
A Tutorial for GNUnet 0.10.x (C version)
Christian Grotho� Bart Polot Matthias Wachs

July 28, 2014

This tutorials explains how to install GNUnet on a GNU/Linux system and gives an introduction how GNUnet can be used
to develop a Peer-to-Peer application. Detailed installation instructions for various operating systems and a detailed list of all
dependencies can found on our website at https://gnunet.org/installation.

Please read this tutorial carefully since every single step is important and do not hesitate to contact the

GNUnet team if you have any questions or problems! Check here how to contact the GNUnet team: https:

//gnunet.org/contact_information

1 Installing GNUnet

First of all you have to install a current version of GNUnet. You can download a tarball of a stable version from GNU FTP
mirrors or obtain the latest development version from our Subversion repository.

Most of the time you should prefer to download the stable version since with the latest development version things can
be broken, functionality can be changed or tests can fail. You should only use the development version if you know that you
require a certain feature or a certain issue has been �xed since the last release.

1.1 Obtaining a stable version

You can download the latest stable version of GNUnet from GNU FTP mirrors:

ftp://ftp.gnu.org/gnu/gnunet/gnunet-0.10.x.tar.gz

You should also download the signature �le and verify the integrity of the tarball.

ftp://ftp.gnu.org/gnu/gnunet/gnunet-0.10.x.tar.gz.sig

To verify the signature you should �rst import the GPG key used to sign the tarball

$ gpg --keyserver keys.gnupg.net --recv-keys 48426C7E

And use this key to verify the tarball's signature

$ gpg --verify gnunet-0.10.x.tar.gz.sig gnunet-0.10.x.tar.gz

After successfully verifying the integrity you can extract the tarball using

$ tar xvzf gnunet-0.10.x.tar.gz

$ mv gnunet-0.10.x gnunet # we will use the directory "gnunet" in the remainder of this document

$ cd gnunet

1.2 Installing Build Tool Chain and Dependencies

To successfully compile GNUnet you need the tools to build GNUnet and the required dependencies. Please have a look at
https://gnunet.org/dependencies for a list of required dependencies and https://gnunet.org/generic_installation for
speci�c instructions for your operating system.

Please check the notes at the end of the con�gure process about required dependencies.
For GNUNet bootstrapping support and the http(s) plugin you should install libcurl. For the �lesharing service you should

install at least one of the datastore backends mysql, sqlite or postgresql.

1

https://gnunet.org/installation
https://gnunet.org/contact_information
https://gnunet.org/contact_information
ftp://ftp.gnu.org/gnu/gnunet/gnunet-0.10.x.tar.gz
ftp://ftp.gnu.org/gnu/gnunet/gnunet-0.10.x.tar.gz.sig
https://gnunet.org/dependencies
https://gnunet.org/generic_installation

1.3 Obtaining the latest version from Subversion

The latest development version can obtained from our Subversion (svn) repository. To obtain the code you need Subversion
installed and checkout the repository using:

$ svn checkout https://gnunet.org/svn/gnunet

After cloning the repository you have to execute

$ cd gnunet

$./bootstrap

The remainder of this tutorial assumes that you have SVN HEAD checked out.

1.4 Compiling and Installing GNUnet

First, you need to install at least libgnupgerror version 1.121 and libgcrypt version 1.62.

$ wget ftp://ftp.gnupg.org/gcrypt/libgpg-error/libgpg-error-1.12.tar.bz2

$ tar xf libgpg-error-1.12.tar.bz2

$ cd libgpg-error-1.12

$./configure

$ sudo make install

$ cd ..

$ wget ftp://ftp.gnupg.org/gcrypt/libgcrypt/libgcrypt-1.6.0.tar.bz2

$ tar xf libgcrypt-1.6.0.tar.bz2

$ cd libgcrypt-1.6.0

$./configure

$ sudo make install

$ cd ..

Assuming all dependencies are installed, the following commands will compile and install GNUnet in your home directory.
You can specify the directory where GNUnet will be installed by changing the --prefix value when calling ./configure. If
you do not speci�y a pre�x, GNUnet is installed in the directory /usr/local. When developing new applications you may
want to enable verbose logging by adding --enable-logging=verbose:

$./configure --prefix=$PREFIX --enable-logging

$ make

$ make install

After installing GNUnet you have to add your GNUnet installation to your path environmental variable. In addition you
have to create the .gnunet directory in your home directory where GNUnet stores it's data and an empty GNUnet con�guration
�le:

$ export PATH=$PATH:$PREFIX/bin

$ echo export PATH=$PREFIX/bin:\\$PATH >> ~/.bashrc

$ mkdir ~/.gnunet/

$ touch ~/.gnunet/gnunet.conf

1ftp://ftp.gnupg.org/gcrypt/libgpg-error/libgpg-error-1.12.tar.bz2
2ftp://ftp.gnupg.org/gcrypt/libgcrypt/libgcrypt-1.6.0.tar.bz2

2

ftp://ftp.gnupg.org/gcrypt/libgpg-error/libgpg-error-1.12.tar.bz2
ftp://ftp.gnupg.org/gcrypt/libgcrypt/libgcrypt-1.6.0.tar.bz2

1.5 Common Issues - Check your GNUnet installation

You should check your installation to ensure that installing GNUnet was successful up to this point. You should be able to
access GNUnet's binaries and run GNUnet's self check.

$ which gnunet-arm

should return $PREFIX/bin/gnunet-arm. It should be located in your GNUnet installation and the output should not be empty.
If you see an output like:

$ which gnunet-arm

$

check your PATH variable to ensure GNUnet's bin directory is included.
GNUnet provides tests for all of it's subcomponents. Run

$ make check

to execute tests for all components. make check traverses all subdirectories in src. For every subdirectory you should get a
message like this:

make[2]: Entering directory `/home/mwachs/gnunet/contrib'

PASS: test_gnunet_prefix

=============

1 test passed

=============

If you see a message like this:

Mar 12 16:57:56-642482 resolver-api-19449 ERROR Must specify `HOSTNAME' for `resolver' in configuration!

