aboutsummaryrefslogtreecommitdiff
path: root/src/util/crypto_hash.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/util/crypto_hash.c')
-rw-r--r--src/util/crypto_hash.c791
1 files changed, 791 insertions, 0 deletions
diff --git a/src/util/crypto_hash.c b/src/util/crypto_hash.c
new file mode 100644
index 000000000..139496eac
--- /dev/null
+++ b/src/util/crypto_hash.c
@@ -0,0 +1,791 @@
1/*
2 This file is part of GNUnet.
3 (C) 2001, 2002, 2003, 2004, 2005, 2006, 2009 Christian Grothoff (and other contributing authors)
4
5 GNUnet is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published
7 by the Free Software Foundation; either version 2, or (at your
8 option) any later version.
9
10 GNUnet is distributed in the hope that it will be useful, but
11 WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with GNUnet; see the file COPYING. If not, write to the
17 Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 Boston, MA 02111-1307, USA.
19
20 SHA-512 code by Jean-Luc Cooke <jlcooke@certainkey.com>
21
22 Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
23 Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
24 Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
25*/
26
27/**
28 * @file util/crypto_hash.c
29 * @brief SHA-512 GNUNET_CRYPTO_hash related functions
30 * @author Christian Grothoff
31 */
32
33#include "platform.h"
34#include "gnunet_common.h"
35#include "gnunet_crypto_lib.h"
36#include "gnunet_disk_lib.h"
37
38#define SHA512_DIGEST_SIZE 64
39#define SHA512_HMAC_BLOCK_SIZE 128
40
41struct sha512_ctx
42{
43 unsigned long long state[8];
44 unsigned int count[4];
45 unsigned char buf[128];
46};
47
48static unsigned long long
49Ch (unsigned long long x, unsigned long long y, unsigned long long z)
50{
51 return z ^ (x & (y ^ z));
52}
53
54static unsigned long long
55Maj (unsigned long long x, unsigned long long y, unsigned long long z)
56{
57 return (x & y) | (z & (x | y));
58}
59
60static unsigned long long
61RORu64 (unsigned long long x, unsigned long long y)
62{
63 return (x >> y) | (x << (64 - y));
64}
65
66const unsigned long long sha512_K[80] = {
67 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
68 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
69 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
70 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
71 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
72 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
73 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
74 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
75 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
76 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
77 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
78 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
79 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
80 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
81 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
82 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
83 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
84 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
85 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
86 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
87 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
88 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
