common auction formats used in real-world and online auctions with
various sets of optional features. The English auction or �rst price auction is the
most widespread scheme and belongs to the family of iterating auctions. The seller sets a
publicly known starting price and then bidders are allowed to place publicly announced
bids higher than the previous bid until either no bidder wants to place a higher bid or
an optional timer runs out. On termination the good is sold to the highest bidder, who
has to pay his own bid. There is also the possibility of a reserve price, hidden at �rst. If
the bid which won the auction is lower than the reserve price, the good is not sold.

Another common format is the Dutch auction where the seller sets a high starting
price and then iteratively decreases the price. The bidder who �rst announces he wants
to buy the good wins the auction. Dutch auctions are known for selling tulips. In a
typical tulip auction, there is not just one tulip to be sold but many. The �rst bidder
who accepts the announced price is allowed to choose how many tulips he wants to
buy for that price. Afterwards the auction continues until there are no more tulips left
or the optional reserve price is hit. From the bidder’s point of view the Dutch auction
is strategically equivalent to a sealed bid auction [3], where each bidder submits a
hidden bid, so no bidder knows any of the other bids before placing his own. After all
bids have been collected, the winner is determined.

In some auctions the winners do not have to pay their own bid, but just the next lower
bid or even the lowest winning or highest loosing bid in case of multiple similar items
being sold. For the special case of only one good and a sealed bid format this scheme is
called a Vickrey auction. In contrast to English auctions, in Vickrey auctions there is a
game-theoretic weakly dominant strategy for bidders: The bidder chooses his bid equal
to his real valuation of the item independently of all other bids [2] [4, Chapter 3.1.2].

In this thesis we will discuss and implement sealed bid auction formats using one of the
following two formats:

• First price (English auction). One indivisible item is sold and the winner has
to pay the price of his own bid.

1.1. Auction Formats 3

• M + 1st price. One or more items are sold and the winners have to pay the price
of the highest loosing bid. For M = 1 this is a Vickrey auction. For a multi-unit
auction we need to choose M > 1 equal to the number of units to sell. A single
bidder can only bid for one unit at the same time so if a bidder wants to purchase
more than one unit from a single auction he has to create that many virtual
bidders and can also choose to use di�erent bids for each of them.

The second dimension the seller has to choose, is the outcome privacy. This leads to the
four possible formats shown in Table 1.1. The outcome is de�ned as the set of winners
and the price that they have to pay per unit.

• Private outcome. No information is leaked to the loosing bidders or other third
parties. Only the seller and the winners learn the outcome of the auction. In case
of multi-unit auctions only the seller learns all the winners. The winners only
learn that they have won (and the price), but not who else has won a unit.

• Public outcome. The outcome is also visible for loosing bidders, but the loosing
bids are still not revealed to anyone.

Table 1.1: Auction schemes available in libbrandt.

�rst price �rst price
private outcome public outcome
M + 1st price M + 1st price

private outcome public outcome

All of our auction format algorithms also have the following features and restrictions:

• No third party. We do not require a third party for resolving the auction outcome.
Only the bidders and the seller are involved in the protocol.

• Limited price pool. Due to restrictions in the algorithms we will only handle
auctions with an apriori �xed and �nite number of possible bids. Bidders need
to choose their bid from this set which must be de�ned by the seller before the
auction starts.

• No hidden reserve price. If the seller wants an ensured minimum amount of
money for his goods, he has to set the range of possible prices accordingly or
join his own auction with enough virtual bidders of the reserve price so that he
basically sells every unit to himself which would have been sold for a price lower
than his reserve price otherwise.

4 Chapter 1. Motivation

1.2 Main Contributions

The main theoretical contribution of this thesis is the translation from Brandt’s RSA
(Rivest-Shamir-Adleman cryptosystem)-based algorithms to elliptic curve-based ones.
We also addressed a few documented [5] and undocumented issues in the algorithms.
In practical terms, the transition to elliptic curve cryptography reduces computation
time and network usage while maintaining an equivalent security level.

We provide extensive empirical results demonstrating the viability of the resulting
design and implementation for auctions at scales that are relevant in practice. Our
implementation is available online at git://gnunet.org/libbrandt and can be cloned
with git. This code is released under the GPLv3+ license1.

Additionally we designed the system architecture in which libbrandt should be used.

1https://www.gnu.org/licenses/gpl-3.0.en.html

5

Chapter 2

Background

In this chapter, we describe Brandt’s algorithm for secure private auctions. However,
we chose a formulation that is already using our adaptations of the original algorithm
to elliptic curves. If you are interested in understanding how exactly the algorithm
ensures correctness and privacy, please read the original paper [2] from Brandt. We
only provide a brief introduction in the following Section 2.2.

2.1 Introduction to RSA and Elliptic Curve Similarities

Since both, RSA and elliptic curve cryptography, are based on �nite groups of the same
structure, many algorithms in one of those systems can be translated to the other. For
example, in RSA computing the public key p from the secret key s is done by computing
p = дs , whereд is a publicly known group element with the property of being a generator
of this cyclic group. Here s is a simple scalar, while p and д have to be considered as
group elements, although they also just contain scalar values. In elliptic curves the
same procedure is done with multiplication: P = sG . Out of convention we write group
elements of elliptic curves in upper case, and we need to clearly distinguish them from
scalars, for which we will use lower case. P andG are points on the curve. Cryptography
then needs a one-way function which can be computed easily while the inverse function
needs to be hard. For RSA this is the before mentioned exponentiation, which relates to
the discrete logarithm problem (or in the case of the RSA trapdoor also to factoring large
numbers). In elliptic curves the equivalent one-way function is the product of a point
and a scalar. Given only P = sG and G, it is hard to compute the elliptic curve discrete
logarithm (ECDL) s = P/G. Another operation occurring often in Brandt’s algorithms is
the multiplication of two group elements. This corresponds to point addition in elliptic
curves. From these two examples a simple explanation for the translation would be to
just replace multiplication with addition, division with subtraction, and exponentiation
with multiplication. However, care needs to be taken since these simple rules do not

6 Chapter 2. Background

apply for scalar-only operations like computing 2M + 2 or the powers of 2 in the public
outcome schemes. Here we need exactly that power of 2 to index the winner during
outcome determination. Still, as we will see in the next Section, RSA and elliptic curves
are similar enough to translate Brandt’s algorithms from one crypto system to the other.

2.2 Overview of Brandt’s Algorithms

The algorithms we will be using are based on a few key concepts.

• Bids. For each auction the seller de�nes a price pool with strictly monotonic
descending order, e.g. pool = ($100,$80,$60,$40,$20). The cardinality of this
tuple is assigned to k = |pool |. Each bid has to be selected from this pool by
choosing the 1-based index of the price the bidder wants to pay, e.g. bidAlice = 2
for a bid of $80. From this a bid vector is constructed by taking a vector with
k elements all being 0 and setting the one with the index of the bid to 1, e.g.
bAlice = (0,1,0,0,0)>.

• Outcome Determination. To compute the winner(s) and selling price of the
unit(s) the bid vectors of alln bidders are combined in a few matrix-vector products
to one resulting outcome vector. This result vector only has a single component set
to 0 and its index denotes the selling price. The Winner-determination depends on
the auction format. In the private outcome variants this is done by computing one
outcome vector for every of the n bidders. These outcome vectors di�er slightly
in that the 0 component can only be found in the winner’s outcome vector. For
public outcome schemes only one additional outcome vector is computed. The
winning price is represented by the 0 component in the �rst outcome vector and
the winner can be computed from the component with the same index in the
second outcome vector.

• El Gamal Encryption. [6] To prevent bidders from learning each other’s bids
during the outcome vector computations, bid vectors are �rst encrypted with
El Gamal. El Gamal is a public key cryptography system working with RSA as
well as elliptic curves [7] and has the special property of homomorphism. This
means we can encrypt a plaintext, make some computations with the cyphertext,
decrypt the result and get the computations done directly to the plaintext, i.e.
Enc(m1 ·m2) = Enc(m1) ·Enc(m2) with · being the group operation. This property
is also used to create a shared key pair. While the private key shares always
stay with the bidders who generated them, the resulting public key is used for
encryption. Since no party knows the combined private key, decryption is also
done in shares where each bidder decrypts part of the outcome only. This ensures
that the encrypted bids can not be read by anyone, only the computed outcome
is revealed after the shared decryption.

2.2. Overview of Brandt’s Algorithms 7

• Zero Knowledge Proofs. To ensure correctness of all computations exchanged
between the participants, zero knowledge proofs (ZKP) are used to certify every
step without revealing the secret parts to other parties. These proofs can certify
the knowledge or property of some input without revealing the input itself. The
simplest example is to proof the knowledge of the private key to a presented
public key without revealing the private key to the verifying party. We use three
di�erent such proofs described in Section 2.5.

The concepts are put together in a protocol with several rounds depicted in Figure 2.1.
First the bidders compute a single shared public El Gamal key, where no single party
can derive the private key. Then in the �rst round this key is used by each bidder to
encrypt his bid and share the ciphertext of this encryption with all other participants.
In the second round the encrypted bid vectors are used in the matrix multiplication to
compute the encrypted outcome parts which are also shared between all participants.
In the third and last round each bidder decrypts his share of the outcome and depending
on the format publishes his whole share directly or just a part of it by letting the seller
�lter out the curve points, which allow to compute this bidder’s personal outcome
vector. Here the seller needs to do this �ltering, because he must be able to compute all
bidder outcome vectors to learn each winner. Afterwards every participant can combine
the parts he received and derive an outcome from it. In private outcome formats each
participant has access to di�erent parts in the end so that only the winner(s) can derive
the price and that they won. The seller can always derive all winners and the selling
price. The losing bidders either learn only that they lost in private outcome schemes,
or the winner(s) and the selling price in a public outcome scheme.

Figure 2.1: Round Based Protocol Overview.

8 Chapter 2. Background

2.3 Switching to the Ed25519 Elliptic Curve

The algorithms proposed by Brandt [2] are all based on the RSA arithmetic. Because of
the increasing attack e�ciency against RSA through index calculus [8], we translated
them to elliptic curve arithmetic. Elliptic curve crypto systems are suspected to not be
vulnerable against index calculus based attacks [9] and therefore the di�erence between
RSA and elliptic curves is expected to extend even further in the future when better index
calculus attacks are found which do not apply to elliptic curves. Our implementation
uses the Ed25519 curve [10]. Clear bene�ts are the increased CPU performance and
signi�cantly smaller bandwidth requirements for a group element of similar security
level, leading to lower bandwidth requirements (see Chapter 6). A bene�t of Ed25519
over other elliptic curves is that we do not have to check if the points received over the
network are actually points on the curve. For other elliptic curves this can be necessary
to prevent weakening attacks [10]. The key size in�exibility of Ed25519 is also not
a huge problem, since it is considered secure for the next few years and it is easy to
change the curve in the future.

For the remainder of this chapter let G be the base point of the Ed25519 elliptic curve
and q = ord (G) the order of it. 0 is the neutral point for addition on the Ed25519 curve.
Each curve point and scalar is serialized into a chunk of 32 bytes when sent over the
network.

2.4 Privacy and Security Properties

Before we describe the detailed protocol schemes in Sections 2.6 to 2.10, we state the
security properties of the proposed system. First, we look at what information can be
gained by di�erent kinds of passive adversaries.

• A loosing bid stays private to the respective bidder under the assumption of
one or a collusion of more honest but curious other participants. This means
the colluding participants can not gain more information by sharing their own
data with each other. For example if the seller colludes with all but a single
bidder and this bidder looses the auction, his bid is still not computable from
all the information of the colluding participants. The protection of loosing bids
depends on the secrecy of the private keys chosen by the respective bidders and
the intractability of the ECDL problem.

• A collusion of honest but curious bidders can not derive information about winners
outside of their own group in private outcome schemes. This not only depends
on the intractability of the ECDL problem, but on the honesty of the seller as well.
If the seller colludes with anyone, he can obviously reveal the outcome to them.

2.5. Zero Knowledge Proofs 9

• A passive external adversary with control over the network could collect meta-
data and derive the auction parameters n, k and the auction format. If a bidder
misbehaves and is excluded, that fact and the bidder’s host can be observed as
well. Since messages need to be encrypted, nothing about the content will be
revealed if the encryption keys are kept secret by participants.

An active adversary can still not gain any extra information if the communication
channels are authenticated correctly and non-malleable ZKPs are used [5]. However,
an active adversary with control over the network can launch denial of service (DoS)
attacks to disrupt the protocol and even target speci�c bidders by dropping the respective
messages. This would lead to the targeted bidder not providing his round computation
in time and then he will be excluded from the auction and lose his escrow deposit.

Another open attack possibility for a malicious seller is when he falsely reports one
or more bidders as not having �nished their round computations in time. This is
especially hard to prevent for the round 3 messages in private outcome schemes, which
are unicasted directly to the seller and so no other party can certify the correct behaviour
of the bidder. For all other round messages, bidders could certify each other’s correct
behaviour. If a reputation system for the sellers is used one could also be more con�dent
about a seller’s correct behaviour before joining an auction.

2.5 Zero Knowledge Proofs

As proposed by Brandt [2, Section 5.2] and shown by Dreier et al. [5] the zero knowl-
edge proofs used by the protocol need to be non-interactive. We used the Fiat-Shamir
heuristic [11] to translate the proofs given by Brandt to non-interactive ones. These non-
interactive versions require a key derivation function HKDF to allow both parties to com-
pute the same challenge c deterministically. We use the GNUNET_CRYPTO_kdf_mod_mpi()
implementation1 of HKDF [12] with a per proof constant string as salt to compute the
challenges from the respective input values. Of course we also translated the proofs
from the original RSA variant to Ed25519 to work with the rest of the protocol.

We assume that the Ed25519 curve parameters G , q and 0 are known to all participating
entities. A proof is a tuple of some computed and/or generated values combined to a
single blob of data. For each of the following three proofs all incorporated curve points
and scalars as well as the output size in bytes are given.

1Available from https://gnunet.org/git/

https://gnunet.org/git/

10 Chapter 2. Background

2.5.1 Proof 1: Knowledge of an ECDL

Alice and Bob know V , but only Alice knows x , so that V = xG. With the following
instructions she can prove the knowledge of x to Bob without revealing the value of x .

1. Alice chooses z mod q at random and calculates A := zG.

2. Alice computes c := HKDF(G,V ,A) mod q.

3. Alice sends A and r := (z + cx) mod q to Bob.

4. Bob computes c as above.

5. Bob checks that rG = A + cV .
Prover only knowledge: x , z

Common knowledge: V

Proof: r ,A (64 bytes)

2.5.2 Proof 2: Equality of Two ECDL

Alice and Bob know V , W , G1 and G2, but only Alice knows x , so that V = xG1 and
W = xG2. With the following instructions she can prove the knowledge of x which
ful�lls those two equations.