Mar 12 16:57:56-642573 test_program-19449 ERROR Assertion failed at resolver_api.c:204.

/bin/bash: line 5: 19449 Aborted (core dumped) ${dir}$tst

FAIL: test_program

double check the steps performed in 1.4

2 Background: GNUnet Architecture

GNUnet is organized in layers and services. Each service is composed of a main service implementation and a client library
for other programs to use the service's functionality, described by an API. This approach is shown in �gure 1a. Some services
provide an additional command line tool to enable the user to interact with the service.

Very often it is other GNUnet services that will use these APIs to build the higher layers of GNUnet on top of the lower
ones. Each layer expands or extends the functionality of the service below (for instance, to build a mesh on top of a DHT). See
�gure 1b for an illustration of this approach.

The main service implementation runs as a standalone process in the operating system and the client code runs as part of the
client program, so crashes of a client do not a�ect the service process or other clients. The service and the clients communicate
via a message protocol to be de�ned and implemented by the programmer.

3

API API API

Network Protocol

Service

(a) Service with API and network proto-
col

Service

User Interface

API API API

API API API API

ServiceService Service

API API API API API APIAPI

Service Service Service

(b) Service interaction

Figure 1: GNUnet's layered system architecture

3 First Steps with GNUnet

3.1 Con�gure your peer

First of all we need to con�gure your peer. Each peer is started with a con�guration containing settings for GNUnet itself
and it's services. This con�guration is based on the default con�guration shipped with GNUnet and can be modi�ed. The
default con�guration is located in the $PREFIX/share/gnunet/config.d directory. When starting a peer, you can specify a
customized con�guration using the the −c command line switch when starting the ARM service and all other services. When
using a modi�ed con�guration the default values are loaded and only values speci�ed in the con�guration �le will replace the
default values.

Since we want to start additional peers later, we need some modi�cations from the default con�guration. We need to create
a separate service home and a �le containing our modi�cations for this peer:

$ mkdir ~/gnunet1/

$ touch peer1.conf

Now add the following lines to peer1.conf to use this directory. For simpli�ed usage we want to prevent the peer to connect
to the GNUnet network since this could lead to confusing output. This modi�cations will replace the default settings:

[PATHS]

GNUNET_HOME = ~/gnunet1/ # Use this directory to store GNUnet data

[hostlist]

SERVERS = # prevent bootstrapping

4

3.2 Start a peer

Each GNUnet instance (called peer) has an identity (peer ID) based on a cryptographic public private key pair. The peer ID
is the printable hash of the public key. So before starting the peer, you may want to just generate the peer's private key using
the command

$ gnunet-peerinfo -c ~/peer1.conf -s

You should see an output containing the peer ID similar to:

I am peer `0PA02UVRKQTS2C .. JL5Q78F6H0B1ACPV1CJI59MEQUMQCC5G'.

GNUnet services are controlled by a master service the so called Automatic Restart Manager (ARM). ARM starts, stops
and even restarts services automatically or on demand when a client connects. You interact with the ARM service using the
gnunet-arm tool. GNUnet can then be started with gnunet-arm -s and stopped with gnunet-arm -e. An additional service not
automatically started can be started using gnunet-arm -i <service name> and stopped using gnunet-arm -k <servicename>.

3.3 Monitor a peer

In this section, we will monitor the behaviour of our peer's DHT service with respect to a speci�c key. First we will start
GNUnet and then start the DHT service and use the DHT monitor tool to monitor the PUT and GET commands we issue
ussing the gnunet-dht-put and gnunet-dht-get command. Using the �monitor� line given below, you can observe the behavior
of your own peer's DHT with respect to the speci�ed KEY:

$ gnunet-arm -c ~/peer1.conf -s # start gnunet with all default services

$ gnunet-arm -c ~/peer1.conf -i dht # start DHT service

$ cd ~/gnunet/src/dht;

$./gnunet-dht-monitor -c ~/peer1.conf -k KEY

Now open a separate terminal and change again to the gnunet/src/dht directory:

$ cd ~/gnunet/src/dht

$./gnunet-dht-put -c ~/peer1.conf -k KEY -d VALUE # put VALUE under KEY in the DHT

$./gnunet/src/dht/gnunet-dht-get -c ~/peer1.conf -k KEY # get key KEY from the DHT

$ gnunet-statistics -c ~/peer1.conf # print statistics about current GNUnet state

$ gnunet-statistics -c ~/peer1.conf -s dht # print statistics about DHT service

3.4 Starting Two Peers by Hand

3.4.1 Setup a second peer

We will now start a second peer on your machine. For the second peer, you will need to manually create a modi�ed con�guration
�le to avoid con�icts with ports and directories. A peers con�guration �le is by default located in /.gnunet/gnunet.conf.
This �le is typically very short or even empty as only the di�erences to the defaults need to be speci�ed. The defaults are
located in many �les in the $PREFIX/share/gnunet/config.d directory.

To con�gure the second peer, use the �les $PREFIX/share/gnunet/config.d as a template for your main con�guration �le:

$ cat $PREFIX/share/gnunet/config.d/*.conf > peer2.conf

Now you have to edit peer2.conf and change:

� SERVICEHOME under PATHS

5

� Every (uncommented) value for �PORT� (add 10000) in any section (the option may be commented out if PORT is pre�xed
by "#", in this case, UNIX domain sockets are used and the PORT option does not need to be touched)

� Every value for �UNIXPATH� in any section (e.g. by adding a "-p2" su�x)

to a fresh, unique value. Make sure that the PORT numbers stay below 65536. From now on, whenever you interact with the
second peer, you need to specify -c peer2.conf as an additional command line argument.