89 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
90 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
91 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
92 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
93 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
94};
95
96#define e0(x) (RORu64(x,28) ^ RORu64(x,34) ^ RORu64(x,39))
97#define e1(x) (RORu64(x,14) ^ RORu64(x,18) ^ RORu64(x,41))
98#define s0(x) (RORu64(x, 1) ^ RORu64(x, 8) ^ (x >> 7))
99#define s1(x) (RORu64(x,19) ^ RORu64(x,61) ^ (x >> 6))
100
101/* H* initial state for SHA-512 */
102#define H0 0x6a09e667f3bcc908ULL
103#define H1 0xbb67ae8584caa73bULL
104#define H2 0x3c6ef372fe94f82bULL
105#define H3 0xa54ff53a5f1d36f1ULL
106#define H4 0x510e527fade682d1ULL
107#define H5 0x9b05688c2b3e6c1fULL
108#define H6 0x1f83d9abfb41bd6bULL
109#define H7 0x5be0cd19137e2179ULL
110
111/* H'* initial state for SHA-384 */
112#define HP0 0xcbbb9d5dc1059ed8ULL
113#define HP1 0x629a292a367cd507ULL
114#define HP2 0x9159015a3070dd17ULL
115#define HP3 0x152fecd8f70e5939ULL
116#define HP4 0x67332667ffc00b31ULL
117#define HP5 0x8eb44a8768581511ULL
118#define HP6 0xdb0c2e0d64f98fa7ULL
119#define HP7 0x47b5481dbefa4fa4ULL
120
121#define LOAD_OP(t1, I, W, input) \
122 t1 = input[(8*I) ] & 0xff;\
123 t1 <<= 8;\
124 t1 |= input[(8*I)+1] & 0xff;\
125 t1 <<= 8;\
126 t1 |= input[(8*I)+2] & 0xff;\
127 t1 <<= 8;\
128 t1 |= input[(8*I)+3] & 0xff;\
129 t1 <<= 8;\
130 t1 |= input[(8*I)+4] & 0xff;\
131 t1 <<= 8;\
132 t1 |= input[(8*I)+5] & 0xff;\
133 t1 <<= 8;\
134 t1 |= input[(8*I)+6] & 0xff;\
135 t1 <<= 8;\
136 t1 |= input[(8*I)+7] & 0xff;\
137 W[I] = t1;
138
139
140#define BLEND_OP(I, W) \
141 W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16];
142
143static void
144sha512_transform (unsigned long long *state, const unsigned char *input)
145{
146 unsigned long long a, b, c, d, e, f, g, h, t1, t2;
147 unsigned long long W[80];
148 unsigned long long t0;
149 int i;
150
151 /* load the input */
152 for (i = 0; i < 16; i++)
153 {
154 LOAD_OP (t0, i, W, input);
155 }
156
157 for (i = 16; i < 80; i++)
158 {
159 BLEND_OP (i, W);
160 }
161
162 /* load the state into our registers */
163 a = state[0];
164 b = state[1];
165 c = state[2];
166 d = state[3];
167 e = state[4];
168 f = state[5];
169 g = state[6];
170 h = state[7];
171
172 /* now iterate */
173 for (i = 0; i < 80; i += 8)
174 {
175 t1 = h + e1 (e) + Ch (e, f, g) + sha512_K[i] + W[i];
176 t2 = e0 (a) + Maj (a, b, c);
177 d += t1;
178 h = t1 + t2;
179 t1 = g + e1 (d) + Ch (d, e, f) + sha512_K[i + 1] + W[i + 1];
180 t2 = e0 (h) + Maj (h, a, b);
181 c += t1;
182 g = t1 + t2;
183 t1 = f + e1 (c) + Ch (c, d, e) + sha512_K[i + 2] + W[i + 2];
184 t2 = e0 (g) + Maj (g, h, a);
185 b += t1;
186 f = t1 + t2;
187 t1 = e + e1 (b) + Ch (b, c, d) + sha512_K[i + 3] + W[i + 3];
188 t2 = e0 (f) + Maj (f, g, h);
189 a += t1;
190 e = t1 + t2;
191 t1 = d + e1 (a) + Ch (a, b, c) + sha512_K[i + 4] + W[i + 4];
192 t2 = e0 (e) + Maj (e, f, g);
193 h += t1;
194 d = t1 + t2;
195 t1 = c + e1 (h) + Ch (h, a, b) + sha512_K[i + 5] + W[i + 5];
196 t2 = e0 (d) + Maj (d, e, f);
197 g += t1;
198 c = t1 + t2;
199 t1 = b + e1 (g) + Ch (g, h, a) + sha512_K[i + 6] + W[i + 6];
200 t2 = e0 (c) + Maj (c, d, e);
201 f += t1;
202 b = t1 + t2;
203 t1 = a + e1 (f) + Ch (f, g, h) + sha512_K[i + 7] + W[i + 7];
204 t2 = e0 (b) + Maj (b, c, d);
205 e += t1;
206 a = t1 + t2;
207 }
208
209 state[0] += a;