1. Alice chooses z mod q at random and calculates A := zG1 and B := zG2.

2. Alice computes c := HKDF(G1,G2,V ,W ,A,B) mod q.

3. Alice sends A,B and r := (z + cx) mod q to Bob.

4. Bob computes c as above.

5. Bob checks that rG1 = A + cV and rG2 = B + cW .

Prover only knowledge: x , z
Common knowledge: V ,W ,G1,G2

Proof: r ,A,B (96 bytes)

2.5. Zero Knowledge Proofs 11

2.5.3 Proof 3: An Encrypted Value is One out of Two Values

Alice proves that an El Gamal encrypted value (α ,β) = (M + rY ,rG) decrypts to one of
the �xed values 0 or G without revealing which is the case, in other words, it is shown
that M ∈ {0,G}.

If M = 0:

1. Alice chooses r1,d1,w mod q at random and calculates A1 := r1G +d1β , A2 := wG,
B1 := r1Y + d1 (α −G) and B2 := wY .

2. Alice computes c := HKDF(G,α ,β ,A1,A2,B1,B2) mod q.

3. Alice chooses d2 ← c − d1 mod q and r2 ← w − rd2 mod q.

If M = G:

1. Alice chooses r2,d2,w mod q at random and calculates A1 := wG , A2 := r2G +d2β ,
B1 := wY and B2 := r2Y + d2α .

2. Alice computes c := HKDF(G,α ,β ,A1,A2,B1,B2) mod q.

3. Alice chooses d1 ← c − d2 mod q and r1 ← w − rd1 mod q.

Then regardless of the value of M :

4. Alice sends A1,A2,B1,B2,d1,d2,r1,r2 to Bob.

5. Bob computes c as above.

6. Bob checks that

c = d1 + d2 mod q (2.1)
A1 = r1G + d1β (2.2)
A2 = r2G + d2β (2.3)
B1 = r1Y + d1 (α −G) (2.4)
B2 = r2Y + d2α . (2.5)

Prover only knowledge: r ,x ,w

Common knowledge: Y ,α ,β

Proof: A1,A2,B1,B2,d1,d2,r1,r2 (256 bytes)

12 Chapter 2. Background

2.6 Prologue

These steps are the same for all protocols following in this Section.

Let n be the number of participating bidders/agents in the protocol and k be the number
of possible valuations/prices for the sold good. a ∈ {1,2, . . . ,n} is the index of the
agent executing the protocol, while i,h ∈ {1,2, . . . ,n} are other agent indices. Let
j,ba ∈ {1,2, . . . ,k } with ba denoting the price pba bidder a is willing to pay. We assume
that the prices are sorted such that ∀j : pj < pj+1.

All messages are signed by the sender. All zero knowledge proofs are checked immedi-
ately when they are received, and the protocol only continues if the proofs are accepted.
If the proof is not acceptable, the receiving agent publishes the unacceptable proof to all
other participants, causing the protocol to be restarted with the malicious participant
excluded and possibly �ned.2

2.6.1 Generate Public Key Y

All bidders:

1. Choose a private key share x+a ∈ Zq and
∀i, j : Blinding factorsm+ai j mod q and
∀j : El Gamal encryption parameters raj mod q at random.

2. Publish Y×a := x+aG along with Proof 1 of Y×a ’s ECDL (96 bytes).

The seller and all bidders compute:

Y :=
n∑
i=1

Y×i . (2.6)

2.6.2 Round 1: Encrypt Bid

All bidders:

1. ∀j : Set Baj :=

G if j = ba

0 else
and publish αaj := Baj + rajY and βaj := rajG

2. ∀j : Using Proof 3 to show that (αaj ,βaj) decrypts to either 0 or G and

2For example, bidders may be expected to pay p1 into an escrow account when joining the auction.
That amount would then be forfeit given proof that they failed to properly execute the protocol. This
might be necessary to discourage denial-of-service attacks.

2.6. Prologue 13

3. Using Proof 2 to show that:

ECDLY *.
,

*.
,

k∑
j=1

αaj
+/
-
−G+/

-
= ECDLG *.

,

k∑
j=1

βaj
+/
-

. (2.7)

The message has k parts, each consisting of 10 points plus an additional 3 points for the
last proof. Therefore the message is k · 10 · 32 + 3 · 32 = k · 320 + 96 bytes large.

14 Chapter 2. Background

2.7 First Price Auction Protocol with Private Outcome

2.7.1 Round 2: Compute Outcome

All bidders compute and publish ∀i, j :

γ×ai j :=m+ai j
*.
,

*.
,

n∑
h=1

k∑
d=j+1

αhd
+/
-
+ *
,

j−1∑
d=1

αid+
-
+ *
,

i−1∑
h=1

αhj+
-
+/
-

and (2.8)

δ×ai j :=m+ai j
*.
,

*.
,

n∑
h=1

k∑
d=j+1

βhd
+/
-
+ *
,

j−1∑
d=1

βid+
-
+ *
,

i−1∑
h=1

βhj+
-
+/
-

(2.9)

with corresponding Proofs 2 for ECDL(γ×ai j) = ECDL(δ×ai j).

The message has nk parts, each consisting of 5 points. Therefore the message is n · k ·
5 · 32 = n · k · 160 bytes large.

2.7.2 Round 3: Decrypt Outcome

All bidders unicast ∀i, j :

φ×ai j := x+a *
,

n∑
h=1

δ×hi j
+
-

(2.10)

with a Proof 2 showing

ECDL(φ×ai j) = ECDL(Y×a) (2.11)

to the seller who broadcasts all φ×hi j and the corresponding proofs of correctness for
each i, j and h , i after having received all of them.

The unicast message has n · k parts, each consisting of 4 points. Therefore this message
is n · k · 128 bytes large.

The broadcast message by the seller has (n − 1) · n · k parts, each consisting of 4 points.
Therefore it is (n − 1) · n · k · 128 bytes large.

In the private outcome formats this last broadcast message from the seller is the barrier
after which the outcome is revealed to the winners. A malicious seller could decide not
to reveal the outcome after he has learned it himself. However, the only situation where
this would be bene�cial to the seller is when a speci�c bidder wins, which the seller
does not want to sell his goods to. We argue that the net gain would be higher if the
seller just did not accept this unwanted bidder’s registration for the auction, since not

2.7. First Price Auction Protocol with Private Outcome 15

revealing the outcome within the round time will result in the seller loosing reputation
and the optional auction creation fee.

2.7.3 Epilogue: Outcome Determination

All bidders compute:

∀j : Vaj :=
n∑
i=1

γ×iaj −
n∑
i=1

φ×iaj . (2.12)

The seller is able to computeVhj for all biddersh, since he has allγ andφ. If ∃w : Vaw = 0,
then bidder a is the winner of the auction. pw is the selling price.

16 Chapter 2. Background

2.8 First Price Auction Protocol with Public Outcome

2.8.1 Round 2: Compute Outcome

All bidders compute and publish ∀j :

γ×aj :=m+aj
*.
,

n∑
h=1

k∑
d=j+1

αhd
+/
-
+

n∑
h=1

2h−1αhj and (2.13)

δ×aj :=m+aj
*.
,

n∑
h=1

k∑
d=j+1

βhd
+/
-
+

n∑
h=1

2h−1βhj (2.14)

with corresponding Proofs 2 for:

ECDL *.
,
m+aj

*.
,

n∑
h=1

k∑
d=j+1

αhd
+/
-

+/
-
= ECDL *.

,
m+aj

*.
,

n∑
h=1

k∑
d=j+1

βhd
+/
-

+/
-

. (2.15)

The message has k parts, each consisting of 5 points. Therefore the message is k ·5 ·32 =
k · 160 bytes large. Note, that compared to auctions with private outcome the message
size is reduced by a factor of n because we do not need to compute di�erent outcome
functions for each bidder. Therefore we also do not need nk blinding factorsm+ai j in this
scheme, but only k di�erent onesm+aj .

2.8.2 Round 3: Decrypt Outcome

All bidders compute and publish ∀j :

φ×aj := x+a *
,

n∑
h=1

δ×hj
+
-

(2.16)

with a Proof 2 showing

ECDL(φ×aj) = ECDL(Y×a). (2.17)

This message has k parts, each consisting of 4 points. Therefore the message is k ·4 ·32 =
k · 128 bytes large, reducing message size by a factor of n compared to the �rst price
auction format with private outcome.

Note, that in the public outcome case this message can be directly broadcasted and
does not have to be unicasted to the seller who then broadcasts part of all the received
messages back to the bidders. This optimization allows the last bidder, after having

2.8. First Price Auction Protocol with Public Outcome 17

received all other messages from this round, to not send his own part of the decryption
after he learns the outcome. To prevent this DoS attack the malicious bidder can be
detected by not broadcasting his message within the maximum round duration and
then the auction can be restarted with the same parameters, bids and bidders except
the malicious bidder being blocked. He would loose his registration fee for the auction
in exchange for learning the outcome a little bit earlier than the remaining bidders
who will compute the same outcome eventually. The only possible bene�ciary scenario
would be if the malicious bidder changed his mind after learning that he himself is a
winner and does not want to purchase the unit anymore. He then would “pay” for his
withdrawal from the auction with the registration fee. In this case the malicious bidder
still has to gamble for all other bidders’ messages to arrive early enough so he can still
send his own message before the round timer runs out in case he decides to actually
purchase the item. Therefore this strategy will not work if there are two bidders waiting
for each others’ decryption message revealing the outcome.

2.8.3 Epilogue: Outcome Determination

The seller and all bidders compute ∀j :

Vj :=
n∑

h=1
γ×hj −

n∑
h=1

φ×hj . (2.18)

The Vj with the biggest index p where Vp , 0 denotes that p is the selling price. The
seller and all bidders then compute d := ECDL(Vp)/n which is doable since it has only
small factors. The lowest w where the bit w is set in d denotes the winner.

18 Chapter 2. Background

2.9 M + 1st Price Auction Protocol with Private Outcome

This auction format allows the seller to o�er more than one item of the same type in
a single auction. Bidders can also bid on as many of them as they desire by creating
that many separate bidding agent processes also with di�erent bids. For example in
an auction with three �owers being sold and two bidders, Alice and Bob with Alice
wanting to pay $5 for the �rst, $4 for the second and $2 for the third �ower and Bob
wanting to buy only two �owers both for the price of $3 the outcome would be that
Alice receives two �owers and Bob receives just one. The M + 1st highest bid would
be the 4th bid of the sorted bid list ($5,$4,$3,$3,$2) and therefore both bidders would
have to pay $3 per �ower they receive. Restricting each bidding agent process to only
one bid keeps the protocol simple and prevents leaking statistics about how many items
bidders desire.

In a M + 1st price auction there are two types of ties possible. First there could be more
than one M + 1st highest bid. For example with M = 2 and bids ($4,$3,$2,$2,$1) the
two bids of $2 would cause such a tie. The second possible tie involves the M + 1st
highest bid and at least one other winning bid. If we modify the example by removing
the $3 bid, there would be one $2 bid which should be a winner and the other $2 bid
denotes the M + 1st highest bid and therefore the selling price.

The tie breaking for the �rst type is not only computationally intensive, but also adds
signi�cant complexity to the protocol if done in an optimized way [4]. This would lead
to a huge amount of additional code (which would likely introduce more bugs [13]).
Thus, we decided to keep it simple and take another approach for tie breaking the
M + 1st price format. We took the simplest one [14, Chapter 5.2], interlacing the bids,
so that no two bidders are allowed to bid the same price. On the application level we
will still handle kapp di�erent prices, but within libbrandt we will multiply that by a
factor of n to get klib := nkapp “prices” to be used internally.

The bids are scaled up as well by the mapping ∀i ∈ [1,n] : bi,lib = bi,appn − i + 1.
Therefore the set of allowed bids for bidder i is de�ned as {j |klib − j + 1 ≡ i (mod n)}.

This method causes bidders with a lower index to win in case of ties. To verify that
bidders obey the restriction, we introduce an additional zero knowledge proof to the
“Encrypt bid” message. The expansion will be done right at the beginning of an auction
by libbrandt and the reverse mapping is applied before reporting the auction outcome
to the application, so this expansion is transparent to the application. In the remaining
part about the M + 1st price auction protocols we will use k instead of klib, so k will be
divisible by n without remainder.

Unfortunately, this tie breaking simpli�cation has the disadvantage of revealing the
identity of the bidder who had the highest bid amongst the losing bidders. If there are
multiple bidders ful�lling this criteria (having a tie on the M+1st bid), then only the one

2.9. M + 1st Price Auction Protocol with Private Outcome 19

with the lowest index will be revealed. This problem only a�ects M + 1st price auctions
with private outcome and can be prevented using anonymized bidder identities, so the
winners do not learn who placed the M + 1st highest bid.

An advantage of this price pool expansion is that we do not need to care about the
second kind of ties anymore. Since every bidder has a distinct set of prices which he can
choose from, the bids of any two bidders can not be the same. This is an improvement
over the Wassenberg implementation which does not support tie breaking winners in
M + 1st price auctions.

2.9.1 Addition to Round 1: Encrypt Bid

The bidders also have to use Proof 2 to show that:

ECDLY *.
,

*.
,

k/n∑
j=1

αa,jn+a
+/
-
−G+/

-
= ECDLG *.

,

k/n∑
j=1

βa,jn+a
+/
-

. (2.19)

Together with the other proofs in this message we know:

1. All Proofs 3: ∀j : Baj = 0 or Baj = G

2. First Proof 2: ∃=1 j : Baj = G

3. Second Proof 2: ∃=1 j ∈ {j |k − j + 1 ≡ a (mod n)} : Baj = G.

From this we can infer that only one component of the bid vector Ba is set to G and it
is one of the components exclusive to bidder a which we need due to the multiplication
of possible prices by n for M + 1st price auctions. This additional Proof 2 increases the
message size by 96 bytes to a total of k · 320 + 192 bytes.

20 Chapter 2. Background

2.9.2 Fixes for Minor Issues in M + 1st Price Auctions

In Step 5 of the protocol speci�cation in [14, Section 5.1] we found two minor issues.

First, the nested product in the γ and δ formulas contains an index-out-of-bounds
problem. The value of d will range up to k , but there is no αh,k+1, since αh,k is the
last element in that array. Even if it is clear from a mathematical point, that this last
element is to be ignored, the direct implementation would lead to out of bounds errors.
Therefore we split the inner product into two separate ones.

The second issue is the denominator of γ and probably just a typo. Here we need to
compute the power of Y to the scalar 2M + 1, not the product with it.

The updated formulas we used for our translation to elliptic curve arithmetic follow:

γi j :=
∏n

h=1
∏k

d=j (αhdαh,d+1)
(∏j

d=1 αid
)2M+2

(2M + 1)Y (2.20)

changed to
∏n

h=1

(∏k
d=j αhd ·

∏k
d=j+1 αhd

) (∏j
d=1 αid

)2M+2

Y 2M+1 (2.21)

δi j :=
n∏

h=1

k∏
d=j

(βhdβh,d+1) *
,

j∏
d=1

βid+
-

2M+2

(2.22)

changed to
n∏

h=1

*.
,

k∏
d=j

βhd

k∏
d=j+1

βhd
+/
-
*
,

j∏
d=1

βid+
-

2M+2

(2.23)

2.9.3 Round 2: Compute Outcome

All bidders compute and publish ∀i, j :

γ×ai j :=m+ai j
*.
,

n∑
h=1

*.
,

k∑
d=j

αhd +
k∑

d=j+1
αhd

+/
-
+ (2M + 2)

j∑
d=1

αid − (2M + 1)G+/
-

and (2.24)

δ×ai j :=m+ai j
*.
,

n∑
h=1

*.
,

k∑
d=j

βhd +
k∑

d=j+1
βhd

+/
-
+ (2M + 2)

j∑
d=1

βid
+/
-

(2.25)

with corresponding Proofs 2 for ECDL(γ×ai j) = ECDL(δ×ai j).

