
1 Parameters of the Encryption Scheme

• There are n authorities, A1 . . . An.

• Let k be the minimum number of authorities required to jointly decrypt
a cyphertext.

How do we show
that’s feasable?
Prime number
theorem?

• Let p and q be large primes, where p = 2q + 1 (q is commonly called a
Sophie Germain prime, p a safe prime). A pair of such numbers can be
found by generating a random prime q and checking if 2q+1 is also prime.

Write down
proof? Usually
just stated as a
fact in literature

• Let g be a generator of Gq, where Gq is the unique subgroup of Z∗p of order
q. The Decisional Diffie–Hellman assumption is believed to hold for Gq,
as Gq is the subgroup of quadratic residues in Z∗q . [?]

• The generator g can be computed as follows [?, Section 4.6]:

1. Repeatedly choose an α ∈ Z∗p at random, until it satisfies αq 6= 1 and
α2 6= 1, that is, the order of α is neither q, 2 nor 1. Then α is a
generator of Z∗p.
Proof: By Lagrange’s Theorem, Z∗p has exactly two proper non-trivial
subgroups of order p and 2, respectively. As α is neither of order p,
2 nor 1, it can only be a generator of Z∗p.

2. Compute g = αk, where k = (p− 1)/q. Then g is a generator of Gq.

Proof: Let ord(·) be the order a group element. As k divides ord(α),
it follows from a standard result of group theory [?, Proposition 4.5]
that ord(αk) = ord(α)/k = q.

2 Key Distribution

• Let x :=
∑n
i=1 xi be the private key. Note that no single authority should

be able to know x.

• Every authority Ai chooses a random xi ∈ Zq, and publishes hi := gxi .

• Let h := gx is the public key, which can be computed as h =
∏n
i=1 hi.

• Every authority Ai generates the random polynomial

fi(z) =

k−1∑
l=0

f li,l, (1)

with fi(z) ∈ Zq[z], where fi,0 = 0 and fi,l ∈ Zq is chosen randomly for
l 6= 0. It follows by definition that fi(0) = xi.

• Every authority Ai publishes (Fi,l)l=1,...,k−1, where

Fi,l = gfi,l (2)

is the commitment of authority Aj to the value of fi,l.
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• Now every authority Ai secretly sends

si,j = fi(j) (3)

to each authority Aj .
Do we need to
prove the consis-
tency? Doesn’t it
just follow from
the fact that it
is the same com-
putation, only in
the exponent of
g?

• Ai verifies the share received from Aj is consistent with the previously
published values by verifying that

gsi,j =

k−1∏
l=0

F
(il)
jl . (4)

This equation follows directly from raising g to both sides of equation (3).
I think it should
be illustrated why
this works / what
happens with the
polynomials

• Ai computes his share of x as si =
∑n
j=1 sji.

• Each authority Ai publishes

σi := gsi (5)

as a commitment to the received share.

3 Cooperative Decryption

• The full private key can be restored by a set at least k cooperating au-
thorities Λ ⊆ {A1, . . . , An}, k ≤ |Λ|, for example by using Lagrange inter-
polation:

x =
∑
Aj∈Λ

sjλj,Λ (6)

where the Lagrange coefficients are

λj,Λ :=
∏
Al∈Λ
l 6=j

l

l − k
. (7)

Note that this formula is only used for the derivation of the cooperative
encryption process, and authorities never actually should cooperate to
restore the public key x.

• To decrypt an ElGamal encryption (c1, c2) = (gy, hym) of the message
m ∈ Gq, each authority Aj broadcasts wj = c

sj
1 .

• To prove that an authority has computed wj correctly, it has to prove in
zero-knowledge that

sj = logg σj = logc1 wj ,

in words that wj has actually been computed with the authority’s share.
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• By raising c1 to both sides of equation (6) and then dividing c2 by both
sides, we get

m = c2/
∏
Aj∈Λ

w
λj,Λ

j .

4 Zero-knowledge-proof for discrete logarithms

• The Prover wants to prove

sj = logg σj = logc1 wj

without revealing the value of sj .

• The Prover sends (gβ , cβ1 ), with β ∈R Zq

• The Verifier sends c ∈R Zq

• The Prover sends r = β + sic

• The Verifier checks the two equalities

gr = gβσc

cr1 = cβ1w
c
i

This proof utilizes the fact that it is hard to compute gab from g and a without
having b.

5 Casting a vote

• A vote has the form (gy, hyGb), where G is a generator of Gq (one could
just use G = q), b ∈ {−1, 1} denotes the value of the vote, and y ∈R Zq.

6 Verifying a vote

The details on how this protocol can be constructed from the discrete log pro-
tocol can be found in [CDS94].
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Voter Verifier

v = 1 v = −1
α,w, r1, d1 ∈R Zq α,w, r2, d2 ∈R Zq

x← gα x← gα

y ← hαG y ← hα/G
a1 ← gr1xd1 y ← gw

b1 ← hr1(yG)d1 b1 ← gw

a2 ← gw y ← gr2xd2

b2 ← hw b2 ← hr2(y/G)d2
x,y,a1,b1,a2,b2−−−−−−−−−→

d2 ← c− d1 d1 ← c− d2
c←− c ∈R Zq

r2 ← w − αd2 r1 ← w − αd1
d1,d2,r1,r2−−−−−−−→ c

?
= d1 + d2

a1
?
= gr1xd1

b1
?
= hr1(yG)d1

a2
?
= gr2xd2

b2
?
= hr2(y/G)d2
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7 Counting votes

• Let (xi, yi) be the vote casted by Voter Vi

• (X,Y ) = (
∏l
i=1 xi,

∏l
i=1 yi) is computed by all authorities.

• (X,Y ) is decrypted cooperatively, obtaining GT , where T is the outcome
of the election.

• Let l be the number of votes. As T ∈ {−t, ..., t} holds, the number of
votes can be found by brute-force.

8 Notes on Notation

[CGS97] [Ped91] this document source code
s x x BigInteger x
– xi xi BigInteger[] xParts; xParts[i]

A ElGamal

To encrypt a cyphertext m ∈ Gq, the sender chooses a random y ∈R Zq and
sends the pair (c1, c2) = (gy,mhy). The decrypt the cyphertext, the receiver
recovers the plaintext as c2/c

x
1 = (mhy)/gyx = (mhy)/hy = m.
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