210 state[1] += b;
211 state[2] += c;
212 state[3] += d;
213 state[4] += e;
214 state[5] += f;
215 state[6] += g;
216 state[7] += h;
217
218 /* erase our data */
219 a = b = c = d = e = f = g = h = t1 = t2 = 0;
220 memset (W, 0, 80 * sizeof (unsigned long long));
221}
222
223static void
224sha512_init (struct sha512_ctx *sctx)
225{
226 sctx->state[0] = H0;
227 sctx->state[1] = H1;
228 sctx->state[2] = H2;
229 sctx->state[3] = H3;
230 sctx->state[4] = H4;
231 sctx->state[5] = H5;
232 sctx->state[6] = H6;
233 sctx->state[7] = H7;
234 sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0;
235 memset (sctx->buf, 0, sizeof (sctx->buf));
236}
237
238static void
239sha512_update (struct sha512_ctx *sctx,
240 const unsigned char *data, unsigned int len)
241{
242 unsigned int i, index, part_len;
243
244 /* Compute number of bytes mod 128 */
245 index = (unsigned int) ((sctx->count[0] >> 3) & 0x7F);
246
247 /* Update number of bits */
248 if ((sctx->count[0] += (len << 3)) < (len << 3))
249 {
250 if ((sctx->count[1] += 1) < 1)
251 if ((sctx->count[2] += 1) < 1)
252 sctx->count[3]++;
253 sctx->count[1] += (len >> 29);
254 }
255
256 part_len = 128 - index;
257
258 /* Transform as many times as possible. */
259 if (len >= part_len)
260 {
261 memcpy (&sctx->buf[index], data, part_len);
262 sha512_transform (sctx->state, sctx->buf);
263
264 for (i = part_len; i + 127 < len; i += 128)
265 sha512_transform (sctx->state, &data[i]);
266
267 index = 0;
268 }
269 else
270 {
271 i = 0;
272 }
273
274 /* Buffer remaining input */
275 memcpy (&sctx->buf[index], &data[i], len - i);
276}
277
278static void
279sha512_final (struct sha512_ctx *sctx, unsigned char *hash)
280{
281 static unsigned char padding[128] = { 0x80, };
282
283 unsigned int t;
284 unsigned long long t2;
285 unsigned char bits[128];
286 unsigned int index, pad_len;
287 int i, j;
288
289 index = pad_len = t = i = j = 0;
290 t2 = 0;
291
292 /* Save number of bits */
293 t = sctx->count[0];
294 bits[15] = t;
295 t >>= 8;
296 bits[14] = t;
297 t >>= 8;
298 bits[13] = t;
299 t >>= 8;
300 bits[12] = t;
301 t = sctx->count[1];
302 bits[11] = t;
303 t >>= 8;
304 bits[10] = t;
305 t >>= 8;
306 bits[9] = t;
307 t >>= 8;
308 bits[8] = t;
309 t = sctx->count[2];
310 bits[7] = t;
311 t >>= 8;
312 bits[6] = t;
313 t >>= 8;
314 bits[5] = t;
315 t >>= 8;
316 bits[4] = t;
317 t = sctx->count[3];
318 bits[3] = t;
319 t >>= 8;
320 bits[2] = t;
321 t >>= 8;
322 bits[1] = t;
323 t >>= 8;
324 bits[0] = t;
325
326 /* Pad out to 112 mod 128. */
327 index = (sctx->count[0] >> 3) & 0x7f;
328 pad_len = (index < 112) ? (112 - index) : ((128 + 112) - index);
329 sha512_update (sctx, padding, pad_len);
330
331 /* Append length (before padding) */
332 sha512_update (sctx, bits, 16);
333
334 /* Store state in digest */
335 for (i = j = 0; i < 8; i++, j += 8)
336 {
337 t2 = sctx->state[i];
338 hash[j + 7] = (char) t2 & 0xff;
339 t2 >>= 8;
340 hash[j + 6] = (char) t2 & 0xff;
341 t2 >>= 8;
342 hash[j + 5] = (char) t2 & 0xff;
343 t2 >>= 8;
344 hash[j + 4] = (char) t2 & 0xff;
345 t2 >>= 8;
346 hash[j + 3] = (char) t2 & 0xff;
347 t2 >>= 8;
348 hash[j + 2] = (char) t2 & 0xff;
349 t2 >>= 8;
350 hash[j + 1] = (char) t2 & 0xff;
351 t2 >>= 8;
352 hash[j] = (char) t2 & 0xff;
353 }
354
355 /* Zeroize sensitive information. */
356 memset (sctx, 0, sizeof (struct sha512_ctx));
357}
358
359/**
360 * Hash block of given size.