The message has n · k parts, each consisting of 5 points. Therefore the message is
n · k · 5 · 32 = n · k · 160 bytes large.

2.9. M + 1st Price Auction Protocol with Private Outcome 21

2.9.4 Round 3: Decrypt Outcome

This protocol step is exactly the same as Round 3 (Section 2.7.2) from the �rst price
private outcome protocol.

2.9.5 Epilogue: Outcome Determination

All bidders compute:

∀j : Vaj :=
n∑
i=1

γ×iaj −
n∑
i=1

φ×iaj . (2.26)

The seller is able to computeVhj for all biddersh, since he has allγ andφ. If ∃w : Vaw = 0,
then bidder a is a winner of the auction. pw is the selling price.

22 Chapter 2. Background

2.10 M + 1st Price Auction Protocol with Public Outcome

The tie prevention from the M + 1st price auction protocol with private outcome apply
here as well including the addition to Round 1.

2.10.1 Round 2: Compute Outcome

All bidders compute and publish ∀j :

γ×aprice,j :=m+aj
*.
,

n∑
h=1

*.
,

k∑
d=j

αhd +
k∑

d=j+1
αhd

+/
-
− (2M + 1)G+/

-
and (2.27)

δ×aprice,j :=m+aj
*.
,

n∑
h=1

*.
,

k∑
d=j

βhd +
k∑

d=j+1
βhd

+/
-

+/
-

and (2.28)

γ×awinner,j := γ×aprice,j +
*.
,

n∑
h=1

k∑
d=j+1

2h−1αhd
+/
-

and (2.29)

δ×awinner,j := δ×aprice,j +
*.
,

n∑
h=1

k∑
d=j+1

2h−1βhd
+/
-

(2.30)

with corresponding Proofs 2 for ECDL(γ×auj) = ECDL(δ×auj).

Since the second summands of γ×awinner,j and δ×awinner,j do not depend on the index of the
participant computing them, we do not have to send the γ×awinner,j and δ×awinner,j points.
The receiving participants can just compute this second summand once and add it to
all received γ×aprice,j and δ×aprice,j points to compute the respective γ×awinner,j and δ×awinner,j
points themselves. The message has k parts, each consisting of 5 points. Therefore the
message is k · 5 · 32 = k · 160 bytes large.

2.10.2 Round 3: Decrypt Outcome

All bidders compute and publish ∀j :

φ×aprice,j := x+a *
,

n∑
h=1

δ×hprice,j
+
-

and (2.31)

φ×awinner,j := x+a *
,

n∑
h=1

δ×hwinner,j
+
-

and (2.32)

(2.33)

2.10. M + 1st Price Auction Protocol with Public Outcome 23

with two Proofs 2 for u ∈ {price,winner} showing

ECDL(φ×auj) = ECDL(Y×a). (2.34)

This message has k parts, each consisting of 2 · 4 = 8 points. Therefore the message is
k · 8 · 32 = k · 256 bytes large.

The e�ects discussed in Section 2.8.2 also hold in this format.

2.10.3 Epilogue: Outcome Determination

The seller and all bidders compute ∀j :

Vj :=
n∑

h=1
γ×hprice,j −

n∑
h=1

φ×hprice,j . (2.35)

Wj :=
n∑

h=1
γ×hwinner,j −

n∑
h=1

φ×hwinner,j . (2.36)

The selling price is the p where Vp = 0. The seller and all bidders then compute
d := ECDL(Wp)/n which is doable since it only has small factors. Every w, where bit w
is set in the binary representation of d , denotes a winner.

25

Chapter 3

Architecture

In this chapter we describe how the auction protocols from Brandt could be used for
real world auctions. Multiple components are involved and we describe each one and
how they interact with each other. The user’s perspective of the system is depicted in
Figure 3.1.

Figure 3.1: System Architecture.

26 Chapter 3. Architecture

3.1 Sellers and Bidders

For a simple example, suppose seller Sally decides she wants to sell her A-Team DVD
collection. First she runs the GNUnet auction program to create an auction description
�le which contains the auction format to be used, the price mapping, the maximum
number of bidders, the time when the auction starts, how long the rounds may take, her
payment system information, a textual description of the item and possibly some images
of the DVDs. The price mapping could for example be de�ned by a minimum reserve
price, a maximum price and a function which interpolates between those. Suppose she
selects an M + 1st price auction with private outcome and M = 1 (Sally only has one
collection), a price pool of $20, $21, $22, . . . to $99. The auction shall start �ve days
later and each round may take up to �ve minutes. She also enters her bank account
information, a nice description and some photos so everybody can see that there are
no scratches on the DVDs. Now Sally got her auction description �le and can go ahead
and publish her auction by uploading the �le to the platform.

Suppose �ve people �nd this listing and are interested: Alice, Bob, Carol, Dave and
Eve. Unfortunately, Eve notices that her computer is probably not fast enough for her
to complete the auction rounds within the �ve minutes time frame and decides not to
participate. This estimation can of course be done automatically by a script, so users
do not have to calculate it themselves. Alice, Bob, Carol and Dave go ahead and join
the auction by downloading the description �le and giving it to the GNUnet auction
program with their respective bids. Suppose Alice is willing to pay $30, Bob does not
really know the A-Team yet, but has read a positive review so he just bids $25, Carol
is a real fan and misses one of the o�ered DVDs in her own collection, so she bids
$42, and Dave wants to pay $35. When joining the auction, all of them commit to a
shipping address and place the $20 minimum bid into an escrow account provided by
the payment service.

After the �ve days have passed and the auction is started, the GNUnet auction service
computes the outcome and returns to Carol that she has won. She pays the additional
$15 to Sally and provides her with her shipping address. The other bidders learn that
they did not win the auction. Because they participated honestly their escrow funds are
released and they can use them again to participate in other auctions.

3.2 Platform

In contrast to most existing online auction systems the platform in our architecture
is only responsible for publishing o�ers and letting users search through the active
o�ers. The platform is in no way part of the outcome determination and does neither
learn loosing nor winning bids (except some participating bidder or seller reveals that

3.3. GNUnet Auction 27

information). To make it worthwhile to run such a platform, the platform provider
can demand fees for his services. For example publishing an auction o�er on the
platform costs the seller some amount of money either �xed or depending on the
auction parameters.

The auction parameters most important to users are displayed publicly on the platform
listing and if a bidder wants to join the auction, he can download the auction description
�le from this Web site. From the �le the bidder’s program can then �nd how to connect
to the seller and register for the auction.

If the seller already knows a set of potential bidders he does not even need to use the
platforms service at all. He could just send the auction description �le to the prospective
bidders directly. Thus, the platform Web site is optional and just used for publishing
and �nding auction o�ers.

3.3 GNUnet Auction

The GNUnet auction suite is the main component missing from making this architecture
usable. We planned and started implementation of the GNUnet auction subsystem,
but due to time limitations could not complete a working demonstrator. Our current
progress is committed to the GNUnet repository1 in the src/auction/ directory.

The subsystem follows the usual GNUnet scheme of a service, a library, and multiple user
interfaces. The service is a long-running process which can be started and stopped with
the gnunet-arm program. The library just provides an interface to control the service
via the GNUnet Inter-Process-Communication (IPC) channels. The user interfaces are
several small programs responsible for several tasks described in Sections 3.3.2 to 3.3.5.

This whole subsystem could be used in two ways. Either the user installs GNUnet
and all the dependencies for the auction programs locally on his computer, or they are
compiled to JavaScript with, e.g., emscripten2, so sellers and bidders can use the whole
system from their Web browser without the need to install other software on their
own computer. This would dramatically increase usability in exchange for the need to
trust the browser environment. Also the underlying protocols would not change, so
a bidder using the Web browser version can join auctions created by sellers using the
local installation approach and the other way around. Bidders in the same auction also
do not have to use the same approach. If the JavaScript version the user is planning
to employ is conveniently served from the platform Web site, the user would have to
trust, that the platform did not add code which breaks the privacy properties by secretly
sending outcome information to the platform.

1https://gnunet.org/git/gnunet.git/
2https://github.com/kripken/emscripten

28 Chapter 3. Architecture

3.3.1 GNUnet Auction Service

The main part of the GNUnet auction subsystem is the auction service. It incorporates
libbrandt to resolve auctions and a few other GNUnet components as well:

• GNUnet CADET. This component is used for unicast messages and especially
for joining an auction before it starts. When the seller creates a new auction with
the gnunet-auction-create program, the service opens a CADET port listening
for joining bidders. The peer-id and port are stored in the auction description �le
created by gnunet-auction-create. The CADET channels provide all required
features like message authentication and reliability; however, given that CADET
provides o�-the-record messaging the auction service still has to explicitly sign
messages to ensure that cryptographic proofs can be exported and shown to other
parties.

• GNUnet Consensus. This subsystem serves as the blackboard required by
Brandt’s protocols. A consensus session is opened by the seller and shared with
all bidders when the auction starts. It will ensure that the broadcast messages
of the protocol are exchanged between all participants. The consensus service is
still responsible for ensuring that the messages are authenticated.

• GNUnet Identity. This subsystem could be used to build a reputation system
for bidders. In this case after an auction the winning bidders could certify good
behaviour, quick shipping time or other stu� for the seller. Before joining an
auction, bidders could check the reputation of the seller before making a decision.

The auction service is used by sellers and bidders alike and has some responsibilities:

• Active Auctions. The service needs to manage a list of active auctions and which
identities are participating in which role in these. After an auction is �nished, the
results of the auction need to be stored to disk so that the gnunet-auction-info

program can later retrieve it.

• Instance Mapping. When a message is received, the service needs to map
that message to the respective auction instance and forward it to libbrandt for
handling. Also, in the reverse direction when sending messages, it needs to �nd
the correct participant’s CADET port or consensus session where the message
needs to be forwarded to.

• Registration Con�rmation. After bidders sent their joining message to the
seller, the seller’s service responds with an acknowledgement and his own local
time. This is done so bidders can get a better estimate of when the auction
will start exactly and when each round ends, as the seller’s clock is considered
authoritative for the auction.

3.3. GNUnet Auction 29

• Restarting Auctions. When one participant does not adhere to the protocol,
which can be detected by checking all the ZKPs, the seller’s service needs to
exclude him and then restart the auction with the same bids and all but the
misbehaving bidder. A bidder is also excluded if he does not manage to �nish a
round within the speci�ed time for the round.

• Smart Contracts. In case the auction �nishes correctly or incorrectly in case
of misbehavior, the service collects the transcript and produces a smart contract
stating one of the following:

– A speci�c other participant failed to provide a correct proof.

– The bidder has not won the auction.

– The bidder has won the auction and needs to pay a stated price.

– Other bidders have won the auction and pay the stated price. This is used
for public outcome auctions and for the seller who always learns the whole
outcome.

These smart contracts can then be used to provide cryptographic proof of the
outcome. The winner(s) can show the proof to the escrow service and transfer
the winning price minus the already deposited escrow. A wrong proof of a
participating bidder can also be presented to the escrow service by the seller to
block this bidder’s deposit. In case of a misunderstanding between seller and
winner(s), the smart contracts could also be handed to a judge, who will be able
to apply the local laws to resolve the con�ict, or to a payment processor to settle
any remaining obligations.

3.3.2 The gnunet-auction-create Command

The gnunet-auction-create program takes all required parameters for creating an
auction and forwards them to the auction service. Those parameters contain at least
the following items:

• The auction format to be used, i.e. �rst price or M + 1st price and in the later
case a value for M.

• A �ag denoting if the auction should be of the public outcome type. If the �ag
is not set the private outcome type will be used.

• The price mapping and a currency with all prices sorted in a strictly descending
order.

• The starting time of the auction. This is the limit until which new bidders may
register.

30 Chapter 3. Architecture

• The maximum round duration after which an unresponsive bidder will be ex-
cluded from the auction and the protocol will restart.

• The maximum number of bidders so each bidder can check if they are able to
compute each round within the maximum round duration.

• A description of the items for sale. We propose to use json with optional em-
bedded serialized images since it is easy to parse and allows storing additional
meta-data which is not immediately important to users.

• Some kind of payment system information so bidders can check if they actu-
ally can use the required payment system before trying to join the auction.

The service then opens the CADET port listening for joining bidders, schedules the
start of the auction. It composes the auction description �le from the given parameters
and the open CADET port, signs the �le and returns it to the program for publishing.

In interactive mode the program waits for the auction to �nish and reports the outcome.
In non-interactive mode the seller can check the outcome with the gnunet-auction-info
command.

3.3.3 The gnunet-auction-info Command

The gnunet-auction-info program takes an auction description �le as input and re-
ports the auction parameters back to the user. If the user is already participating in that
particular auction, the status and possibly the outcome is also reported. Another option
should allow the program to query the service for all active auctions used by the peer
or just a speci�c identity.

3.3.4 The gnunet-auction-join Command

The gnunet-auction-join program also takes an auction description �le as input and
forwards it to the service. The service then extracts the seller’s peer identity and CADET
port and sends a join request message to the seller. If the seller has not reached the
maximum number of bidders for this auction yet, he reserves a spot for a limited amount
of time and acknowledges that to the bidder. The bidder then needs to make his deposit
to the escrow service and present proof of that as well as a salted hash of his bid value to
the seller. If the proof of the escrow deposit is correct, the seller adds the bidder to the
auction and stores the bid hash for checking later if this bidder does win the auction.

In interactive mode the program waits for the auction to �nish and reports the outcome.
In non-interactive mode the bidder can check the outcome with the gnunet-auction-info
command.

3.4. GNU Taler as an Escrowed Payment Service 31

3.3.5 A Runtime Estimation Script

To enable bidders to estimate if their computer hardware is capable of computing all
the rounds within the desired time frame, some tool is needed which measures the
computer’s performance on a few simple cases and extrapolates the result to given
input parameters n, k and the selected auction format. Depending on the estimate the
user can decide if he is willing to participate in an auction with such parameters.

3.3.6 libbrandt

The core component of the GNUnet auction service is our libbrandt library. It is
responsible for determining the outcome of an auction and is used by the seller and all
bidders. After an auction is completed or a misbehaving bidder provided a wrong ZKP,
it also compiles the cryptographic material into a smart contract.

Only the GNUnet auction service links against libbrandt, providing a uni�ed interface
for all programs.

3.4 GNU Taler as an Escrowed Payment Service

As payment system any system could be used, but we envision to use GNU Taler3 as
its properties �t the requirements [15]. Speci�cally, Taler allows the buyers to stay
anonymous, supports transparency of the sellers (which should improve government
approval), and most importantly allows for refunding escrow deposits without breaking
bidder anonymity.

