1 Parameters of the Encryption Scheme

- There are n authorities, $A_{1} \ldots A_{n}$.
- Let k be the minimum number of authorities required to jointly decrypt a cyphertext.
- Let p and q be large primes, where $p=2 q+1$ (q is commonly called a Sophie Germain prime, p a safe prime). A pair of such numbers can be found by generating a random prime q and checking if $2 q+1$ is also prime.
- Let g be a generator of G_{q}, where G_{q} is the unique subgroup of \mathbb{Z}_{p}^{*} of order q. The Decisional Diffie-Hellman assumption is believed to hold for G_{q}, as G_{q} is the subgroup of quadratic residues in \mathbb{Z}_{q}^{*}. [?]
- The generator g can be computed as follows [?, Section 4.6]:

1. Repeatedly choose an $\alpha \in \mathbb{Z}_{p}^{*}$ at random, until it satisfies $\alpha^{q} \neq 1$ and $\alpha^{2} \neq 1$, that is, the order of α is neither $q, 2$ nor 1 . Then α is a generator of \mathbb{Z}_{p}^{*}.
Proof: By Lagrange's Theorem, \mathbb{Z}_{p}^{*} has exactly two proper non-trivial subgroups of order p and 2 , respectively. As α is neither of order p, 2 nor 1 , it can only be a generator of \mathbb{Z}_{p}^{*}.
2. Compute $g=\alpha^{k}$, where $k=(p-1) / q$. Then g is a generator of G_{q}. Proof: Let $\operatorname{ord}(\cdot)$ be the order a group element. As k divides $\operatorname{ord}(\alpha)$, it follows from a standard result of group theory [?, Proposition 4.5] that $\operatorname{ord}\left(\alpha^{k}\right)=\operatorname{ord}(\alpha) / k=q$.

2 Key Distribution

- Let $x:=\sum_{i=1}^{n} x_{i}$ be the private key. Note that no single authority should be able to know x.
- Every authority A_{i} chooses a random $x_{i} \in \mathbb{Z}_{q}$, and publishes $h_{i}:=g^{x_{i}}$.
- Let $h:=g^{x}$ is the public key, which can be computed as $h=\prod_{i=1}^{n} h_{i}$.
- Every authority A_{i} generates the random polynomial

$$
\begin{equation*}
f_{i}(z)=\sum_{l=0}^{k-1} f_{i, l}^{l} \tag{1}
\end{equation*}
$$

with $f_{i}(z) \in \mathbb{Z}_{q}[z]$, where $f_{i, 0}=0$ and $f_{i, l} \in \mathbb{Z}_{q}$ is chosen randomly for $l \neq 0$. It follows by definition that $f_{i}(0)=x_{i}$.

- Every authority A_{i} publishes $\left(F_{i, l}\right)_{l=1, \ldots, k-1}$, where

$$
\begin{equation*}
F_{i, l}=g^{f_{i, l}} \tag{2}
\end{equation*}
$$

is the commitment of authority A_{j} to the value of $f_{i, l}$.

- Now every authority A_{i} secretly sends

$$
\begin{equation*}
s_{i, j}=f_{i}(j) \tag{3}
\end{equation*}
$$

to each authority A_{j}.

- A_{i} verifies the share received from A_{j} is consistent with the previously published values by verifying that

$$
\begin{equation*}
g^{s_{i, j}}=\prod_{l=0}^{k-1} F_{j l}^{\left(i^{l}\right)} \tag{4}
\end{equation*}
$$

This equation follows directly from raising g to both sides of equation (3).

- A_{i} computes his share of x as $s_{i}=\sum_{j=1}^{n} s_{j i}$.
- Each authority A_{i} publishes

$$
\begin{equation*}
\sigma_{i}:=g^{s_{i}} \tag{5}
\end{equation*}
$$

as a commitment to the received share.

3 Cooperative Decryption

- The full private key can be restored by a set at least k cooperating authorities $\Lambda \subseteq\left\{A_{1}, \ldots, A_{n}\right\}, k \leq|\Lambda|$, for example by using Lagrange interpolation:

$$
\begin{equation*}
x=\sum_{A_{j} \in \Lambda} s_{j} \lambda_{j, \Lambda} \tag{6}
\end{equation*}
$$

where the Lagrange coefficients are

$$
\begin{equation*}
\lambda_{j, \Lambda}:=\prod_{\substack{A_{l} \in \Lambda \\ l \neq j}} \frac{l}{l-k} \tag{7}
\end{equation*}
$$

Note that this formula is only used for the derivation of the cooperative encryption process, and authorities never actually should cooperate to restore the public key x.

- To decrypt an ElGamal encryption $\left(c_{1}, c_{2}\right)=\left(g^{y}, h^{y} m\right)$ of the message $m \in G_{q}$, each authority A_{j} broadcasts $w_{j}=c_{1}^{s_{j}}$.
- To prove that an authority has computed w_{j} correctly, it has to prove in zero-knowledge that

$$
s_{j}=\log _{g} \sigma_{j}=\log _{c_{1}} w_{j}
$$

in words that w_{j} has actually been computed with the authority's share.