361 *
362 * @param block the data to GNUNET_CRYPTO_hash, length is given as a second argument
363 * @param size the length of the data to GNUNET_CRYPTO_hash
364 * @param ret pointer to where to write the hashcode
365 */
366void
367GNUNET_CRYPTO_hash (const void *block, unsigned int size,
368 GNUNET_HashCode * ret)
369{
370 struct sha512_ctx ctx;
371
372 sha512_init (&ctx);
373 sha512_update (&ctx, block, size);
374 sha512_final (&ctx, (unsigned char *) ret);
375}
376
377
378/**
379 * Context used when hashing a file.
380 */
381struct FileHashContext
382{
383
384 /**
385 * Function to call upon completion.
386 */
387 GNUNET_CRYPTO_HashCompletedCallback callback;
388
389 /**
390 * Closure for callback.
391 */
392 void *callback_cls;
393
394 /**
395 * IO buffer.
396 */
397 unsigned char *buffer;
398
399 /**
400 * Name of the file we are hashing.
401 */
402 char *filename;
403
404 /**
405 * Cummulated hash.
406 */
407 struct sha512_ctx hctx;
408
409 /**
410 * Blocksize.
411 */
412 size_t bsize;
413
414 /**
415 * Size of the file.
416 */
417 unsigned long long fsize;
418
419 /**
420 * Current offset.
421 */
422 unsigned long long offset;
423
424 /**
425 * Run on shutdown?
426 */
427 int run_on_shutdown;
428
429 /**
430 * File descriptor.
431 */
432 int fd;
433
434};
435
436
437/**
438 * Report result of hash computation to callback
439 * and free associated resources.
440 */
441static void
442file_hash_finish (struct FileHashContext *fhc, const GNUNET_HashCode * res)
443{
444 fhc->callback (fhc->callback_cls, res);
445 GNUNET_free (fhc->filename);
446 if (fhc->fd != -1)
447 GNUNET_break (0 == CLOSE (fhc->fd));
448 GNUNET_free (fhc); /* also frees fhc->buffer */
449}
450
451
452/**
453 * File hashing task.
454 *
455 * @param cls closure
456 * @param tc context
457 */
458static void
459file_hash_task (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc)
460{
461 struct FileHashContext *fhc = cls;
462 GNUNET_HashCode res;
463 size_t delta;
464
465 GNUNET_assert (fhc->offset < fhc->fsize);
466 delta = fhc->bsize;
467 if (fhc->fsize - fhc->offset < delta)
468 delta = fhc->fsize - fhc->offset;
469 if (delta != READ (fhc->fd, fhc->buffer, delta))
470 {
471 GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
472 "read", fhc->filename);
473 file_hash_finish (fhc, NULL);
474 return;
475 }
476 sha512_update (&fhc->hctx, fhc->buffer, delta);
477 fhc->offset += delta;
478 if (fhc->offset == fhc->fsize)
479 {
480 sha512_final (&fhc->hctx, (unsigned char *) &res);
481 file_hash_finish (fhc, &res);
482 return;
483 }
484 GNUNET_SCHEDULER_add_after (tc->sched,
485 fhc->run_on_shutdown,
486 GNUNET_SCHEDULER_PRIORITY_KEEP,
487 GNUNET_SCHEDULER_NO_PREREQUISITE_TASK,
488 &file_hash_task, fhc);
489}
490
491
492/**
493 * Compute the hash of an entire file.
494 *
495 * @param sched scheduler to use
496 * @param priority scheduling priority to use
497 * @param run_on_shutdown should we complete even on shutdown?