Requiring bidders to place a certain amount of money, e.g., the minimum bid, into an
escrow service before the auction starts can deter DoS attacks by malicious bidders. If
the seller proves misbehaviour of a bidder to the escrow service, the deposit should not
be refunded and instead transfered somewhere else. To avoid any con�ict of interest,4

we suggest that involved parties (seller, bidder, escrow service, platform service) do
not bene�t in this case. Instead, escrow funds that are con�scated due to bad behavior
should be donated to some independent charitable or non-pro�t organization. The
deposit would only be refunded to the bidder if the seller did not report the bidder
as misbehaving, and the bidder provides proof that he did not win the auction. If the
bidder wins he can not provide a proof that he lost and the deposit will be transferred
to the seller automatically. The winner would subsequently transfer the di�erence
between the escrow deposit and the selling price. An anonymous malicious bidder can
still disrupt an auction by placing the maximum bid, but refusing to pay for the item

3https://taler.net/
4Note that the seller is responsible for keeping time and thus also could misbehave.

32 Chapter 3. Architecture

after the auction is concluded in a timely fashion. In this case, the seller gets to keep
the escrow deposit of the malicious bidder and can keep his item and o�er it in another
auction.

Figure 3.2: A Bidder Successfully Registers for an Auction.

A possible auction registration handshake between bidder and seller might look like
depicted in Figure 3.2. The timeout is used to prevent bidders from blocking a space in
the limited set of prospective bidders by just sending the join request but never placing
the escrow deposit. The hash of the bid is used to prevent bidders from adjusting their
bid to the number of bidders n after they learn that number when the auction starts.
This is described in more detail in Section 4.2.3.

33

Chapter 4

libbrandt

libbrandt is a C-library and the core component of our auction system, responsible for
determining the outcome of an auction. It is based on the algorithms and protocols by
Felix Brandt [2], with some adjustments and optimizations described in the previous
chapter. libbrandt is capable of computing the auction outcome for four di�erent
auctioning schemes (see Table 1.1). All of the auction schemes are sealed bid auctions.

In a �rst price auction only one item can be sold and only one bidder wins. This winner
is the bidder with the highest bid amongst all bidders and he has to pay the amount of
his own bid. In M + 1st price auctions a total number of M items is sold (so if M = 1
only one item like in the �rst price auctions) and the M bidders with the highest bids
win. Unlike in the previous scheme, each winner only has to pay the price of the M +1st
highest bid.

In the private outcome auctions only the winner(s) and the seller learn the winning
price and the identity of the winner(s). In the public outcome auctions this information
is revealed to all participants. The other bids and bid-sorted order of the bidders is never
revealed to any party.

4.1 Requirements

The libbrandt library has several requirements for additional primitives which must
be provided by the applications using the library.

1. Unicast Communication Channel. The bidders need to exchange messages
with the seller for registration and during the protocol. This channel has to be
reliable and should not delay messages for too long as there are time limits for
the registration and maximum round duration.

34 Chapter 4. libbrandt

2. Broadcast/Multicast Communication Channel. All participants need to pub-
lish messages between each other during the protocol. In the original paper this
is called the “blackboard”. All broadcast/multicast schemes which ensure that
messages are delivered to all participants can be used in theory, but the choice
will in�uence the overall communication cost greatly. See Section 6.4 for more
information.

3. Business Logic. The application needs some kind of identity system so it is able
to execute business logic based on the simple indices identifying participants in
libbrandt. The mapping is established when the bidders register for an auction
and needs to be preserved so the business logic can resolve the correct winners
after the auction is completed. Ultimately, the indicies need to be mapped to
su�cient data such that the business logic can process payments and ensure the
winners receive the goods from the seller.

4. Message Authentication. As shown in [5], all messages need to be authenti-
cated by the sender. This ties the message origin to the identity from the underly-
ing identity system used by the application. It is also needed to prove the auction
outcome to the others in the end.

5. Availability. The application needs to stay connected to the other participants
throughout the whole auction. Alternatively, there needs to be a mechanism for
reliable asynchronous message delivery.

4.2 Handling Corner Cases

There are some corner cases involved in handling the auction protocols. In this section
we describe how we handle them.

4.2.1 No Bidders

When no bidder registers for the auction before the auction start timer triggers, the
application of the seller will be noti�ed with a NULL outcome.

4.2.2 M + 1st Price Auctions with fewer Bidders than Items to Sell

If the number of bidders n ≤ M , then the algorithm can not compute the outcome.
Since sellers choose their reserve price by setting the lowest possible price in the price
map to the desired minimum amount they are willing to sell their goods for, we can
immediately return the outcome without any computations. There is no restriction to
our privacy goal by this shortcut, because all registered bidders are winners anyway, so

4.3. On the Synchronous Protocol Structure 35

all of them must know the selling price. The identity of the winning bidders can not be
protected by an algorithmic approach, since all of the bidders are winners.

4.2.3 First Price Auctions with only one Bidder

If only one bidder registers for a �rst price auction, then he would be able to cheat the
seller by choosing his bid to be the lowest possible bid after learning that he is the only
bidder. To prevent this we added the requirement for the bidder to commit to his bid
already when registering for an auction and does not yet know the total number of
bidders. This can be done by computing a cryptographic hash function of the bid with a
random number used once (nonce) used for salting. After the auction ends, the winners
have to reveal their nonce to the seller so he is able to verify that those bidders did not
choose a di�erent bid after learning the number of other participants.

4.3 On the Synchronous Protocol Structure

An issue is the fact that all participants need to be online during outcome resolution.
One could adapt the round time to several hours or even a day and modify libbrandt

to be able to store the state of auctions on disk and pause and resume computations at
will which would ease the restriction so that participants only need to be online once
each day to compute the current round. However, this might also increase the chance of
some participants missing for one round leading to exclusion and restarting the auction
with the remaining bidders which means even longer resolution times.

36 Chapter 4. libbrandt

4.4 Application Programming Interface

Throughout the application programming interface (API) closure pointers are used.
These are pointers of any type given from the application to libbrandt to reference
a speci�c context. They are handed back to the application in the callback functions.
Typically one would use pointers to the structs referring to the respective auction or
participant from the applications point of view. Here we will provide the documentation
of the most important functions from the libbrandt API but �rst will be the declarations
of the function types used for callbacks.

4.4.1 BRANDT_CbResult

struct BRANDT_Result {

/** Id of the bidder this instance refers to */

uint16_t bidder;

/** The price the bidder has to pay.

* Only set if #status indicates the bidder has won. */

uint16_t price;

/** Status of the bidder */

enum BRANDT_BidderStatus status;

};

typedef void

(*BRANDT_CbResult)(void *auction_closure,

struct BRANDT_Result results[],

uint16_t results_len);

Functions of this type are called by libbrandt to report the auction outcome or incorrectly
behaving participants.

auction_closure Closure pointer representing the respective auction. This is the
Pointer given to BRANDT_join() or BRANDT_new().

results An array of results for one or more bidders. Each bidder will only
be listed once. Misbehaving bidder results and auction completion
results are not mixed.

results_len Amount of items in results.

4.4. Application Programming Interface 37

4.4.2 BRANDT_CbDeliver

typedef int

(*BRANDT_CbDeliver)(void *auction_closure,

const void *msg,

size_t msg_len);

Functions of this type are called by libbrandt to deliver messages to other participants
of an auction. There are two variants how this Callback needs to be implemented. The
�rst is delivering messages as unicast directly to the seller, the second is delivering
messages as broadcast to all participants (bidders and seller). All messages need to
be authenticated and encrypted before sending and the signature needs to be checked
immediately by the recipients.

auction_closure Closure pointer representing the respective auction. This is the
Pointer given to BRANDT_join() or BRANDT_new().

msg The message to be delivered

msg_len The length of the message msg in byte.

return value 0 on success, −1 on failure.

4.4.3 BRANDT_CbStart

typedef uint16_t

(*BRANDT_CbStart)(void *auction_closure);

Functions of this type are called by libbrandt when the auction should be started as a
seller. The application has to broadcast the ordered list of all bidders to the bidders and
must return the amount of bidders to libbrandt. After this function is called no more
new bidders may be accepted by the application.

auction_closure Closure pointer representing the respective auction. This is the
Pointer given to BRANDT_new().

return value The number of bidders participating in the auction.

38 Chapter 4. libbrandt

4.4.4 BRANDT_new

struct BRANDT_Auction *

BRANDT_new (BRANDT_CbResult result,

BRANDT_CbDeliver broadcast,

BRANDT_CbStart start,

void *auction_closure,

void **auction_desc,

size_t *auction_desc_len,

struct GNUNET_TIME_Absolute time_start,

struct GNUNET_TIME_Relative time_round,

uint16_t num_prices,

uint16_t m,

int outcome_public,

struct GNUNET_CRYPTO_EccDlogContext *dlogctx);

When called, this function creates a new auction as the seller. It takes one callback
function pointer used to broadcast messages generated by libbrandt, one which is called
when all bidders should be noti�ed about the auction starting, and one which is called to
report the outcome to the application. Apart from the closure pointer which will be used
to refer to this auction instance in callbacks the function takes the auction parameters.
The dlogctx parameter is used for public outcome auctions where we need to compute
a simple ECDL in the end.The auction description blob is created and returned in the
auction_desc pointer.

4.4. Application Programming Interface 39

result Pointer to the result callback function

broadcast Pointer to the broadcast callback function

start Pointer to the seller start callback function

auction_closure Closure pointer representing the auction. This will not be touched
by libbrandt. It is only passed to the callbacks.

auction_desc The auction information data as an opaque data structure. It is
generated by this function and should be distributed to all possibly
interested bidders. The application must sign this data block before
publishing it!

auction_desc_len The length in byte of the auction_desc structure. Will be �lled by
BRANDT_new().

time_start The time when the auction will start. Bidders have until then to
register.

time_round The maximum duration of each round in the protocol.

num_prices The amount of possible valuations for the sold item(s). Must be
> 0.

m The mode of the auction. If 0, it will be a �rst price auction where
the winner has to pay the price of his bid. If > 0 it will be a M + 1st
price auction selling exactly that amount of items and each winner
has to pay the price of the highest loosing bid.

outcome_public If 1, the auction winner and price will be public to all participants,
if 0, this information will only be revealed to the winner and the
seller.

dlogctx The discrete log context pointer obtained from a call to
GNUNET_CRYPTO_ecc_dlog_prepare(). Only needed for public out-
come auctions.

return value if invalid parameters are passed, NULL is returned. else the return
value is a pointer, which should only be remembered and passed to
libbrandt functions when the client needs to refer to this auction.
this is a black-box pointer, do not dereference/change it or the data
it points to!

40 Chapter 4. libbrandt

4.4.5 BRANDT_join

struct BRANDT_Auction *

BRANDT_join (BRANDT_CbResult result,

BRANDT_CbDeliver broadcast,

BRANDT_CbDeliver unicast,

void *auction_closure,

const void *auction_desc,

size_t auction_desc_len,

uint16_t bid,

struct GNUNET_CRYPTO_EccDlogContext *dlogctx);

Call this function to join an auction described by the auction_desc parameter. It takes
two callback function pointers which are used to send messages generated by libbrandt
and one which is called to report the outcome to the application. Apart from the closure
pointer which will be used to refer to this auction instance in callbacks the function
takes the description blob generated by the BRANDT_create() call from the seller and
the bid the user wants to place. The dlogctx parameter is used for public outcome
auctions where we need to compute a simple ECDL in the end.

result Pointer to the result callback function

broadcast Pointer to the broadcast callback function

unicast Pointer to the unicast callback function

auction_closure Closure pointer representing the auction. This will not be modi�ed
by libbrandt itself, but is passed to the callbacks.

auction_desc The auction information data published by the seller. This is opaque
to the application. Its content will be parsed. The application must
check the signature on this data block before passing it to libbrandt!

auction_desc_len The length in byte of the auction_desc structure.

bid How much to bid on this auction.

dlogctx The discrete log context pointer obtained from a call to
GNUNET_CRYPTO_ecc_dlog_prepare(). Only needed for public out-
come auctions.

return value A pointer, which should only be remembered and passed to lib-
brandt functions when the client needs to refer to this auction.
This is a black-box pointer, do not dereference/change it or the data
it points to from the application!

4.4. Application Programming Interface 41

4.4.6 BRANDT_parse_desc

int

BRANDT_parse_desc (const void *auction_desc,

size_t auction_desc_len,

struct GNUNET_TIME_Absolute *time_start,

struct GNUNET_TIME_Relative *time_round,

uint16_t *num_prices,

uint16_t *m,

uint16_t *outcome_public);

With this function an auction description data blob received from the seller can be
checked before deciding to join the auction. See 4.4.4 for an explanation of the di�erent
auction description �elds. All but the �rst two parameters are used as output pointers.

auction_desc The auction description blob published by the seller.

auction_desc_len Length of auction_desc in byte.

time_start Starting time of the auction. May be NULL.

time_round Maximum round time of the auction. May be NULL.

num_prices Number of possible prices. May be NULL.

m Auction mode. May be NULL.

outcome_public Outcome setting. May be NULL.

return value 0 on success, −1 on failure.

42 Chapter 4. libbrandt

4.4.7 BRANDT_got_message

void

BRANDT_got_message (struct BRANDT_Auction *auction,

uint16_t sender,

const unsigned char *msg,

size_t msg_len);

This function hands a received message related to a speci�c auction to libbrandt. It
takes the sender’s index and the message itself as parameters.

auction The pointer returned by BRANDT_join() or BRANDT_new() from which mes-
sage msg was received.

sender The id of the sender.

msg The message that was received.

msg_len The length in byte of msg.

4.5. Implementation Details and Status 43

4.5 Implementation Details and Status

Internally the auction description blob created by the seller has the following structure.
All �elds are stored in network byte order.

struct BRANDT_DescrP {

/** Starting time of the auction. Bidders have to join

* the auction via BRANDT_join until this time */

struct GNUNET_TIME_AbsoluteNBO time_start;

/** The maximum duration in which the participants

* have to complete each round. */

struct GNUNET_TIME_RelativeNBO time_round;

/** The number of possible prices */

uint16_t k GNUNET_PACKED;

/** Auction type. 0 means first price Auction,

* >= 0 means M+1st price auction with

* a number of m items being sold. */

uint16_t m GNUNET_PACKED;

/** Outcome type. 0 means private outcome,

* everything else means public outcome. */

uint16_t outcome_public GNUNET_PACKED;

/** reserved for future use. Must be zeroed out. */

uint16_t reserved GNUNET_PACKED;

};

The following details are still missing from our implementation:

• The bid commitment during registering for an auction.

• Compiling a smart contract from the cryptographic material when an auction
ends or aborts due to a wrong ZKP.

• Checking and enforcing the maximum round time by the seller.

• Checking some of the intermediary results to not be 0. This is necesary to keep
the protocol veri�able according to Dreier et al. [5].

• Caching round messages which are received out of order.

45

Chapter 5

Related Work

5.1 Brandt’s Work

We are not the �rst to implement or evaluate auction protocols based on Brandt’s design.
Here we have a look at other research on his protocols.