Now, generate the 2nd peer's private key:

$ gnunet-peerinfo -s -c peer2.conf

This may take a while, generate entropy using your keyboard or mouse as needed. Also, make sure the output is di�erent
from the gnunet-peerinfo output for the �rst peer (otherwise you made an error in the con�guration).

3.4.2 Start the second peer and connect the peers

Then, you can start a second peer using:

$ gnunet-arm -c peer2.conf -s

$ gnunet-arm -c peer2.conf -i dht

$ ~/gnunet/src/dht/gnunet-dht-put -c peer2.conf -k KEY -d VALUE

$ ~/gnunet/src/dht/gnunet-dht-get -c peer2.conf -k KEY

If you want the two peers to connect, you have multiple options:

� UDP neighbour discovery (automatic)

� Setup a bootstrap server

� Connect manually

To setup peer 1 as bootstrapping server change the con�guration of the �rst one to be a hostlist server by adding the following
lines to peer1.conf to enable bootstrapping server:

[hostlist]

OPTIONS = -p

Then change peer2.conf and replace the �SERVERS� line in the �[hostlist]� section with �http://localhost:8080/�.
Restart both peers using:

$ gnunet-arm -c peer1.conf -e # stop first peer

$ gnunet-arm -c peer1.conf -s # start first peer

$ gnunet-arm -c peer2.conf -s # start second peer

Note that if you start your peers without changing these settings, they will use the �global� hostlist servers of the GNUnet
P2P network and likely connect to those peers. At that point, debugging might become tricky as you're going to be connected
to many more peers and would likely observe tra�c and behaviors that are not explicitly controlled by you.

3.4.3 How to connect manually

If you want to use the peerinfo tool to connect your peers, you should:

� Remove hostlist from DEFAULTSERVICES (to not connect to the global GNUnet)

� Start both peers running gnunet-arm -c peer1.conf -s and gnunet-arm -c peer2.conf -s

6

� Get HELLO message of the �rst peer running gnunet-peerinfo -c peer1.conf -g

� Give the output to the second peer by running gnunet-peerinfo -c peer2.conf -p '<output>'

Check that they are connected using gnunet-core -c peer1.conf, which should give you the other peer's peer identity:

$ gnunet-core -c peer1.conf

Peer `9TVUCS8P5A7ILLBGO6JSTSSN2B44H3D2MUIFJMLKAITC0I22UVFBFP1H8NRK2IA35VKAK16LLO0MFS7TAQ9M1KNBJ4NGCHP3JPVULDG'

3.5 Starting Peers Using the Testbed Service

GNUnet's testbed service is used for testing scenarios where a number of peers are to be started. The testbed can manage
peers on a single host or on multiple hosts in a distributed fashion. On a single a�ordable computer, it should be possible to
run around tens of peers without drastically increasing the load on the system.

The testbed service can be access through its API include/gnunet_testbed_service.h. The API provides many routines
for managing a group of peers. It also provides a helper function GNUNET_TESTBED_test_run() to quickly setup a minimalistic
testing environment on a single host.

This function takes a con�guration �le which will be used as a template con�guration for the peers. The testbed takes care
of modifying relevant options in the peers' con�guration such as SERVICEHOME, PORT, UNIXPATH to unique values so that
peers run without running into con�icts. It also checks and assigns the ports in con�gurations only if they are free.

Additionally, the testbed service also reads its options from the same con�guration �le. Various available options and details
about them can be found in the testbed default con�guration �le src/testbed/testbed.conf.

With the testbed API, a sample test case can be structured as follows:

#include <unistd.h>

#include <gnunet/platform.h>

#include <gnunet/gnunet_util_lib.h>

#include <gnunet/gnunet_testbed_service.h>

#include <gnunet/gnunet_dht_service.h>

/* Number of peers we want to start */

#define NUM_PEERS 20

static struct GNUNET_TESTBED_Operation *dht_op;

static struct GNUNET_DHT_Handle *dht_handle;

static GNUNET_SCHEDULER_TaskIdentifier shutdown_tid;

/**

*Closure to 'dht_ca' and 'dht_da' DHT adapters.

*/

struct MyContext

{

/**

*Argument we pass to GNUNET_DHT_connect.

*/

7

int ht_len;

} ctxt;

/**

*Global result for testcase.

*/

static int result;

/**

*Function run on CTRL-C or shutdown (i.e. success/timeout/etc.).

*Cleans up.

*/

static void

shutdown_task (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc)

{

shutdown_tid = GNUNET_SCHEDULER_NO_TASK;

if (NULL != dht_op)

{

GNUNET_TESTBED_operation_done (dht_op); /* indirectly calls the dht_da() for closing

down the connection to the DHT */

dht_op = NULL;

dht_handle = NULL;

}

result = GNUNET_OK;

GNUNET_SCHEDULER_shutdown (); /* Also kills the testbed */

}

/**

*This is where the test logic should be, at least that

*part of it that uses the DHT of peer "0".

*

*@param cls closure, for the example: NULL

*@param op should be equal to "dht_op"

*@param ca_result result of the connect operation, the

*connection to the DHT service

*@param emsg error message, if testbed somehow failed to

*connect to the DHT.