498 * @param filename name of file to hash
499 * @param blocksize number of bytes to process in one task
500 * @param callback function to call upon completion
501 * @param callback_cls closure for callback
502 */
503void
504GNUNET_CRYPTO_hash_file (struct GNUNET_SCHEDULER_Handle *sched,
505 enum GNUNET_SCHEDULER_Priority priority,
506 int run_on_shutdown,
507 const char *filename,
508 size_t blocksize,
509 GNUNET_CRYPTO_HashCompletedCallback callback,
510 void *callback_cls)
511{
512 struct FileHashContext *fhc;
513
514 GNUNET_assert (blocksize > 0);
515 fhc = GNUNET_malloc (sizeof (struct FileHashContext) + blocksize);
516 fhc->callback = callback;
517 fhc->callback_cls = callback_cls;
518 fhc->buffer = (unsigned char *) &fhc[1];
519 fhc->filename = GNUNET_strdup (filename);
520 fhc->fd = -1;
521 sha512_init (&fhc->hctx);
522 fhc->bsize = blocksize;
523 if (GNUNET_OK != GNUNET_DISK_file_size (filename, &fhc->fsize, GNUNET_NO))
524 {
525 file_hash_finish (fhc, NULL);
526 return;
527 }
528 fhc->run_on_shutdown = run_on_shutdown;
529 fhc->fd = GNUNET_DISK_file_open (filename, O_RDONLY | O_LARGEFILE);
530 if (fhc->fd == -1)
531 {
532 file_hash_finish (fhc, NULL);
533 return;
534 }
535 GNUNET_SCHEDULER_add_after (sched,
536 run_on_shutdown,
537 priority,
538 GNUNET_SCHEDULER_NO_PREREQUISITE_TASK,
539 &file_hash_task, fhc);
540}
541
542
543/* ***************** binary-ASCII encoding *************** */
544
545/**
546 * 32 characters for encoding (GNUNET_CRYPTO_hash => 32 characters)
547 */
548static char *encTable__ = "0123456789ABCDEFGHIJKLMNOPQRSTUV";
549
550static unsigned int
551getValue__ (unsigned char a)
552{
553 if ((a >= '0') && (a <= '9'))
554 return a - '0';
555 if ((a >= 'A') && (a <= 'V'))
556 return (a - 'A' + 10);
557 return -1;
558}
559
560/**
561 * Convert GNUNET_CRYPTO_hash to ASCII encoding. The ASCII encoding is rather
562 * GNUnet specific. It was chosen such that it only uses characters
563 * in [0-9A-V], can be produced without complex arithmetics and uses a
564 * small number of characters. The GNUnet encoding uses 102
565 * characters plus a null terminator.
566 *
567 * @param block the GNUNET_CRYPTO_hash code
568 * @param result where to store the encoding (struct GNUNET_CRYPTO_HashAsciiEncoded can be
569 * safely cast to char*, a '\0' termination is set).