5.1.1 Wassenberg Diploma Thesis and Implementation

A �rst implementation and evaluation of Brandt’s algorithms was done by Wassenberg
in his diploma thesis [4]. The work included implementations for �rst and second
price auctions, both with private and public outcome versions. For the second price
formats the M + 1st price auction algorithms were used, but due to missing tie-breaking
the usage for multi-unit auctions was excluded. For multi-unit auctions three other
implementations using Brandt’s order statistic sub-protocol are provided. The uniform
price module has the same pricing properties as our M + 1st price implementation,
while the discriminatory price and the generalized Vickrey auction formats have slightly
di�erent pricing models.

The implementation does not provide a seller process returning the auction outcome.
The blackboard process is only used for message exchange and SSL encryption and
signing. For the implementation to be usable in real-word scenarios, the blackboard
process needs to be enhanced to store all the exchanged messages, check the proofs and
compute the outcome in the end.

5.1.1.1 The (t ,u) Finding Heuristic

In Brandt’s original M + 1st price auction handling tie breaking is needed if the tie
involves the M + 1st highest bid [2, Section 4.2]. A tie can be described by two values,

46 Chapter 5. Related Work

t — the number of bids which have the same value and thus form the bid, and u — the
number of bids which are higher than the tie. The M + 1st price can only be involved in
one or no tie at all. If there is no tie with the M + 1st price, we do not need tie breaking
and the protocol �nishes immediately. If there is a tie, the t and u value needs to be
found to compute the outcome.

Wassenberg developed a special heuristic [4, Section 4.1] to check the most probable t
and u values �rst and the more uncommon ones last. For this heuristic the best case is
if there is no tie at all (no (t ,u) search is needed) and the worst case comes up if every
bid is the same (the correct (t ,u) pair is the last one checked). The badness of the worst
case depends on the number of possible (t ,u) pairs that need to be checked, which itself
depends on a few inequalities limiting the area of possibilities as seen in Figure 5.1.
We list those inequalities describing the borders here in clockwise order starting at the
bottom of the shape.

• u ≥ 0. There can not be a negative number of bids higher than the tie.

• t + u ≥ M + 1. If the tie is only a�ecting the winner’s bids, but not the M + 1st
price, it is not a relevant tie since the algorithm will still �nd the correct winning
price (albeit possibly wrong winners, but that case is not handled by the (t ,u)

heuristic).

• t ≥ 2. A tie obviously needs more than one bidder sharing the same bid.

• u ≤ M . If there are more bids above the tie than M , the M + 1st price is not part
of the tie and therefore irrelevant.

• t + u ≤ n. There can not be more bids than bidders.

Figure 5.1: Possible (t ,u) Pairs for M = 3, n = 7 and any k ≥ n.

5.1. Brandt’s Work 47

The order in which the pairs are checked exactly is described by the following recursion
from Wassenberg’s thesis:

Start with t := 2 and u := 0. (5.1)

next(t ,u) :=

(t + 1,u − 1) if u > 0
(2,t − 1) else

(5.2)

When the next possible (t ,u) pair is needed, this function is called until the output is a
valid (t ,u) pair according to the inequalities.

In graphic terms each diagonal u = a − t with a being the o�set from the origin is
checked starting at the point with the lowest u value. The diagonals themselves are
then checked with the one with the lowest a value �rst, so we can see that (2,0) is
checked �rst and (n,0) is checked last, representing the worst case.

5.1.1.2 Bugs

We encountered an index-out-of-range crash in the uniform price algorithm preventing
it from running correctly. We noti�ed the author and he found the bug, but due to time
limitations we could not re-run the tests against a �xed version of the code.

In the M + 1st price private outcome implementation we noticed two other bugs. The
�rst one was the (t ,u) chain going too far in some cases, where the algorithm should
have found the outcome earlier. Our smallest example for that is using the englishmp

protocol with M = 1, n = k = 3 and the bids {1,1,0} (zero based index, lower index
represents higher bid). In that case the expected (t ,u) chain would be (2,0) into (2,1)
which should have already lead to the correct outcome. However, according to the
output of the agents the chain continued one step further to (3,0), which unnecessarily
increases the runtime. The second bug was returning a wrong outcome and also occurred
with the same setup. The case we presented above should return the third bidder as
winner because he bid the lowest bid index which represents the highest bid, but the
outcome reported by the agent is that the second bidder did win. We reported both
bugs to the author and he acknowledged them to be probably related to bid ordering
since the same test case works if only the bids are reshu�ed to {0,1,1}. We saw some
more occurrences of both bugs with di�erent parameters, but never with the best and
worst case scenarios of Wassenberg’s heuristic (See Section 6.3.3).

We also noticed a bug where Wassenberg’s M + 1st price public outcome implemen-
tation runs into an endless loop in the heuristic. The englishmpp version with M = 1,
n = 3, k = 2 and the bids {1,0,1} lead to a (t ,u) chain of (2,0), (2,1), (3,0), (3,1), (3,1)

48 Chapter 5. Related Work

and so on. This chain should have stopped at (2,1) and the value (3,1) is even impossible
in this speci�c auction setup since we only have three bidders. We noti�ed the author
about this bug as well and he con�rms it, noting that it did not occur in the speci�c
cases he was measuring in his thesis. After his evaluation Wassenberg concludes that
the algorithms are usable since the runtime is less than ten minutes for the base test
case with six bidders, a price pool of size 40 and 2048 bit RSA keys.

5.1.2 Security Analysis

Dreier et al. evaluated the security properties of Brandt’s protocols [5] and found
several issues. They also provided e�cient implementations for two possible attacks
and measured it against their own parallelized version of Brandt’s �rst price private
outcome protocol. We did not measure against their code since it was not easily available
and we already have two other RSA implementations. Following, you �nd proposals by
the authors for how to address the four issues they found.

• The ZKPs must be non-interactive or non-malleable to prevent active attackers
from breaking bid privacy. Our ZKPs are non-interactive not just to avoid that
issue, but also to simplify the protocol.

• All messages need to be authenticated. We explicitly require this from applications
using libbrandt.

• To ensure the protocol is veri�able, some intermediary results need to be checked
to not be 1. In our elliptic curve version this translates to a check against 0.

• Also for veri�ability, bidders need to prove that they actually used the same private
key share for decryption and for generating the public key share previously. This
additional check is implemented in libbrandt.

5.1.3 Stanford Implementation

Four students from Stanford wrote another implementation [16] of Brandt’s scheme. It
is using Golangs big integer package1 for cryptographic computations, which are also
based on the original RSA arithmetic. The authors implemented the �rst price auction
with a private outcome. There are a few issues with their code. First they are using a
non cryptographically secure pseudo random number generator (PRNG) seeded by the
current system time. This leads to deterministic and therefore easily guessable private
keys. Secondly, there is a syntax error in the code preventing compilation. Thirdly,
paths to the auction �le and certi�cates are hard coded which complicates running the
code on only one host because the auction �le has to be changed manually between

1https://golang.org/pkg/math/big/

5.2. Other Auction Systems 49

starting of the clients. Parameters like the RSA primes and the number of possible prices
are hard coded as well. Lastly, even after going through this setup, the actual execution
of the protocol failed before the prologue due to a certi�cate validity error.

They also implemented a simple Python server responsible for auction participant
address exchange and a simple certi�cate infrastructure. It supplies each participant
with his own x509 [17] private key and certi�cate to use for authenticating the protocol
messages. As the authors mention in their paper this server has to be a trusted party,
since it is vulnerable to man-in-the-middle (MitM) attacks. There are a few other
problems with the server. First, it does not provide encrypted transmission of the auction
parameters and cryptographic material leading to further MitM attack possibilities.
Secondly, it is hard coded to listen on port 80 which needs special privileges. The path
to the certi�cate authority (CA) is hard coded as well. Thirdly, the x509 key material is
supplied inside a zip �le, but the client implementation does not automatically extract
it which leads to unnecessary e�ort by the user of the program.

We did not include this code in our evaluation due to the required extensive bug �xes
and hard coded values complicating automation. We reported all of the issues mentioned
above to the authors on their GitHub page2.

5.2 Other Auction Systems

Brandt is not the only researcher designing cryptographic auction protocols. Here we de-
scribe alternative designs and point out the di�erences in their privacy properties. Most
of these schemes have more relaxed privacy goals and instead focus on computational
e�ciency.

5.2.1 Secure Vickrey Auctions without Threshold Trust

In their paper [18] Lipmaa et al. propose an auction scheme which incorporates a semi-
trusted party A, called “auction authority”, apart from the seller S and the bidders. A
and S are supposed to verify each other’s computations, but if they collude, they can
map all bids to the bidders and even change the outcome of the auction. Like Brandt the
authors also use homomorphic encryption to compute a product of all the encrypted
bids which can then be analyzed by A to �nd the second-highest bid. Zero knowledge
proofs are also used to certify the correct behavior of A.

Another important contribution of this paper, which we will use in our experimental
evaluation, is the argument that a price pool of size 500 should be su�cient for most
auctions.

2https://github.com/ashwinsr/auctions

50 Chapter 5. Related Work

5.2.2 t-Private and t-Secure Auctions

Hinkelmann et al. presented another cryptographic sealed-bid auction protocol [19]
using garbled circuits, an evaluating auctioneer, and an “auction issuer” party. If the
issuer and the auctioneer collude, bid privacy is broken.

5.2.3 A Sealed-Bid Knapsack Auction

Ibrahim used the Knapsack problem to create another cryptographic auction protocol
[20]. It has similar properties to our approach, but di�ers in the following points:

• In Ibrahims protocol the seller learns which bids were placed, but not by whom.
This allows the seller to estimate what people are willing to pay for this item and
he might adopt his price range accordingly on future sales of the same item.

• The seller has to publish the winning price at the end. In our private outcome
formats this is not required.

• The winner has to reveal himself to the seller in the end. This allows the winner
to reconsider if he really wants to make the purchase. This is similar to our public
outcome protocols, but only if the winner waits to receive all other Round 3
messages before broadcasting his own.

• There is no support for multi-unit auctions.

This last paper also contains a good overview of the pre-2011 cryptographic auction
protocol research.

51

Chapter 6

Experimental Results

6.1 Algorithm Execution Time Test Setup

We compared (1) the RSA based algorithms of Wassenberg’s [4] Java implementation
and (2) our own prototype using the PARI/GP1 scripting language (for private outcome
�rst price auctions only2) against (3) our new Curve25519 based C library libbrandt.
The authors of Ed25519 [10] argue that breaking their elliptic curve has similar di�culty
to breaking RSA with ≈ 3000 bit keys. Therefore we used ssh-keygen [21] with the -G

and -T options to generate a 3072 bit RSA safe prime p and derived the missing RSA
parameters q = (p − 1)/2 and д = 3.

All performance evaluations were done on a Lenovo X240 laptop with an Intel® Core™i7-
4600U CPU at 2.1GHz. Since this CPU throttles automatically depending on the available
power supply, all tests were executed while using the same power supply.

For all tests except the comparison between the Wassenberg heuristic and our own
price expansion approach the bids for each bidder were chosen uniformly at random
from the pool of possible prices. Therefore tied bids can and in some setups even have
to occur.

To normalize the results, each test setup was run ten times (only with di�erent ran-
domized bids) unless noted otherwise, and then the median of those execution times is
reported.

Since our tests did only run on one machine, we measured the execution time of the
whole algorithm (i.e. sum of all single bidder measurements where available). For the
charts in this chapter we divided the resulting median by the number of bidders in
the respective test run to get an estimate on the computation time needed by a single

1http://pari.math.u-bordeaux.fr/
2Can be found in the gp-scripts directory of the libbrandt source.

52 Chapter 6. Experimental Results

bidder. This is slightly over-estimating the real cost of our own two implementations,
as the seller’s computation time is also included in the total. Since in Wassenberg’s
implementation there is no such seller process following the protocol, checking all the
proofs and computing the outcome in the end, those results are closer to real-world
per-bidder computation times. The original measurement data for the whole auction
computation time can be found in Section A.2.

For all measurements we used the GNU time program [22] to measure the CPU time the
process spent in user mode and in kernel mode (which tends to be below 1% of the user
mode time) and added those two values together to get the total CPU time consumption
for the process.

Where the measured data allowed for a useful trend line we also added one. All of those
are polynomial trend lines with the maximum degree expected from the algorithm
complexity, e.g. when using the price pool size k as the x-axis for measuring �rst price
auctions, linear trend lines are used; while, when using the number of bidders n as the
x-axis for measuring �rst price auctions with private outcome, quadratic trend lines are
used.

Note, that Brandt describes the computation cost of the multiplication (RSA) as “typ-
ically negligible” compared to exponentiation (RSA). The actual complexity might be
higher, but in our measurements the scalar point multiplication (Ed25519) dominated
the measured complexity.

6.1.1 Notes on Measuring the Wassenberg Implementation

For Wassenberg’s implementation we installed a cgroup [23] to restrict the processes of
all agents to the same CPU core. Since the other two implementations also run the whole
auction in a single thread, this should enable a fair comparison. We again summed up
all the total time consumption values for the bidders to get a total execution time of the
auction on a core.

We did not include Wassenberg’s blackboard process measurement since it only serves
as a message exchange tool with SSL tunneling and the other implementations did
exchange messages directly. The blackboard computation time was consistently less
than 2% of the total computation time of an auction.

We did not install the interface for Java to use the fast GMP3 computations, so our
tests only used the slower default BigInteger implementation. Switching this out for
the GMP implementation should improve the speed to levels similar to the PARI/GP
implementation which is using GMP internally.

The Java environment used for the benchmarks is Oracle JDK Version 1.8.0.112.

3https://gmplib.org/

6.2. First Price Auctions Results 53

6.2 First Price Auctions Results

First, we have a look at the single-unit auctions of the �rst price format. While one
provides outcome privacy, the other one is less complex and therefore �nishes faster.
We �xed one of n or k to the value �ve although this is a rather small value to assume
for number of prices and in some cases also for the number of bidders. This was done
to improve comparability with the M + 1st price public outcome auction results. At
the end of this chapter there is also a measurement of just libbrandt using the more
reasonable price pool size of 512.

6.2.1 Private Outcome

We compare all three implementations on �rst price auctions with private outcome
in Figures 6.1 and 6.2. The expected complexity of the algorithm is O (n2k). For these
comparison we �xed the number of possible prices or number of bidders respectively
to a value of �ve and varied the other value within the range [2,8]. From the graphs we
can see that libbrandt only needs around 7% of the computation time of Wassenberg’s
implementation. If we assume the GMP interface would be installed the runtimes of the
Wassenberg and PARI/GP implementation should be similar, changing the runtime of
libbrandt to roughly 10% of the runtime of either RSA version.

6.2.2 Public Outcome

In Figures 6.3 and 6.4 we can see the comparison between libbrandt and the Wassenberg
implementation on �rst price auctions with public outcome. Since the algorithm does
not have a separate result for each bidder, the complexity is just O (nk) in this case.

54 Chapter 6. Experimental Results

Figure 6.1: First Price Private Outcome Auction with �ve Prices.

Figure 6.2: First Price Private Outcome Auction with �ve Bidders.

6.2. First Price Auctions Results 55

Figure 6.3: First Price Public Outcome Auction with �ve Prices.

Figure 6.4: First Price Public Outcome Auction with �ve Bidders.