*/

static void

service_connect_comp (void *cls,

struct GNUNET_TESTBED_Operation *op,

void *ca_result,

const char *emsg)

8

{

GNUNET_assert (op == dht_op);

dht_handle = ca_result;

/* Service to DHT successful; here we'd usually do something

with the DHT (ok, if successful) */

/* for now, just indiscriminately terminate after 10s */

GNUNET_SCHEDULER_cancel (shutdown_tid);

shutdown_tid = GNUNET_SCHEDULER_add_delayed

(GNUNET_TIME_relative_multiply (GNUNET_TIME_UNIT_SECONDS, 10),

&shutdown_task, NULL);

}

/**

*Testbed has provided us with the configuration to access one

*of the peers and it is time to do "some" connect operation to

*"some" subsystem of the peer. For this example, we connect

*to the DHT subsystem. Testbed doesn't know which subsystem,

*so we need these adapters to do the actual connecting (and

*possibly pass additional options to the subsystem connect

*function, such as the "ht_len" argument for the DHT).

*

*@param cls closure

*@param cfg peer configuration (here: peer[0]

*@return NULL on error, otherwise some handle to access the

*subsystem

*/

static void *

dht_ca (void *cls, const struct GNUNET_CONFIGURATION_Handle *cfg)

{

struct MyContext *ctxt = cls;

/* Use the provided configuration to connect to service */

dht_handle = GNUNET_DHT_connect (cfg, ctxt->ht_len);

return dht_handle;

}

/**

*Dual of 'dht_ca' to perform the 'disconnect'/cleanup operation

*once we no longer need to access this subsystem.

*

*@param cls closure

*@param op_result whatever we returned from 'dht_ca'

*/

9

static void

dht_da (void *cls, void *op_result)

{

struct MyContext *ctxt = cls;

/* Disconnect from DHT service */

GNUNET_DHT_disconnect ((struct GNUNET_DHT_Handle *) op_result);

dht_handle = NULL;

}

/**

*Main function inovked from TESTBED once all of the

*peers are up and running. This one then connects

*just to the DHT service of peer 0.

*

*@param cls closure

*@param h the run handle

*@param peers started peers for the test

*@param num_peers size of the 'peers' array

*@param links_succeeded number of links between peers that were created

*@param links_failed number of links testbed was unable to establish

*/

static void

test_master (void *cls,

struct GNUNET_TESTBED_RunHandle *h,

unsigned int num_peers,

struct GNUNET_TESTBED_Peer **peers,

unsigned int links_succeeded,

unsigned int links_failed)

{

/* Testbed is ready with peers running and connected in a pre-defined overlay

topology */

/* do something */

ctxt.ht_len = 10;

/* connect to a peers service */

dht_op = GNUNET_TESTBED_service_connect

(NULL, /* Closure for operation */

peers[0], /* The peer whose service to connect to */

"dht", /* The name of the service */

service_connect_comp, /* callback to call after a handle to service

is opened */

NULL, /* closure for the above callback */

dht_ca, /* callback to call with peer's configuration;

10

this should open the needed service connection */

dht_da, /* callback to be called when closing the

opened service connection */

&ctxt); /* closure for the above two callbacks */

shutdown_tid = GNUNET_SCHEDULER_add_delayed (GNUNET_TIME_UNIT_MINUTES,

&shutdown_task, NULL);

}

int

main (int argc, char **argv)

{

int ret;

result = GNUNET_SYSERR;

ret = GNUNET_TESTBED_test_run

("awesome-test", /* test case name */

"template.conf", /* template configuration */

NUM_PEERS, /* number of peers to start */

0LL, /* Event mask -set to 0 for no event notifications */

NULL, /* Controller event callback */

NULL, /* Closure for controller event callback */

&test_master, /* continuation callback to be called when testbed setup is

complete */

NULL); /* Closure for the test_master callback */

if ((GNUNET_OK != ret) || (GNUNET_OK != result))

return 1;

return 0;

}

The source code for the above listing can be found at https://gnunet.org/svn/gnunet/doc/testbed_test.c. After installing
GNUnet, the above source code can be compiled as:

$ export CPPFLAGS="-I/path/to/gnunet/headers"

$ export LDFLAGS="-L/path/to/gnunet/libraries"

$ gcc $CPPFLAGS $LDFLAGS -o testbed-test testbed_test.c -lgnunettestbed -lgnunetdht -lgnunetutil

The CPPFLAGS and LDFLAGS are necessary if GNUnet is installed into a di�erent directory other than /usr/local.
All of testbed API's peer management functions treat management actions as operations and return operation handles. It is

expected that the operations begin immediately, but they may get delayed (to balance out load on the system). The program
using the API then has to take care of marking the operation as �done� so that its associated resources can be freed immediately
and other waiting operations can be executed. Operations will be canceled if they are marked as �done� before their completion.

An operation is treated as completed when it succeeds or fails. Completion of an operation is either conveyed as events
through controller event callback or through respective operation completion callbacks. In functions which support completion
noti�cation through both controller event callback and operation completion callback, �rst the controller event callback will be
called. If the operation is not marked as done in that callback or if the callback is given as NULL when creating the operation,
the operation completion callback will be called. The API documentation shows which event are to be expected in the controller
event noti�cations. It also documents any exceptional behaviour.

11

https://gnunet.org/svn/gnunet/doc/testbed_test.c

Once the peers are started, test cases often need to connect some of the peers' services. Normally, opening a connect to a
peer's service requires the peer's con�guration. While using testbed, the testbed automatically generates per-peer con�guration.
Accessing those con�gurations directly through �le system is discouraged as their locations are dynamically created and will
be di�erent among various runs of testbed. To make access to these con�gurations easy, testbed API provides the function
GNUNET_TESTBED_service_connect(). This function fetches the con�guration of a given peer and calls the Connect Adapter.
In the example code, it is the dht_ca. A connect adapter is expected to open the connection to the needed service by using the
provided con�guration and return the created service connection handle. Successful connection to the needed service is signaled
through service_connect_comp_cb.