570 */
571void
572GNUNET_CRYPTO_hash_to_enc (const GNUNET_HashCode * block,
573 struct GNUNET_CRYPTO_HashAsciiEncoded *result)
574{
575 unsigned int wpos;
576 unsigned int rpos;
577 unsigned int bits;
578 unsigned int vbit;
579
580 GNUNET_assert (block != NULL);
581 GNUNET_assert (result != NULL);
582 vbit = 0;
583 wpos = 0;
584 rpos = 0;
585 bits = 0;
586 while ((rpos < sizeof (GNUNET_HashCode)) || (vbit > 0))
587 {
588 if ((rpos < sizeof (GNUNET_HashCode)) && (vbit < 5))
589 {
590 bits = (bits << 8) | ((unsigned char *) block)[rpos++]; /* eat 8 more bits */
591 vbit += 8;
592 }
593 if (vbit < 5)
594 {
595 bits <<= (5 - vbit); /* zero-padding */
596 GNUNET_assert (vbit == 2); /* padding by 3: 512+3 mod 5 == 0 */
597 vbit = 5;
598 }
599 GNUNET_assert (wpos <
600 sizeof (struct GNUNET_CRYPTO_HashAsciiEncoded) - 1);
601 result->encoding[wpos++] = encTable__[(bits >> (vbit - 5)) & 31];
602 vbit -= 5;
603 }
604 GNUNET_assert (wpos == sizeof (struct GNUNET_CRYPTO_HashAsciiEncoded) - 1);
605 GNUNET_assert (vbit == 0);
606 result->encoding[wpos] = '\0';
607}
608
609/**
610 * Convert ASCII encoding back to GNUNET_CRYPTO_hash
611 *
612 * @param enc the encoding
613 * @param result where to store the GNUNET_CRYPTO_hash code
614 * @return GNUNET_OK on success, GNUNET_SYSERR if result has the wrong encoding
615 */
616int
617GNUNET_CRYPTO_hash_from_string (const char *enc, GNUNET_HashCode * result)
618{
619 unsigned int rpos;
620 unsigned int wpos;
621 unsigned int bits;
622 unsigned int vbit;
623
624 if (strlen (enc) != sizeof (struct GNUNET_CRYPTO_HashAsciiEncoded) - 1)
625 return GNUNET_SYSERR;
626
627 vbit = 2; /* padding! */
628 wpos = sizeof (GNUNET_HashCode);
629 rpos = sizeof (struct GNUNET_CRYPTO_HashAsciiEncoded) - 1;
630 bits = getValue__ (enc[--rpos]) >> 3;
631 while (wpos > 0)
632 {
633 GNUNET_assert (rpos > 0);
634 bits = (getValue__ (enc[--rpos]) << vbit) | bits;
635 vbit += 5;
636 if (vbit >= 8)
637 {
638 ((unsigned char *) result)[--wpos] = (unsigned char) bits;
639 bits >>= 8;
640 vbit -= 8;
641 }
642 }
643 GNUNET_assert (rpos == 0);
644 GNUNET_assert (vbit == 0);
645 return GNUNET_OK;
646}
647
648/**
649 * Compute the distance between 2 hashcodes. The computation must be
650 * fast, not involve bits[0] or bits[4] (they're used elsewhere), and be
651 * somewhat consistent. And of course, the result should be a positive
652 * number.
653 *
654 * @returns a positive number which is a measure for
655 * hashcode proximity.
656 */
657unsigned int
658GNUNET_CRYPTO_hash_distance_u32 (const GNUNET_HashCode * a,
659 const GNUNET_HashCode * b)
660{
661 unsigned int x1 = (a->bits[1] - b->bits[1]) >> 16;
662 unsigned int x2 = (b->bits[1] - a->bits[1]) >> 16;
663 return (x1 * x2);
664}
665
666void
667GNUNET_CRYPTO_hash_create_random (GNUNET_HashCode * result)
668{
669 int i;
670 for (i = (sizeof (GNUNET_HashCode) / sizeof (unsigned int)) - 1; i >= 0;
671 i--)
672 result->bits[i] = rand ();
673}
674
675void
676GNUNET_CRYPTO_hash_difference (const GNUNET_HashCode * a,
677 const GNUNET_HashCode * b,
678 GNUNET_HashCode * result)
679{
680 int i;
681 for (i = (sizeof (GNUNET_HashCode) / sizeof (unsigned int)) - 1; i >= 0;
682 i--)
683 result->bits[i] = b->bits[i] - a->bits[i];
684}
685
686void
687GNUNET_CRYPTO_hash_sum (const GNUNET_HashCode * a,
688 const GNUNET_HashCode * delta,
689 GNUNET_HashCode * result)
690{
691 int i;
692 for (i = (sizeof (GNUNET_HashCode) / sizeof (unsigned int)) - 1; i >= 0;
693 i--)
694 result->bits[i] = delta->bits[i] + a->bits[i];
695}
696
697void
698GNUNET_CRYPTO_hash_xor (const GNUNET_HashCode * a,
699 const GNUNET_HashCode * b, GNUNET_HashCode * result)
700{
701 int i;
702 for (i = (sizeof (GNUNET_HashCode) / sizeof (unsigned int)) - 1; i >= 0;
703 i--)
704 result->bits[i] = a->bits[i] ^ b->bits[i];
705}
706
707/**
708 * Convert a hashcode into a key.