56 Chapter 6. Experimental Results

6.3 Multi-Unit Formats

We did not compare against the discriminatory, and generalized Vickrey auction imple-
mentations from Wassenberg since we have no implementation with equal properties.
We could not use the uniform price algorithm which shares the same pricing properties
as our M+1st price implementation due to the bug described in Section 5.1.1. Instead we
used Wassenberg’s M + 1st price implementation which is based on the same proposal
by Brandt [14] for multi-unit auctions even though the author correctly points out its
incorrect results in case of ties of the second type (M + 1st price is equal to one of the
winning bids). However, the incorrect outcome should not lead to wrong computation
times since it is only discovered after the very last round during winner determination
and the implementation does not seem to complain if it detects more winning bids than
M . Thus, this should lead to a fair comparison between ourM+1st price implementation
using the price pool expansion strategy to prevent ties and Wassenberg’s M + 1st price
implementation using his own (t ,u) �nding heuristic.

6.3.1 Private Outcome

One of the two bugs we noticed in Wassenberg’s M + 1st price private outcome im-
plementation (See Section 5.1.1) a�ects the runtime if the (t ,u) chain is longer than it
needs to be. Hence the measurements of the average case in Figures 6.5, 6.6 and 6.9
should only be considered carefully.

In the two M + 1st price private outcome comparisons we had to limit the �xed value
to three and the x-axis value to a range of [2,6] to limit the computation time as this
algorithm has a complexity of O (n3k) in the libbrandt version and Ω(n2k) in the
Wassenberg version. We can already see Wassenberg’s heuristic at work here producing
runtimes with a high variance depending on where ties are located. Therefore also the
median has a higher variance than for the other algorithms and we did not add trend
lines for the Wassenberg series in those two graphs. However, we can see that libbrandt
takes between 10% and 20% of the time of Wassenberg’s implementation within the
limited range of our input parameters. Furthermore, libbrandt could probably be
improved by a reasonable factor by adopting Wassenberg’s heuristic.

6.3. Multi-Unit Formats 57

Figure 6.5: M + 1st Price Private Outcome Auction (M = 1) with three Prices.

Figure 6.6: M + 1st Price Private Outcome Auction (M = 1) with three Bidders.

58 Chapter 6. Experimental Results

6.3.2 Public Outcome

Unfortunately the bug in the englishmpp implementation occurred too often with our
desired parameters, which would lead to impaired results if we just removed the cases
with the parameters where the bug occurs as the bids from the valid runs would not
represent a uniformly random distribution anymore. Therefore we did not measure this
algorithm and can only present the runtimes of our own M + 1st price public outcome
algorithm in Figures 6.7 and 6.8. The results were pretty much as expected with a
complexity of O (n2k).

6.3.3 Wassenberg’s Heuristic for Tie Breaking

Since the heuristic strongly depends on the input parameter M we choose that as our
x-axis values. To get a two-dimensional graph and still cover best and worst cases we
decided to set n = k = M + 2. To generate a test series for the best case of Wassenberg’s
implementation we set each bidder’s bid to be equal to his index, e.g. the �rst bidder will
use bid 1, the second bidder will use bid 2, and so on. For the worst case test series we
set every bid to the same value. For the average case we use uniform random sampling
from the available price pool as in all other tests; additionally, we increase the number
of test iterations to 20 to further reduce the chance of outliers a�ecting the result too
much.

Our libbrandt implementation trades computation complexity against protocol com-
plexity and the runtime complexity is not depending on the input, so we do not have
such explicit best or worst cases for libbrandt and just measured one test series with
the usual uniform random bid sampling for comparison against the three cases of the
Wassenberg heuristic.

6.3. Multi-Unit Formats 59

Figure 6.7: M + 1st Price Public Outcome Auction (M = 1) with �ve Prices.

Figure 6.8: M + 1st Price Public Outcome Auction (M = 1) with �ve Bidders.

60 Chapter 6. Experimental Results

The results in Figure 6.9 show trend lines for the Wassenberg heuristics best and worst
cases as well as the libbrandt implementation. Measurements for the worst and average
case were cut o� to prevent too long runtimes, especially since we increased the number
of test run repetitions for the average case to 20 to try to get a more stable result.
However, the data points of the average series still are not close enough to add a
meaningful trend line. Also note that we changed the y-axis unit from seconds to
minutes due to the long runtimes.

Figure 6.9: M + 1st Price Private Outcome Auction with n = k = M + 2.

Because the two bugs in Wassenberg’s M + 1st price private outcome implementation
did not occur in the best and worst case setups, those give good upper and lower bounds
for the (t ,u) guessing heuristic while the average case series should still be considered
carefully.

We can see that libbrandt still manages to stay faster than even the best case of the
Wassenberg heuristic within our limited range of tests, but that will change for higher
values due to the additional factor n in the complexity of libbrandt. For our test the
average case managed to stay quite close to the best case. There are two arguments
why selecting bids uniformly at random is not representative for real world auctions,
but they even each other out. On the one hand we can argue that in real-world auctions
it is very probable that the bids cluster around the estimated value of the item, so there
is a higher probability of more and/or larger ties. On the other hand, if we take the
reasonable price pool size of 500, we can assume that n is at least ten times smaller for
most auctions leaving the few bidders plenty of choices in the price pool and therefore
limiting the possibility of ties. In any case we can conclude from this graph that for
performance it would be bene�cial to adopt the Wassenberg heuristic in addition to the
improvements done by switching to Ed25519.

6.3. Multi-Unit Formats 61

6.3.4 libbrandt with a Reasonable Price Pool Size

For this last set of measurements we took the argument about price pool size by Lipmaa
et al. [18] and set k = 512. Since this would lead to very long runtimes in the Wassenberg
implementations we only measured libbrandt with the number of bidders ranging from
two to �ve. In Figure 6.10 we abbreviated the �rst price auction with just a “1” and the
M + 1st price auction with “M+1”. The M + 1st price algorithm measurements were
aborted when they started to take too long. For the M + 1st price public outcome we
have three data points of roughly 15 minutes per bidder which were recorded over night.
This data point is not in the graph to keep the scale more detailed but it can be found
in Table A.13 in the Appendix.

Figure 6.10: All libbrandt Algorithms with 512 Prices.

We can see that to stay under the ten minute mark per bidder which Wassenberg
described as “reasonable”, libbrandt still needs to restrict the number of bidders to
quite a low value (six bidders were used as a base case by Wassenberg), especially for
the M + 1st price auctions. However, Wassenberg assumed a lower security setting
(2048 bit RSA keys instead of Ed25519 which is similar to 3072 bit RSA keys) and fewer
prices (40 instead of 512), so we could improve security and the price pool drastically
and still maintain similar runtimes.

62 Chapter 6. Experimental Results

6.4 Bandwidth Usage

Since the size of our elliptic curve group elements is constant we can state exact byte sizes
for our protocols, depending only onn andk as described in Table 6.1. For comparison we
use the RSA key size of 3072 bits as stated above. Consequently, an RSA implementation
of the same protocols would use roughly 3072/256 = 12 times more bandwidth compared
to the Ed25519-based libbrandt implementation.

Note, that the table only includes transmitted data relevant to the algorithm. Each mes-
sage will also have a few additional headers depending on the used network backends.
In fact the seller’s transmission cost is not zero for public outcome auctions, since he
also has to announce the auction somehow and introduce the start of the auction to all
bidders. We also only calculated for an optimal broadcasting backend, where the sender
only has to send the message once and each participant receives this message only
once. In a simple broadcast emulation the sender would have to create separate unicast
messages for each receiving host increasing the sending cost of broadcast messages by
a factor of n − 1.

We also assumed that broadcast messages will be received by the sender as well. This
assumption does not change the overall bandwidth complexity of the protocols.

To give a rough notion of where these numbers end up in realistic scenarios, we com-
puted it for an example with 8 bidders, 512 prices and the �rst price private outcome
auction format. Here, each bidder needs to send 1.28MiB, the seller needs to send 3.5MiB,
each bidder needs to receive a total of 9.13MiB and the seller needs to receive a total
of 10.25MiB. Since receiving data usually is not as limited by the network providers as
sending is, the sent number of bytes is probably the bottleneck. We think this amount of
bandwidth cost is appropriate, at least for computers. For generally more restricted — in
terms of bandwidth and in terms of maximum transfers per month — mobile networks
this might still be too much to be attractive to users.

6.4. Bandwidth Usage 63

Table 6.1: Bandwidth Cost for libbrandt in bytes.

Format Round seller rx seller tx bidder rx bidder tx

Prologue 96n 0 96n 96
First Price Round 1 320nk + 96n 0 320nk + 96n 320k + 96
Private Round 2 160n2k 0 160n2k 160nk
Outcome Round 3 128n2k 128(n − 1)nk 128(n − 1)nk 128nk

Result ∈ O (n2k) ∈ O (n2k) ∈ O (n2k) ∈ O (nk)

Prologue 96n 0 96n 96
First Price Round 1 320nk + 96n 0 320nk + 96n 320k + 96
Public Round 2 160nk 0 160nk 160k
Outcome Round 3 128nk 0 128nk 128k

Result ∈ O (nk) 0 ∈ O (nk) ∈ O (k)

Prologue 96n 0 96n 96
M + 1st Price Round 1 320n2k + 192n 0 320n2k + 192n 320nk + 192
Private Round 2 160n3k 0 160n3k 160n2k

Outcome Round 3 128n3k 128(n − 1)n2k 128(n − 1)n2k 128n2k

Result ∈ O (n3k) ∈ O (n3k) ∈ O (n3k) ∈ O (n2k)

Prologue 96n 0 96n 96
M + 1st Price Round 1 320nk + 192n 0 320nk + 192n 320k + 192
Public Round 2 160n2k 0 160n2k 160nk
Outcome Round 3 256n2k 0 256n2k 256nk

Result ∈ O (n2k) 0 ∈ O (n2k) ∈ O (nk)

Note, that k = kapp = the real number of prices, not “kilo” or “kibi”

65

Chapter 7

Discussion and Conclusion

7.1 Improvements

Through translating the algorithm from an RSA to an Ed25519 elliptic curve based crypto
system and measuring the performance we have shown that we can reduce computation
time to around 7% and message size to around 8% of the RSA version at similar security
levels. This is a huge improvement and especially relevant for Brandt’s algorithms which
are one of the computationally most intensive auction resolution algorithms due to the
strong security and privacy goals. Furthermore, this is not only applicable to Brandt’s
work, but can probably be used on a wide variety of other RSA based algorithms as well
to reduce runtimes, power consumption, bandwidth requirements and, depending on
the network provider plan, also cost. This improvement is also important for embedded
devices with low computation power and mobile devices due to the common monthly
tra�c limits in mobile data plans. The only disadvantage of Ed25519 over RSA we
could �nd is the slightly longer signature veri�cation time [10] [24], but this only needs
consideration in signature heavy protocols, which ours are not.

7.2 Usability

When it comes down to the usability question on the low level of algorithm runtime
it is a highly subjective matter. How much time are people generally okay with their
CPU computing the outcome of an auction? We have no empirical data on that yet, but
argue that the ten minute mark from Wassenberg is a reasonable assumption. Single
core CPUs are arguably rare nowadays, so auctions will probably not block the whole
system for most users, but merely one of several cores.

Since the computation time remains the major bottleneck, the libbrandt implementa-
tion would have to be parallelized before it becomes suitable for high-frequency auctions,

66 Chapter 7. Discussion and Conclusion

as they are being envisioned for smart grids negotiating the price of electricity based
on regional supply and demand. We also note that the seller’s computations are limited
to checking all the ZKPs and outcome determination from all received messages. As a
result, the seller’s computation is signi�cantly more lightweight.

In conclusion our evaluation results show that the system is usable in real world appli-
cations. We could not �nd another online auction system with the same or even stricter
security and privacy properties faster than our implementation. Still, a few additions
described in Section 7.4 need to be made before the system should be used for the �rst
real auction and beyond that more performance improvements are needed for auctions
with more bidders.

7.3 Open Questions

To optimize runtimes depending on the input parameters of an auction it would be
helpful to know what minimum and maximum prices should be used, how many prices
are needed, and how to interpolate between the minimum and maximum. A �rst attempt
for the interpolation would be to use an exponential function so prices have a �ner
granularity on the low end and still reach a reasonably big price pool due to the bigger
gaps between two prices near the maximum. However, further studies are required to
verify or negate that assumption.

To assess the actual real-world usability, empirical studies are needed to evaluate what
computation times are okay for users.

While we have established that an escrow service helps to prevent malicious bidders and
DoS attacks, the exact parameters of how this service should operate are not yet �xed.
Open questions are who bene�ts from misbehaving bidders, how the smart contracts
should be structured so the escrow service can verify them, and how payment and
shipping information is exchanged between the seller and the winners.

An important point for the reputation system is who can actually in�uence the repu-
tation of the seller. One might argue that losing or misbehaving bidders should not be
allowed to do this due to con�ict of interest, but on the other hand it might be required
to �ag a seller who is falsely reporting correct bidders as misbehaving to the escrow
service.

In his paper Brandt mentions that the protocol could also be used to emulate incremental
auction styles. This might be interesting since those types of auctions seem to be more
popular due to their expected higher revenue for sellers.

7.4. Future Work 67

7.4 Future Work

First of all, as noted in Section 3.3, the GNUnet auction subsystem needs to be completed.

In Section 4.5 we listed a few details which are still missing from libbrandt. For real-
world usage these need to be addressed and implemented.

To reduce latency, the cryptographic operations in libbrandt should be run in parallel.

To reduce the attack surface even further one might want to ensure the implementation
is resistant against side-channel attacks. For example constant time computations could
be incorporated to achieve this goal.

One can think of a new distributed system which replaces the platform in our proposed
architecture and ensures innumerability of auction o�ers.

To improve fault-tolerance, it would help if libbrandt supported having checkpoints
where its state would be serialized for backups, and where the process could be resumed
after system recovery.

69

Appendix A

Appendix

A.1 Measurement RSA Parameters

These are the exact RSA parameters we used in our measurements to emulate a similar
security level like Ed25519:

p = 44985469821837418060420468749252308413677526101052157689464382554701207
4019552284920185699717986681512631333975691555816742339833407263977802640190
4031844016861682960881473450120265256327641310709437833580886250441164652551
0316554053013294138852505874085733196211383046780946115984361198540358815554
7207988936430770198327542749579608223939042630659023963007129330447699318811
2145295406185504400770379250448236759388051149856191572199475958274963892549
0365863323735555616243783853240185636417810737221212829240481940733328853865
8385328683538489628646848059448985198863513714630405074311940603015045721470
3115428415028345445439080824905967347767410065096124691155434106090788541491
3019715107670726786412863173883828849790083519416347384070204211091764169981
8136591169734014884729213611401595138283604534231490958695735199141953824592
0973429697625016569947794803114551396527414933624103391788313038751051589980
762413698400281203
q = (p−1)/2 = 224927349109187090302102343746261542068387630505260788447321912
7735060370097761424600928498589933407563156669878457779083711699167036319889
0132009520159220084308414804407367250601326281638206553547189167904431252205
8232627551582770265066470694262529370428665981056915233904730579921805992701
7940777736039944682153850991637713747898041119695213153295119815035646652238
4965940560726477030927522003851896252241183796940255749280957860997379791374
8194627451829316618677778081218919266200928182089053686106064146202409703666
6442693291926643417692448143234240297244925994317568573152025371559703015075
2286073515577142075141727227195404124529836738837050325480623455777170530453
9427074565098575538353633932064315869419144248950417597081736920351021055458

70 Appendix A. Appendix

8208499090682955848670074423646068057007975691418022671157454793478675995709
7691229604867148488125082849738974015572756982637074668120516958941565193755
25794990381206849200140601
д = 3

A.2 Raw Measurement Data

In Tables A.1 to A.13 we present the raw measured runtimes. Each data cell contains
either a set of measured values in the 10 or 20 iterations, or the median of the set in the
left adjacent cell. This median was then divided by the number of bidders and possibly
by 60 to get the result in minutes instead of seconds per bidder. In Table A.9 we left out
the computed median so the table �ts on one page.