A dual to connect adapter is the Disconnect Adapter. This callback is called after the connect adapter has been called when
the operation from GNUNET_TESTBED_service_connect() is marked as �done�. It has to disconnect from the service with the
provided service handle (op_result).

Exercise: Find out how many peers you can run on your system.

Exercise: Find out how to create a 2D torus topology by changing the options in the con�guration �le.a Then use the DHT
API to store and retrieve values in the network.

aSee https://gnunet.org/content/supported-topologies

4 Developing Applications

4.1 gnunet-ext

To develop a new peer-to-peer application or to extend GNUnet we provide a template build system for writing GNUnet
extensions in C. It can be obtained as follows:

$ svn checkout https://gnunet.org/svn/gnunet-ext/

$ cd gnunet-ext/

$./bootstrap

$./configure --prefix=$PREFIX --with-gnunet=$PREFIX

$ make

$ make install

$ make check

The GNUnet ext template includes examples and a working buildsystem for a new GNUnet service. A common GNUnet
service consists of the following parts which will be discussed in detail in the remainder of this document. The functionality of
a GNUnet service is implemented in:

� the GNUnet service (gnunet-ext/src/ext/gnunet-service-ext.c)

� the client API (gnunet-ext/src/ext/ext_api.c)

� the client application using the service API (gnunet-ext/src/ext/gnunet-ext.c)

The interfaces for these entities are de�ned in:

� client API interface (gnunet-ext/src/ext/ext.h)

� the service interface (gnunet-ext/src/include/gnunet_service_SERVICE.h)

� the P2P protocol (gnunet-ext/src/include/gnunet_protocols_ext.h)

In addition the ext systems provides:

12

https://gnunet.org/content/supported-topologies

� a test testing the API (gnunet-ext/src/ext/test_ext_api.c)

� a con�guration template for the service (gnunet-ext/src/ext/ext.conf.in)

4.2 Adapting the Template

The �rst step for writing any extension with a new service is to ensure that the ext.conf.in �le contains entries for the
UNIXPATH, PORT and BINARY for the service in a section named after the service.

If you want to adapt the template rename the ext.conf.in to match your services name, you have to modify the AC_OUTPUT
section in configure.ac in the gnunet-ext root.

5 Writing a Client Application

When writing any client application (for example, a command-line tool), the basic structure is to start with the GNUNET_PROGRAM_run
function. This function will parse command-line options, setup the scheduler and then invoke the run function (with the re-
maining non-option arguments) and a handle to the parsed con�guration (and the con�guration �le name that was used, which
is typically not needed):

#include <gnunet/platform.h>

#include <gnunet/gnunet_util_lib.h>

static int ret;

static void

run (void *cls,

char *const *args,

const char *cfgfile,

const struct GNUNET_CONFIGURATION_Handle *cfg)

{

/* main code here */

ret = 0;

}

int

main (int argc, char *const *argv)

{

static const struct GNUNET_GETOPT_CommandLineOption options[] = {

GNUNET_GETOPT_OPTION_END

};

return (GNUNET_OK ==

GNUNET_PROGRAM_run (argc,

argv,

"binary-name",

gettext_noop ("binary description text"),

options, &run, NULL)) ? ret : 1;

}

13

5.1 Handling command-line options

Options can then be added easily by adding global variables and expanding the options array. For example, the following
would add a string-option and a binary �ag (defaulting to NULL and GNUNET_NO respectively):

static char *string_option;

static int a_flag;

// ...

static const struct GNUNET_GETOPT_CommandLineOption options[] = {

{'s', "name", "SOMESTRING",

gettext_noop ("text describing the string_option NAME"), 1,

&GNUNET_GETOPT_set_string, &string_option},

{'f', "flag", NULL,

gettext_noop ("text describing the flag option"), 0,

&GNUNET_GETOPT_set_one, &a_flag},

GNUNET_GETOPT_OPTION_END

};

string_option = NULL;

a_flag = GNUNET_SYSERR;

// ...

Issues such as displaying some helpful text describing options using the �help argument and error handling are taken
care of when using this approach. Other GNUNET_GETOPT_-functions can be used to obtain integer value options, increment
counters, etc. You can even write custom option parsers for special circumstances not covered by the available handlers. To
check if an argument was speci�ed by the user you initialize the variable with a speci�c value (e.g. NULL for a string and
GNUNET_SYSERR for a integer) and check after parsing happened if the values were modi�ed.

Inside the run method, the program would perform the application-speci�c logic, which typically involves initializing and
using some client library to interact with the service. The client library is supposed to implement the IPC whereas the service
provides more persistent P2P functions.

Exercise: Add a few command-line options and print them inside of run. What happens if the user gives invalid arguments?

5.2 Writing a Client Library

The �rst and most important step in writing a client library is to decide on an API for the library. Typical API calls include
connecting to the service, performing application-speci�c requests and cleaning up. Many examples for such service APIs can
be found in the gnunet/src/include/gnunet_*_service.h �les.

Then, a client-service protocol needs to be designed. This typically involves de�ning various message formats in a header
that will be included by both the service and the client library (but is otherwise not shared and hence located within the
service's directory and not installed by make install). Each message must start with a struct GNUNET_MessageHeader and
must be shorter than 64k. By convention, all �elds in IPC (and P2P) messages must be in big-endian format (and thus should
be read using ntohl and similar functions and written using htonl and similar functions). Unique message types must be
de�ned for each message struct in the gnunet_protocols.h header (or an extension-speci�c include �le).