- By raising c_{1} to both sides of equation (6) and then dividing c_{2} by both sides, we get

$$
m=c_{2} / \prod_{A_{j} \in \Lambda} w_{j}^{\lambda_{j, \Lambda}}
$$

4 Zero-knowledge-proof for discrete logarithms

- The Prover wants to prove

$$
s_{j}=\log _{g} \sigma_{j}=\log _{c_{1}} w_{j}
$$

without revealing the value of s_{j}.

- The Prover sends $\left(g^{\beta}, c_{1}^{\beta}\right)$, with $\beta \in_{R} Z_{q}$
- The Verifier sends $c \in_{R} Z_{q}$
- The Prover sends $r=\beta+s_{i} c$
- The Verifier checks the two equalities

$$
\begin{aligned}
& g^{r}=g^{\beta} \sigma^{c} \\
& c_{1}^{r}=c_{1}^{\beta} w_{i}^{c}
\end{aligned}
$$

This proof utilizes the fact that it is hard to compute $g^{a b}$ from g and a without having b.

5 Casting a vote

- A vote has the form $\left(g^{y}, h^{y} G^{b}\right)$, where G is a generator of G_{q} (one could just use $G=q), b \in\{-1,1\}$ denotes the value of the vote, and $y \in_{R} Z_{q}$.

6 Verifying a vote

The details on how this protocol can be constructed from the discrete log protocol can be found in [CDS94].

Voter			Verifier
$v=1$	$v=-1$		
$\alpha, w, r_{1}, d_{1} \in_{R} Z_{q}$	$\alpha, w, r_{2}, d_{2} \in_{R} Z_{q}$		
$x \leftarrow g^{\alpha}$	$x \leftarrow g^{\alpha}$		
$y \leftarrow h^{\alpha} G$	$y \leftarrow h^{\alpha} / G$		
$a_{1} \leftarrow g^{r_{1}} x^{d_{1}}$	$y \leftarrow g^{w}$		
$b_{1} \leftarrow h^{r_{1}}(y G)^{d_{1}}$	$b_{1} \leftarrow g^{w}$		
$a_{2} \leftarrow g^{w}$	$y \leftarrow g^{r_{2}} x^{d_{2}}$		
$b_{2} \leftarrow h^{w}$	$b_{2} \leftarrow h^{r_{2}}(y / G)^{d_{2}}$	$\xrightarrow{x, y, a_{1}, b_{1}, a_{2}, b_{2}}$	
$d_{2} \leftarrow c-d_{1}$	$d_{1} \leftarrow c-d_{2}$	$\stackrel{c}{\leftarrow}$	$c \in_{R} Z_{q}$
$r_{2} \leftarrow w-\alpha d_{2}$	$r_{1} \leftarrow w-\alpha d_{1}$	$\xrightarrow{d_{1}, d_{2}, r_{1}, r_{2}}$	$\begin{aligned} & c \stackrel{?}{=} d_{1}+d_{2} \\ & a_{1} \stackrel{?}{=} q^{r 1} x^{d_{1}} \end{aligned}$
			$b_{1} \stackrel{?}{=} h^{r 1}(y G)^{d_{1}}$
			$a_{2} \stackrel{?}{=} g^{r 2} x^{d_{2}}$
			$b_{2} \stackrel{?}{=} h^{r 2}(y / G)^{d_{2}}$

7 Counting votes

- Let $\left(x_{i}, y_{i}\right)$ be the vote casted by Voter V_{i}
- $(X, Y)=\left(\prod_{i=1}^{l} x_{i}, \prod_{i=1}^{l} y_{i}\right)$ is computed by all authorities.
- (X, Y) is decrypted cooperatively, obtaining G^{T}, where T is the outcome of the election.
- Let l be the number of votes. As $T \in\{-t, \ldots, t\}$ holds, the number of votes can be found by brute-force.

8 Notes on Notation

[CGS97]	[Ped91]	this document	source code
s	x	x	BigInteger x
-	x_{i}	x_{i}	BigInteger[] xParts; $\mathrm{xParts[i]}$

A ElGamal

To encrypt a cyphertext $m \in G_{q}$, the sender chooses a random $y \in_{R} Z_{q}$ and sends the pair $\left(c_{1}, c_{2}\right)=\left(g^{y}, m h^{y}\right)$. The decrypt the cyphertext, the receiver recovers the plaintext as $c_{2} / c_{1}^{x}=\left(m h^{y}\right) / g^{y x}=\left(m h^{y}\right) / h^{y}=m$.

References

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols. In Proceedings of the 14 th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO '94, pages 174-187, London, UK, UK, 1994. Springer-Verlag.
[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient multi-authority election scheme. In Proceedings of the 16 th annual international conference on Theory and application of cryptographic techniques, EUROCRYPT'97, pages 103-118, Berlin, Heidelberg, 1997. Springer-Verlag.
[Ped91] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. In Proceedings of the 10th annual international conference on Theory and application of cryptographic techniques, EUROCRYPT'91, pages 522-526, Berlin, Heidelberg, 1991. Springer-Verlag.