A.2. Raw Measurement Data 71

Table A.1: First Price Private Outcome Auction with �ve Prices (Measured all Bidders).

libbrandt Wassenberg PARI/GP
n Execution

Times (Seconds)
Median Execution

Times (Seconds)
Median Execution

Times (Seconds)
Median

2 {2.10, 2.10, 2.11,
2.11, 2.12, 2.13,
2.16, 2.18, 2.21,
2.22}

2.13 {30.71, 31.46,
31.76, 32.43,
32.54, 32.63,
32.68, 32.82,
33.26, 34.27}

32.58 {20.55, 20.83,
20.99, 21.00,
21.01, 21.05,
21.06, 21.06,
21.09, 21.12}

21.03

3 {5.25, 5.29, 5.30,
5.42, 5.48, 5.50,
5.65, 5.69, 6.00,
6.12}

5.49 {75.97, 77.85,
78.95, 78.98,
79.00, 79.81,
80.01, 81.04,
87.59, 88.93}

79.40 {51.57, 52.18,
52.19, 52.31,
52.35, 52.38,
52.39, 52.48,
52.74, 52.75}

52.37

4 {10.77, 10.84,
10.85, 10.91,
10.96, 11.13,
11.16, 11.20,
11.30, 11.32}

11.04 {147.95, 151.50,
152.07, 152.43,
152.59, 152.63,
152.71, 153.12,
154.06, 165.82}

152.61 {103.45, 103.65,
104.27, 104.27,
104.27, 104.60,
104.89, 105.46,
107.09, 107.42}

104.44

5 {18.63, 18.77,
19.10, 19.18,
19.28, 19.34,
19.37, 19.37,
19.51, 19.95}

19.31 {252.63, 254.69,
256.33, 259.04,
259.13, 260.82,
262.58, 263.85,
277.20, 279.90}

259.97 {189.52, 190.66,
190.84, 193.83,
198.39, 206.61,
210.01, 214.65,
217.29, 223.71}

202.50

6 {29.69, 29.79,
29.90, 29.97,
30.11, 30.60,
30.70, 30.81,
30.95, 31.00}

30.36 {390.59, 391.69,
396.04, 396.57,
401.98, 404.44,
422.42, 558.15,
562.65, 579.10}

403.21 {287.03, 287.72,
288.12, 288.20,
288.36, 288.56,
289.32, 289.48,
292.29, 301.07}

288.46

7 {44.52, 44.60,
44.74, 44.82,
44.88, 44.94,
45.36, 45.56,
46.01, 46.29}

44.91 {572.61, 577.18,
577.84, 579.36,
579.99, 590.22,
592.71, 613.12,
623.11, 629.85}

585.10 {443.37, 444.83,
446.09, 450.44,
475.10, 480.98,
495.48, 497.33,
511.14, 512.62}

478.04

8 {62.50, 62.73,
62.73, 62.97,
63.00, 63.00,
64.32, 64.66,
64.71, 64.96}

63.00 {794.13, 799.67,
805.89, 816.69,
828.39, 857.08,
863.91, 874.86,
1040.53,
1493.24}

842.73 {632.29, 633.00,
640.71, 640.92,
642.06, 663.77,
669.36, 685.63,
724.19, 730.28}

652.91

72 Appendix A. Appendix

Table A.2: First Price Private Outcome Auction with �ve Bidders (Measured all Bidders).

libbrandt Wassenberg PARI/GP
k Execution

Times (Seconds)
Median Execution

Times (Seconds)
Median Execution

Times (Seconds)
Median

2 {7.62, 7.71, 7.71,
7.73, 7.86, 7.98,
8.01, 8.01, 8.03,
8.06}

7.92 {108.19, 110.65,
111.37, 112.59,
112.83, 114.30,
114.99, 120.88,
121.13, 164.78}

113.56 {75.39, 75.42,
75.43, 75.62,
75.64, 75.65,
75.78, 75.99,
76.10, 76.14}

75.64

3 {11.30, 11.35,
11.37, 11.41,
11.41, 11.42,
11.77, 11.81,
11.84, 11.85}

11.42 {158.00, 158.99,
159.27, 160.47,
160.71, 160.94,
161.00, 161.21,
170.08, 172.68}

160.82 {109.15, 109.30,
109.80, 110.20,
110.20, 110.23,
110.43, 110.81,
111.45, 111.64}

110.21

4 {14.99, 14.99,
15.02, 15.11,
15.46, 15.53,
15.56, 15.60,
15.62, 15.65}

15.49 {197.76, 205.54,
207.11, 209.08,
212.44, 212.76,
223.01, 226.87,
229.74, 229.90}

212.60 {144.62, 145.63,
146.44, 147.04,
147.92, 148.92,
160.05, 181.50,
210.64, 218.98}

148.42

5 {18.59, 18.71,
18.73, 18.79,
18.80, 18.97,
19.26, 19.36,
19.38, 19.38}

18.89 {260.42, 262.81,
264.05, 266.09,
266.43, 266.98,
279.89, 280.51,
283.54, 285.16}

266.70 {186.29, 186.91,
188.08, 188.20,
188.82, 212.49,
213.75, 219.94,
221.07, 229.61}

200.66

6 {22.20, 22.20,
22.24, 22.32,
22.35, 23.11,
23.11, 23.11,
23.26, 23.28}

22.73 {308.24, 315.83,
317.02, 317.89,
323.16, 334.48,
334.83, 338.96,
346.24, 355.58}

328.82 {180.52, 187.49,
202.52, 206.88,
219.37, 219.38,
219.67, 221.74,
222.86, 222.90}

219.38

7 {25.86, 25.87,
25.90, 25.93,
26.01, 26.05,
26.88, 26.89,
26.92, 27.02}

26.03 {353.31, 366.68,
372.70, 375.01,
382.68, 396.19,
404.69, 410.28,
440.53, 527.18}

389.43 {210.34, 211.61,
211.98, 213.21,
216.15, 252.10,
253.22, 257.31,
258.52, 273.70}

234.12

8 {29.48, 29.59,
29.67, 29.76,
30.47, 30.59,
30.63, 30.67,
30.67, 30.71}

30.53 {413.71, 415.07,
418.83, 420.75,
423.56, 424.32,
426.56, 426.65,
428.27, 474.66}

423.94 {232.25, 233.10,
234.82, 234.87,
235.44, 235.78,
235.83, 239.05,
239.55, 242.09}

235.61

A.2. Raw Measurement Data 73

Table A.3: First Price Public Outcome Auction with �ve Prices (Measured all Bidders).

libbrandt Wassenberg
n Execution Times (Seconds) Median Execution Times (Seconds) Median
2 {1.56, 1.58, 1.58, 1.58, 1.59, 1.60,

1.60, 1.66, 1.67, 1.68}
1.60 {28.55, 29.43, 29.57, 29.77, 30.03,

30.05, 30.50, 30.54, 30.79, 30.81}
30.04

3 {2.94, 2.99, 3.02, 3.04, 3.04, 3.07,
3.11, 3.17, 3.18, 3.24}

3.06 {57.89, 58.16, 60.54, 62.37, 62.50,
62.97, 63.27, 63.30, 63.53, 64.29}

62.73

4 {4.89, 4.90, 4.92, 4.93, 4.97, 4.98,
5.00, 5.02, 5.07, 5.09}

4.98 {102.65, 107.07, 108.14, 108.41,
108.89, 108.94, 109.50, 109.96,
110.95, 136.54}

108.91

5 {7.09, 7.10, 7.12, 7.15, 7.16, 7.22,
7.33, 7.34, 7.39, 7.44}

7.19 {146.19, 147.08, 147.12, 148.10,
152.54, 155.91, 156.57, 164.71,
166.75, 228.34}

154.22

6 {9.67, 9.75, 9.80, 10.06, 10.06,
10.08, 10.18, 10.33, 10.38, 10.70}

10.07 {200.58, 201.74, 202.46, 204.15,
207.52, 209.70, 214.88, 215.35,
215.36, 217.51}

208.61

7 {12.61, 12.62, 12.75, 12.77, 12.86,
13.08, 13.34, 13.90, 13.99, 14.03}

12.97 {264.91, 270.64, 272.25, 272.38,
274.46, 275.03, 278.36, 281.07,
284.71, 286.38}

274.74

8 {16.98, 17.58, 17.65, 17.66, 17.67,
17.83, 17.89, 17.94, 18.01, 18.36}

17.75 {339.72, 349.62, 350.90, 354.15,
355.48, 363.47, 369.52, 449.05,
457.27, 555.10}

359.47

Table A.4: First Price Public Outcome Auction with �ve Bidders (Measured all Bidders).

libbrandt Wassenberg
k Execution Times (Seconds) Median Execution Times (Seconds) Median
2 {3.00, 3.00, 3.01, 3.02, 3.03, 3.05,

3.09, 3.12, 3.14, 3.14}
3.04 {64.33, 64.52, 65.15, 65.98,

67.92, 70.67, 70.69, 92.45, 94.85,
122.73}

69.29

3 {4.30, 4.31, 4.32, 4.32, 4.32, 4.32,
4.33, 4.48, 4.51, 4.51}

4.32 {87.68, 87.90, 88.10, 88.93,
89.72, 91.99, 92.48, 95.45, 96.94,
134.93}

90.85

4 {5.57, 5.58, 5.59, 5.59, 5.61, 5.83,
5.83, 5.84, 5.84, 5.85}

5.72 {113.46, 113.48, 115.40, 115.72,
116.10, 116.50, 117.32, 117.55,
121.15, 123.67}

116.30

5 {6.84, 6.85, 6.85, 6.87, 6.88, 6.90,
7.17, 7.17, 7.18, 7.20}

6.89 {139.12, 139.23, 139.40, 140.43,
141.75, 142.03, 142.09, 142.11,
142.86, 155.06}

141.89

6 {8.13, 8.15, 8.15, 8.16, 8.17, 8.47,
8.49, 8.52, 8.52, 8.52}

8.32 {163.93, 165.50, 165.96, 166.07,
167.03, 168.15, 168.35, 171.12,
180.39, 238.07}

167.59

7 {9.42, 9.43, 9.45, 9.45, 9.48, 9.81,
9.85, 9.87, 9.88, 9.98}

9.65 {185.81, 187.16, 190.35, 190.37,
192.26, 196.63, 201.14, 201.95,
202.30, 204.39}

194.44

8 {10.70, 10.70, 10.71, 10.71, 10.72,
11.19, 11.19, 11.19, 11.19, 11.22}

10.96 {212.90, 215.96, 217.50, 218.27,
219.30, 220.29, 225.43, 228.79,
231.25, 232.28}

219.79

74 Appendix A. Appendix

Table A.5: M + 1st Price Private Outcome Auction (M = 1) with three Prices (Measured all
Bidders).

libbrandt Wassenberg
n Execution Times (Seconds) Median Execution Times (Seconds) Median
2 {2.88, 2.89, 2.90, 2.95, 3.00, 3.02,

3.03, 3.05, 3.06, 3.06}
3.01 {20.92, 21.14, 21.18, 21.60, 21.72,

21.80, 29.71, 30.02, 30.28, 30.67}
21.76

3 {10.02, 10.07, 10.08, 10.09, 10.45,
10.52, 10.54, 10.54, 10.58, 10.76}

10.48 {51.23, 52.12, 52.29, 77.48,
100.97, 128.47, 128.58, 129.45,
139.26, 141.86}

114.72

4 {25.91, 25.95, 25.99, 26.01, 26.12,
27.08, 27.11, 27.23, 27.30, 27.30}

26.60 {151.98, 154.87, 164.59, 203.87,
250.24, 262.77, 263.27, 280.30,
426.76, 619.02}

256.50

5 {55.87, 56.02, 56.12, 56.25, 56.34,
57.36, 57.38, 57.39, 57.66, 57.90}

56.85 {179.09, 261.64, 263.78, 263.81,
263.95, 264.51, 280.80, 285.37,
488.36, 1050.20}

264.23

6 {105.90, 106.00, 106.34, 106.45,
108.77, 109.28, 109.36, 109.47,
109.63, 109.64}

109.02 {402.25, 422.71, 428.50, 428.64,
723.11, 729.18, 731.02, 754.95,
1111.03, 1160.96}

726.14

Table A.6: M + 1st Price Private Outcome Auction (M = 1) with three Bidders (Measured all
Bidders).

libbrandt Wassenberg
k Execution Times (Seconds) Median Execution Times (Seconds) Median
2 {6.72, 6.72, 6.91, 7.00, 7.05, 7.13,

7.14, 7.19, 7.20, 7.52}
7.09 {53.84, 53.96, 54.11, 56.44, 65.35,

89.32, 91.95, 92.92, 93.06, 99.93}
77.33

3 {10.50, 10.55, 10.55, 10.78, 10.84,
10.85, 10.88, 10.92, 10.94, 10.96}

10.85 {50.46, 52.74, 79.12, 79.75, 80.42,
104.77, 127.38, 128.86, 132.47,
132.68}

92.59

4 {13.94, 14.00, 14.01, 14.17, 14.19,
14.20, 14.42, 14.44, 14.46, 14.47}

14.20 {64.94, 66.53, 66.93, 67.05, 67.78,
100.08, 100.43, 133.95, 168.40,
171.51}

83.93

5 {17.33, 17.33, 17.41, 17.62, 17.86,
17.94, 18.02, 18.04, 18.17, 18.23}

17.90 {81.16, 82.44, 123.15, 127.77,
134.49, 168.73, 201.46, 210.19,
210.52, 213.52}

151.61

6 {20.63, 20.72, 20.74, 20.85, 20.93,
21.19, 21.48, 21.61, 21.63, 21.69}

21.06 {92.02, 92.89, 94.41, 145.30,
151.06, 159.35, 191.18, 245.95,
247.37, 255.63}

155.20

Table A.7: M + 1st Price Public Outcome Auction (M = 1) with �ve Prices (Measured all Bidders).