5.2.1 Connecting to the Service

Before a client library can implement the application-speci�c protocol with the service, a connection must be created:

14

struct GNUNET_CLIENT_Connection *client;

client = GNUNET_CLIENT_connect ("service-name", cfg);

As a result a GNUNET_CLIENT_Connection handle is returned which has to used in later API calls related to this service.
The complete client API can be found in gnunet_client_lib.h

5.2.2 GNUnet Messages

In GNUnet, messages are always sent beginning with a struct GNUNET_MessageHeader in big endian format. This header
de�nes the size and the type of the message, the payload follows after this header.

struct GNUNET_MessageHeader

{

/**

*The length of the struct (in bytes, including the length field itself),

*in big-endian format.

*/

uint16_t size GNUNET_PACKED;

/**

*The type of the message (GNUNET_MESSAGE_TYPE_XXXX), in big-endian format.

*/

uint16_t type GNUNET_PACKED;

};

Existing message types are de�ned in gnunet_protocols.h

A common way to create a message is:

struct GNUNET_MessageHeader *msg =

GNUNET_malloc(payload_size + sizeof(struct GNUNET_MessageHeader));

msg->size = htons(payload_size + sizeof(struct GNUNET_MessageHeader));

msg->type = htons(GNUNET_MY_MESSAGE_TYPE);

memcpy(&msg[1], &payload, payload_size);

// use 'msg'

Exercise: De�ne a message struct that includes a 32-bit unsigned integer in addition to the standard GNUnet MessageHeader.
Add a C struct and de�ne a fresh protocol number for your message. (Protocol numbers in gnunet-ext are de�ned in
gnunet-ext/src/include/gnunet_protocols_ext.h)

5.2.3 Sending Requests to the Service

Any client-service protocol must start with the client sending the �rst message to the service, since services are only noti�ed
about (new) clients upon receiving a the �rst message.

Clients can transmit messages to the service using the GNUNET_CLIENT_notify_transmit_ready API:

static size_t

transmit_cb (void *cls, size_t size, void *buf)

{

15

// ...

if (NULL == buf) { /* handle error here */; return 0; }

GNUNET_assert (size >= msg_size);

memcpy (buf, my_msg, msg_size);

// ...

return msg_size;

}

// ...

th = GNUNET_CLIENT_notify_transmit_ready (client,

msg_size,

timeout,

GNUNET_YES,

&transmit_cb, cls);

// ...

The client-service protocoll calls GNUNET_CLIENT_notify_transmit_ready to be noti�ed when the client is ready to send
data to the service. Besides other arguments, you have to pass the client returned from the connect call, the message size and
the callback function to call when the client is ready to send.

Only a single transmission request can be queued per client at the same time using this API. The handle th can be used to
cancel the request if necessary (for example, during shutdown).

When transmit_cb is called the message is copied in the bu�er provided and the number of bytes copied into the bu�er
is returned. transmit_cb could also return 0 if for some reason no message could be constructed; this is not an error and the
connection to the service will persist in this case.

Exercise: De�ne a helper function to transmit a 32-bit unsigned integer (as payload) to a service using some given client
handle.

5.2.4 Receiving Replies from the Service

Clients can receive messages from the service using the GNUNET_CLIENT_receive API:

/**

*Function called with messages from stats service.

*

*@param cls closure

*@param msg message received, NULL on timeout or fatal error

*/

static void

receive_message (void *cls, const struct GNUNET_MessageHeader *msg)

{

struct MyArg *arg = cls;

// process 'msg'

}

// ...

GNUNET_CLIENT_receive (client,

16

&receive_message,

arg,

timeout);

// ...

It should be noted that this receive call only receives a single message. To receive additional messages, GNUNET_CLIENT_receive
must be called again.

Exercise: Expand your helper function to receive a response message (for example, containing just the GNUnet Message-
Header without any payload). Upon receiving the service's response, you should call a callback provided to your helper
function's API. You'll need to de�ne a new 'struct' to hold your local context (�closure�).

5.3 Writing a user interface

Given a client library, all it takes to access a service now is to combine calls to the client library with parsing command-line
options.

Exercise: Call your client API from your run method in your client application to send a request to the service. For example,
send a 32-bit integer value based on a number given at the command-line to the service.

6 Writing a Service

Before you can test the client you've written so far, you'll need to also implement the corresponding service.

6.1 Code Placement

New services are placed in their own subdirectory under gnunet/src. This subdirectory should contain the API implementation
�le SERVICE_api.c, the description of the client-service protocol SERVICE.h and P2P protocol SERVICE_protocol.h, the
implementation of the service itself gnunet-service-SERVICE.h and several �les for tests, including test code and con�guration
�les.

6.2 Starting a Service

The key API de�nitions for starting services are:

typedef void (*GNUNET_SERVICE_Main) (void *cls,

struct GNUNET_SERVER_Handle *server,

const struct GNUNET_CONFIGURATION_Handle *cfg);

int GNUNET_SERVICE_run (int argc,

char *const *argv,

const char *serviceName,

enum GNUNET_SERVICE_Options opt,

GNUNET_SERVICE_Main task,

void *task_cls);

Here is a starting point for your main function for your service:

static void my_main (void *cls,

struct GNUNET_SERVER_Handle *server,

const struct GNUNET_CONFIGURATION_Handle *cfg)

17

{

/* do work */

}

int main (int argc, char *const*argv)

{

if (GNUNET_OK !=

GNUNET_SERVICE_run (argc, argv, "my",

GNUNET_SERVICE_OPTION_NONE,

&my_main, NULL);

return 1;

return 0;

}

Exercise: Write a stub service that processes no messages at all in your code. Create a default con�guration for it, integrate
it with the build system and start the service from gnunet-service-arm using gnunet-arm -i NAME.