709 */
710void
711GNUNET_CRYPTO_hash_to_AES_key (const GNUNET_HashCode * hc,
712 struct GNUNET_CRYPTO_AesSessionKey *skey,
713 struct GNUNET_CRYPTO_AesInitializationVector
714 *iv)
715{
716 GNUNET_assert (sizeof (GNUNET_HashCode) >=
717 GNUNET_CRYPTO_AES_KEY_LENGTH +
718 sizeof (struct GNUNET_CRYPTO_AesInitializationVector));
719 memcpy (skey, hc, GNUNET_CRYPTO_AES_KEY_LENGTH);
720 skey->crc32 =
721 htonl (GNUNET_CRYPTO_crc32_n (skey, GNUNET_CRYPTO_AES_KEY_LENGTH));
722 memcpy (iv, &((char *) hc)[GNUNET_CRYPTO_AES_KEY_LENGTH],
723 sizeof (struct GNUNET_CRYPTO_AesInitializationVector));
724}
725
726/**
727 * Obtain a bit from a hashcode.
728 * @param code the GNUNET_CRYPTO_hash to index bit-wise
729 * @param bit index into the hashcode, [0...511]
730 * @return Bit \a bit from hashcode \a code, -1 for invalid index
731 */
732int
733GNUNET_CRYPTO_hash_get_bit (const GNUNET_HashCode * code, unsigned int bit)
734{
735 GNUNET_assert (bit < 8 * sizeof (GNUNET_HashCode));
736 return (((unsigned char *) code)[bit >> 3] & (1 << (bit & 7))) > 0;
737}
738
739/**
740 * Compare function for HashCodes, producing a total ordering
741 * of all hashcodes.
742 * @return 1 if h1 > h2, -1 if h1 < h2 and 0 if h1 == h2.
743 */
744int
745GNUNET_CRYPTO_hash_cmp (const GNUNET_HashCode * h1,
746 const GNUNET_HashCode * h2)
747{
748 unsigned int *i1;
749 unsigned int *i2;
750 int i;
751
752 i1 = (unsigned int *) h1;
753 i2 = (unsigned int *) h2;
754 for (i = (sizeof (GNUNET_HashCode) / sizeof (unsigned int)) - 1; i >= 0;
755 i--)
756 {
757 if (i1[i] > i2[i])
758 return 1;
759 if (i1[i] < i2[i])
760 return -1;
761 }
762 return 0;
763}
764
765/**
766 * Find out which of the two GNUNET_CRYPTO_hash codes is closer to target
767 * in the XOR metric (Kademlia).
768 * @return -1 if h1 is closer, 1 if h2 is closer and 0 if h1==h2.
769 */
770int
771GNUNET_CRYPTO_hash_xorcmp (const GNUNET_HashCode * h1,
772 const GNUNET_HashCode * h2,
773 const GNUNET_HashCode * target)
774{
775 int i;
776 unsigned int d1;
777 unsigned int d2;
778
779 for (i = sizeof (GNUNET_HashCode) / sizeof (unsigned int) - 1; i >= 0; i--)
780 {
781 d1 = ((unsigned int *) h1)[i] ^ ((unsigned int *) target)[i];
782 d2 = ((unsigned int *) h2)[i] ^ ((unsigned int *) target)[i];
783 if (d1 > d2)
784 return 1;
785 else if (d1 < d2)
786 return -1;
787 }
788 return 0;
789}
790
791/* end of hashing.c */