libbrandt
n Execution Times (Seconds) Median
2 {3.53, 3.54, 3.54, 3.54, 3.56, 3.56, 3.56, 3.56, 3.67, 3.73} 3.56
3 {9.80, 10.25, 10.27, 10.32, 10.43, 10.44, 10.71, 10.76, 10.93, 12.05} 10.44
4 {21.58, 21.82, 21.90, 22.28, 22.33, 22.33, 22.41, 22.51, 22.84, 23.98} 22.33
5 {40.20, 40.22, 40.32, 40.40, 40.55, 41.13, 41.18, 41.32, 41.49, 41.60} 40.84
6 {66.52, 67.04, 67.27, 67.48, 67.80, 67.98, 68.32, 68.84, 68.96, 69.32} 67.89
7 {102.17, 104.50, 104.59, 105.82, 107.03, 108.60, 109.42, 116.51, 116.67, 121.62} 107.82
8 {145.73, 145.81, 147.24, 147.94, 148.16, 148.18, 149.19, 149.23, 150.52, 151.03} 148.17

A.2. Raw Measurement Data 75

Table A.8: M + 1st Price Public Outcome Auction (M = 1) with �ve Bidders (Measured all
Bidders).

libbrandt
k Execution Times (Seconds) Median
2 {16.44, 16.45, 16.48, 16.64, 16.76, 17.17, 17.24, 17.27, 17.31, 17.40} 16.96
3 {24.33, 24.53, 24.53, 25.17, 25.23, 25.24, 25.32, 25.37, 25.39, 25.63} 25.24
4 {32.24, 32.32, 32.40, 32.74, 33.19, 33.40, 33.52, 33.61, 33.64, 33.84} 33.30
5 {40.29, 40.30, 40.47, 40.54, 40.57, 40.62, 41.68, 41.87, 41.91, 41.99} 40.59
6 {48.25, 48.38, 48.45, 48.45, 48.66, 48.92, 49.87, 50.13, 50.15, 50.26} 48.79
7 {56.31, 56.38, 56.42, 56.94, 56.96, 57.77, 58.21, 58.32, 58.44, 58.48} 57.37
8 {65.25, 65.39, 65.52, 65.55, 65.79, 67.29, 68.21, 71.67, 73.36, 75.73} 66.54

76 Appendix A. Appendix

Table A.9: M + 1st Price Private Outcome Auction with n = k = M + 2 (Measured all Bidders).

libbrandt Wa (best) Wa (avg) Wa (worst)
M Execution Times

(Seconds)
Execution Times
(Seconds)

Execution Times
(Seconds)

Execution Times
(Seconds)

1 {8.74, 8.85, 8.87,
9.15, 9.31, 9.33,
9.60, 9.60, 9.67,
9.75}

{50.82, 51.60, 52.22,
52.40, 52.55, 52.71,
53.43, 53.43, 54.25,
59.99}

{52.57, 56.43, 56.64,
65.01, 78.79, 78.96,
79.32, 80.58, 80.63,
80.66, 82.25, 83.09,
83.91, 84.17, 85.19,
85.27, 105.38,
111.72, 112.33,
132.48}

{126.17, 127.55,
130.92, 134.27,
134.57, 138.51,
143.73, 148.04,
150.08, 150.26}

2 {33.54, 33.89, 34.44,
36.16, 36.69, 37.13,
38.33, 38.48, 38.70,
38.82}

{128.72, 129.35,
130.29, 130.73,
131.23, 133.54,
140.45, 140.86,
141.71, 143.12}

{127.41, 129.30,
129.32, 130.99,
136.21, 137.66,
139.32, 153.56,
215.34, 287.40,
298.05, 302.67,
335.21, 435.22,
451.33, 452.77,
566.53, 571.09,
606.47, 679.06}

{564.21, 570.94,
575.74, 576.26,
578.03, 590.69,
607.10, 686.55,
717.59, 730.02}

3 {95.86, 96.05, 97.44,
97.48, 98.24, 98.82,
102.29, 111.31,
116.50, 125.91}

{269.24, 269.90,
271.38, 273.84,
276.56, 280.62,
289.58, 297.59,
356.80, 371.58}

{245.14, 254.40,
259.06, 268.74,
280.31, 286.06,
444.96, 624.46,
709.94, 744.45,
805.73, 834.07,
980.73, 987.08,
1220.87, 1329.32,
1353.27, 1388.78,
1428.26, 1553.45}

{2140.38, 2176.76,
2290.58, 2314.00,
2356.31, 2396.44,
2897.05, 2898.48,
2945.08, 3025.08}

4 {217.94, 219.82,
233.82, 239.43,
239.54, 242.02,
242.58, 243.84,
245.18, 248.05}

{498.56, 504.58,
506.17, 533.73,
537.20, 544.51,
545.36, 546.41,
573.17, 721.63}

{465.96, 475.45,
478.51, 481.70,
485.08, 515.86,
525.75, 651.01,
782.46, 807.27,
810.27, 819.16,
1175.43, 1707.49,
1756.28, 1765.35,
2918.75, 3027.46,
3110.23}

no data

5 {451.05, 485.16,
485.25, 498.33,
501.63, 504.30,
514.36, 542.86,
555.84, 599.79}

{839.05, 839.45,
851.15, 856.92,
860.68, 861.14,
871.46, 892.49,
910.98, 1205.77}

no data no data

A.2. Raw Measurement Data 77

Table A.10: First Price Private Outcome Auction with 512 Prices (Measured all Bidders).

libbrandt
n Execution Times (Seconds) Median
2 {215.94, 228.17, 233.03, 233.17, 233.48, 234.29, 237.61, 239.33, 240.06, 240.12} 233.88
3 {557.91, 558.04, 558.34, 558.80, 559.01, 560.10, 560.50, 567.42, 570.46, 570.58} 559.55
4 {1087.66, 1089.54, 1090.29, 1091.60, 1102.57, 1102.60, 1104.84, 1105.92, 1105.99,

1106.66}
1102.59

5 {1870.28, 1880.51, 1902.73, 1927.67, 1968.16, 1979.24, 2024.20, 2029.40, 2030.64,
2073.22}

1973.70

6 {2953.78, 2956.16, 2963.98, 2973.45, 2983.09, 2983.62, 2984.81, 2985.89, 2991.00,
3015.86}

2983.36

Table A.11: First Price Public Outcome Auction with 512 Prices (Measured all Bidders).

libbrandt
n Execution Times (Seconds) Median
2 {157.44, 158.71, 168.74, 169.45, 170.06, 171.08, 172.14, 172.42, 173.12, 176.74} 170.57
3 {305.24, 308.42, 312.78, 313.24, 320.20, 323.68, 323.73, 325.36, 326.74, 354.93} 321.94
4 {465.77, 466.98, 469.21, 477.17, 477.64, 478.00, 481.61, 482.31, 487.74, 549.96} 477.82
5 {675.01, 680.92, 681.24, 683.77, 684.08, 687.85, 691.59, 710.97, 734.82, 846.41} 685.96
6 {889.24, 891.89, 892.07, 899.78, 899.80, 902.63, 904.92, 920.09, 930.63, 973.04} 901.21
7 {1176.07, 1179.57, 1183.43, 1188.31, 1206.44, 1229.15, 1251.01, 1261.05, 1264.63,

1279.35}
1217.80

8 {1508.46, 1525.78, 1564.39, 1578.53, 1629.55, 1647.05, 1686.93, 1694.76, 1696.90,
1697.83}

1638.30

Table A.12: M + 1st Price Private Outcome Auction with 512 Prices (Measured all Bidders).

libbrandt
n Execution Times (Seconds) Median
2 {476.71, 509.74, 517.95, 518.56, 527.16, 527.89, 530.13, 534.13, 536.84, 537.20} 527.52
3 {1701.07, 1717.45, 1746.21, 1761.33, 1777.29, 1796.31, 1857.54, 1870.85, 1896.55,

1911.35}
1786.80

Table A.13: M + 1st Price Public Outcome Auction with 512 Prices (Measured all Bidders).

libbrandt
n Execution Times (Seconds) Median
2 {478.35, 484.77, 486.30, 487.47, 490.08, 494.80, 495.79, 503.96, 513.45, 802.28} 492.44
3 {1491.13, 1498.61, 1499.66, 1504.81, 1509.12, 1515.15, 1519.28, 1520.02, 1521.94,

1526.82}
1512.13

4 {3644.23, 3649.50, 3693.75, no more data } 3649.50

79

Bibliography

[1] R. Bapna, P. Goes, and A. Gupta, “Insights and Analyses of Online Auctions,”
Commun. ACM, vol. 44, no. 11, pp. 42–50, Nov. 2001.

[2] F. Brandt, “How to Obtain Full Privacy in Auctions,” in International Journal of
Information Security 5(4), 2006, pp. 201–216.

[3] V. Krishna, Auction Theory. Academic Press, 2002.

[4] P. Wassenberg, “Implementation and Evaluation of Cryptographic Auction Proto-
cols,” Diploma Thesis, LMU, October 2008.

[5] J. Dreier, J.-G. Dumas, and P. Lafourcade, “Brandt’s Fully Private Auction Protocol
Revisited,” in Progress in Cryptology – AFRICACRYPT 2013: 6th International Con-
ference on Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 88–106.

[6] T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 10–18.

[7] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of computation, vol. 48,
no. 177, pp. 203–209, 1987.

[8] R. Barbulescu, P. Gaudry, and T. Kleinjung, The Tower Number Field Sieve. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 31–55.

[9] V. S. Miller, Use of Elliptic Curves in Cryptography. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1986, pp. 417–426.

[10] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-
security signatures,” Journal of Cryptographic Engineering, vol. 2, no. 2, pp. 77–89,
2012.

[11] A. Fiat and A. Shamir, “How to Prove Yourself: Practical Solutions to Identi�cation
and Signature Problems,” in Proceedings on Advances in cryptology—CRYPTO ’86.
London, UK, UK: Springer-Verlag, 1987, pp. 186–194.

80 Bibliography

[12] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key Derivation
Function (HKDF),” RFC 5869 (Informational), Internet Engineering Task Force,
May 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5869.txt

[13] M. Lipow, “Number of Faults per Line of Code,” IEEE Transactions on Software
Engineering, vol. SE-8, no. 4, pp. 437–439, July 1982.

[14] F. Brandt, “Fully Private Auctions in a Constant Number of Rounds,” in Financial
Cryptography: 7th International Conference, FC 2003, Guadeloupe, French West
Indies, January 27-30, 2003. Revised Papers. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 223–238.

[15] J. Burdges, F. Dold, C. Grotho�, and M. Stanisci, “Enabling Secure Web Payments
with GNU Taler,” in International Conference on Security, Privacy, and Applied
Cryptography Engineering. Springer, 2016, pp. 251–270.

[16] A. Rampuria, A. Kulshrestha, A. Sreenivas, and M. Denton, “Cryptographically
Secure Multiparty Computation and Distributed Auctions using Homomorphic
Encryption,” 2016.

[17] M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, and R. Nicholas, “Internet
X.509 Public Key Infrastructure: Certi�cation Path Building,” RFC 4158
(Informational), Internet Engineering Task Force, Sep. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4158.txt

[18] H. Lipmaa, N. Asokan, and V. Niemi, “Secure Vickrey Auctions without Threshold
Trust,” Cryptology ePrint Archive, Report 2001/095, 2001. [Online]. Available:
http://eprint.iacr.org/2001/095

[19] M. Hinkelmann, A. Jakoby, and P. Stechert, “t-Private and t-Secure Auctions,”
Journal of Computer Science and Technology, vol. 23, no. 5, pp. 694–710, 2008.

[20] M. Ibrahim, “A Novel Approach to Fully Private and Secure Auction: A
Sealed-Bid Knapsack Auction,” International Journal of Research and Reviews
in Applied Science, vol. 9, no. 2, pp. 260–269, 2011. [Online]. Available:
http://works.bepress.com/maged-hamada-ibrahim/13/

[21] “ssh-keygen(1) Linux User’s Manual,” openssh version 7.3, February 2016.

[22] “time(1) Linux User’s Manual,” GNU time version 1.7, February 2016.

[23] “cgroups(7) Linux Programmer’s Manual,” Linux kernel version 4.9.9, February
2016.

[24] R. van Rijswijk-Deij, A. Sperotto, and A. Pras, “Making the Case for Elliptic Curves
in DNSSEC,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 13–19, Sep. 2015.

http://www.ietf.org/rfc/rfc5869.txt
http://www.ietf.org/rfc/rfc4158.txt
http://eprint.iacr.org/2001/095
http://works.bepress.com/maged-hamada-ibrahim/13/

	Motivation
	Auction Formats
	Main Contributions

	Background
	Introduction to RSA and Elliptic Curve Similarities
	Overview of Brandt's Algorithms
	Switching to the Ed25519 Elliptic Curve
	Privacy and Security Properties
	Zero Knowledge Proofs
	Proof 1: Knowledge of an `39`42`"613A``45`47`"603AECDL
	Proof 2: Equality of Two `39`42`"613A``45`47`"603AECDL
	Proof 3: An Encrypted Value is One out of Two Values

	Prologue
	Generate Public Key Y
	Round 1: Encrypt Bid

	First Price Auction Protocol with Private Outcome
	Round 2: Compute Outcome
	Round 3: Decrypt Outcome
	Epilogue: Outcome Determination

	First Price Auction Protocol with Public Outcome
	Round 2: Compute Outcome
	Round 3: Decrypt Outcome
	Epilogue: Outcome Determination

	M+1st Price Auction Protocol with Private Outcome
	Addition to Round 1: Encrypt Bid
	Fixes for Minor Issues in M+1st Price Auctions
	Round 2: Compute Outcome
	Round 3: Decrypt Outcome
	Epilogue: Outcome Determination

	M+1st Price Auction Protocol with Public Outcome
	Round 2: Compute Outcome
	Round 3: Decrypt Outcome
	Epilogue: Outcome Determination

	Architecture
	Sellers and Bidders
	Platform
	GNUnet Auction
	GNUnet Auction Service
	The gnunet-auction-create Command
	The gnunet-auction-info Command
	The gnunet-auction-join Command
	A Runtime Estimation Script
	libbrandt

	GNU Taler as an Escrowed Payment Service

	libbrandt
	Requirements
	Handling Corner Cases
	No Bidders
	M+1st Price Auctions with fewer Bidders than Items to Sell
	First Price Auctions with only one Bidder

	On the Synchronous Protocol Structure
	Application Programming Interface
	BRANDT_CbResult
	BRANDT_CbDeliver
	BRANDT_CbStart
	BRANDT_new
	BRANDT_join
	BRANDT_parse_desc
	BRANDT_got_message

	Implementation Details and Status

	Related Work
	Brandt's Work
	Wassenberg Diploma Thesis and Implementation
	Security Analysis
	Stanford Implementation

	Other Auction Systems
	Secure Vickrey Auctions without Threshold Trust
	t-Private and t-Secure Auctions
	A Sealed-Bid Knapsack Auction

	Experimental Results
	Algorithm Execution Time Test Setup
	Notes on Measuring the Wassenberg Implementation

	First Price Auctions Results
	Private Outcome
	Public Outcome

	Multi-Unit Formats
	Private Outcome
	Public Outcome
	Wassenberg's Heuristic for Tie Breaking
	libbrandt with a Reasonable Price Pool Size

	Bandwidth Usage

	Discussion and Conclusion
	Improvements
	Usability
	Open Questions
	Future Work

	Appendix
	Measurement RSA Parameters
	Raw Measurement Data

	Bibliography