6.3 Receiving Requests from Clients

Inside of the my_main method, a service typically registers for the various message types from clients that it supports by
providing a handler function, the message type itself and possibly a �xed message size (or 0 for variable-size messages):

static void

handle_set (void *cls,

struct GNUNET_SERVER_Client *client,

const struct GNUNET_MessageHeader *message)

{

GNUNET_SERVER_receive_done (client, GNUNET_OK);

}

static void

handle_get (void *cls,

struct GNUNET_SERVER_Client *client,

const struct GNUNET_MessageHeader *message)

{

GNUNET_SERVER_receive_done (client, GNUNET_OK);

}

static void my_main (void *cls,

struct GNUNET_SERVER_Handle *server,

const struct GNUNET_CONFIGURATION_Handle *cfg)

{

static const struct GNUNET_SERVER_MessageHandler handlers[] = {

{&handle_set, NULL, GNUNET_MESSAGE_TYPE_MYNAME_SET, 0},

{&handle_get, NULL, GNUNET_MESSAGE_TYPE_MYNAME_GET, 0},

{NULL, NULL, 0, 0}

};

GNUNET_SERVER_add_handlers (server, handlers);

18

/* do more setup work */

}

Each handler function must eventually (possibly in some asynchronous continuation) call GNUNET_SERVER_receive_done.
Only after this call additional messages from the same client may be processed. This way, the service can throttle processing
messages from the same client. By passing GNUNET_SYSERR, the service can close the connection to the client, indicating an
error.

Services must check that client requests are well-formed and must not crash on protocol violations by the clients. Similarly,
client libraries must check replies from servers and should gracefully report errors via their API.

Exercise: Change the service to �handle� the message from your client (for now, by printing a message). What happens if
you forget to call GNUNET_SERVER_receive_done?

6.4 Responding to Clients

Servers can send messages to clients using the GNUNET_SERVER_notify_transmit_ready API:

static size_t

transmit_cb (void *cls, size_t size, void *buf)

{

// ...

if (NULL == buf) { handle_error(); return 0; }

GNUNET_assert (size >= msg_size);

memcpy (buf, my_msg, msg_size);

// ...

return msg_size;

}

// ...

struct GNUNET_SERVER_TransmitHandle *th;

th = GNUNET_SERVER_notify_transmit_ready (client,

msg_size,

timeout,

&transmit_cb, cls);

// ...

Only a single transmission request can be queued per client at the same time using this API. Additional APIs for sending
messages to clients can be found in the gnunet_server_lib.h header.

Exercise: Change the service respond to the request from your client. Make sure you handle malformed messages in both
directions.

7 Interacting directly with other Peers using the CORE Service

One of the most important services in GNUnet is the CORE service managing connections between peers and handling encryption
between peers.

One of the �rst things any service that extends the P2P protocol typically does is connect to the CORE service using:

#include <gnunet/gnunet_core_service.h>

19

struct GNUNET_CORE_Handle *

GNUNET_CORE_connect (const struct GNUNET_CONFIGURATION_Handle *cfg,

void *cls,

GNUNET_CORE_StartupCallback init,

GNUNET_CORE_ConnectEventHandler connects,

GNUNET_CORE_DisconnectEventHandler disconnects,

GNUNET_CORE_MessageCallback inbound_notify,

int inbound_hdr_only,

GNUNET_CORE_MessageCallback outbound_notify,

int outbound_hdr_only,

const struct GNUNET_CORE_MessageHandler *handlers);

7.1 New P2P connections

Before any tra�c with a di�erent peer can be exchanged, the peer must be known to the service. This is noti�ed by the CORE
connects callback, which communicates the identity of the new peer to the service:

void

connects (void *cls,

const struct GNUNET_PeerIdentity *peer)

{

/* Save identity for later use */

/* Optional: start sending messages to peer */

}

Exercise: Create a service that connects to the CORE. Then start (and connect) two peers and print a message once your
connect callback is invoked.

7.2 Receiving P2P Messages

To receive messages from CORE, services register a set of handlers (parameter *handlers in the GNUNET_CORE_connect call that
are called by CORE when a suitable message arrives.

static int

callback_function_for_type_one(void *cls,

const struct GNUNET_PeerIdentity *peer,

const struct GNUNET_MessageHeader *message)

{

/* Do stuff */

return GNUNET_OK; /* or GNUNET_SYSERR to close the connection */

}

/**

*Functions to handle messages from core

*/

static struct GNUNET_CORE_MessageHandler core_handlers[] = {

{&callback_function_for_type_one, GNUNET_MESSAGE_TYPE_MYSERVICE_TYPE_ONE, 0},

20

/* more handlers*/

{NULL, 0, 0}

};

Exercise: Start one peer with a new service that has a message handler and start a second peer that only has your �old�
service without message handlers. Which �connect� handlers are invoked when the two peers are connected? Why?

7.3 Sending P2P Messages

In response to events (connect, disconnect, inbound messages, timing, etc.) services can then use this API to transmit messages:

typedef size_t

(*GNUNET_CONNECTION_TransmitReadyNotify) (void *cls,

size_t size,

void *buf)

{

/* Fill "*buf" with up to "size" bytes, must start with GNUNET_MessageHeader */

return n; /* Total size of the message put in "*buf" */

}

struct GNUNET_CORE_TransmitHandle *

GNUNET_CORE_notify_transmit_ready (struct GNUNET_CORE_Handle *handle,

int cork, uint32_t priority,

struct GNUNET_TIME_Relative maxdelay,

const struct GNUNET_PeerIdentity *target,

size_t notify_size,

GNUNET_CONNECTION_TransmitReadyNotify notify,

void *notify_cls);

Exercise: Write a service that upon connect sends messages as fast as possible to the other peer (the other peer should
run a service that �processes� those messages). How fast is the transmission? Count using the STATISTICS service on both
ends. Are messages lost? How can you transmit messages faster? What happens if you stop the peer that is receiving your
messages?

7.4 End of P2P connections

If a message handler returns GNUNET_SYSERR, the remote peer shuts down or there is an unrecoverable network disconnection,
CORE noti�es the service that the peer disconnected. After this noti�cation no more messages will be received from the peer
and the service is no longer allowed to send messages to the peer. The disconnect callback looks like the following:

void

disconnects (void *cls,

const struct GNUNET_PeerIdentity *peer)

{

/* Remove peer's identity from known peers */

/* Make sure no messages are sent to peer from now on */

}

Exercise: Fix your service to handle peer disconnects.

21

8 Storing peer-speci�c data using the PEERSTORE service

GNUnet's PEERSTORE service o�ers persistent peer-speci�c arbitrary data storage. Other GNUnet services can use the
PEERSTORE API to store, retrieve and monitor data records. Each data record stored with PEERSTORE contains the
following �elds:

� subsystem: Name of the subsystem responsible for the record.

� peerid: Identity of the peer this record is related to.

� key: a key string identifying the record.

� value: binary record value.

� expiry: record expiry date.

The �rst step is to start a connection to the PEERSTORE service:

#include "gnunet_peerstore_service.h"

peerstore_handle = GNUNET_PEERSTORE_connect (cfg);

The service handle peerstore_handle will be needed for all subsequent PEERSTORE operations.

8.1 Storing records

To store a new record, use the following function:

struct GNUNET_PEERSTORE_StoreContext *

GNUNET_PEERSTORE_store (struct GNUNET_PEERSTORE_Handle *h,

const char *sub_system,

const struct GNUNET_PeerIdentity *peer,

const char *key,

const void *value,

size_t size,

struct GNUNET_TIME_Absolute expiry,

enum GNUNET_PEERSTORE_StoreOption options,

GNUNET_PEERSTORE_Continuation cont,

void *cont_cls);

The options parameter can either be GNUNET_PEERSTORE_STOREOPTION_MULTIPLE which means that multiple values can be
stored under the same key combination (subsystem, peerid, key), or GNUNET_PEERSTORE_STOREOPTION_REPLACE which means
that PEERSTORE will replace any existing values under the given key combination (subsystem, peerid, key) with the new
given value.

The continuation function cont will be called after the store request is successfully sent to the PEERSTORE service. This
does not guarantee that the record is successfully stored, only that it was received by the service.

The GNUNET_PEERSTORE_store function returns a handle to the store operation. This handle can be used to cancel the store
operation only before the continuation function is called:

void

GNUNET_PEERSTORE_store_cancel (struct GNUNET_PEERSTORE_StoreContext *sc);

22

8.2 Retrieving records

To retrieve stored records, use the following function:

struct GNUNET_PEERSTORE_IterateContext *

GNUNET_PEERSTORE_iterate (struct GNUNET_PEERSTORE_Handle *h,

const char *sub_system,

const struct GNUNET_PeerIdentity *peer,

const char *key,

struct GNUNET_TIME_Relative timeout,

GNUNET_PEERSTORE_Processor callback,

void *callback_cls);

The values of peer and key can be NULL. This allows the iteration over values stored under any of the following key combinations:

� (subsystem)

� (subsystem, peerid)

� (subsystem, key)

� (subsystem, peerid, key)

The callback function will be called once with each retrieved record and once more with a NULL record to signify end of
list.

The GNUNET_PEERSTORE_iterate function returns a handle to the iterate operation. This handle can be used to cancel the
iterate operation only before the callback function is called with a NULL record.

8.3 Monitoring records

PEERSTORE o�ers the functionality of monitoring for new records stored under a speci�c key combination (subsystem, peerid,
key). To start the monitoring, use the following function:

struct GNUNET_PEERSTORE_WatchContext *

GNUNET_PEERSTORE_watch (struct GNUNET_PEERSTORE_Handle *h,

const char *sub_system,

const struct GNUNET_PeerIdentity *peer,

const char *key,

GNUNET_PEERSTORE_Processor callback,

void *callback_cls);

Whenever a new record is stored under the given key combination, the callback function will be called with this new record.
This will continue until the connection to the PEERSTORE service is broken or the watch operation is cancelled:

void

GNUNET_PEERSTORE_watch_cancel (struct GNUNET_PEERSTORE_WatchContext *wc);

8.4 Disconnecting from PEERSTORE

When the connection to the PEERSTORE service is no longer needed, disconnect using the following function:

void

GNUNET_PEERSTORE_disconnect (struct GNUNET_PEERSTORE_Handle *h, int sync_first);

23

If the sync_first �ag is set to GNUNET_YES, the API will delay the disconnection until all store requests are received by the
PEERSTORE service. Otherwise, it will disconnect immediately.

9 Using the DHT

The DHT allows to store data so other peers in the P2P network can access it and retrieve data stored by any peers in the
network. This section will explain how to use the DHT. Of course, the �rst thing to do is to connect to the DHT service:

dht_handle = GNUNET_DHT_connect (cfg, parallel_requests);

The second parameter indicates how many requests in parallel to expect. It is not a hard limit, but a good approximation will
make the DHT more e�cient.

9.1 Storing data in the DHT

Since the DHT is a dynamic environment (peers join and leave frequently) the data that we put in the DHT does not stay there
inde�nitely. It is important to �refresh� the data periodically by simply storing it again, in order to make sure other peers can
access it.

The put API call o�ers a callback to signal that the PUT request has been sent. This does not guarantee that the data
is accessible to others peers, or even that is has been stored, only that the service has requested to a neighboring peer the
retransmission of the PUT request towards its �nal destination. Currently there is no feedback about whether or not the data
has been sucessfully stored or where it has been stored. In order to improve the availablilty of the data and to compensate for
possible errors, peers leaving and other unfavorable events, just make several PUT requests!

void

message_sent_cont (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc)

{

/* Request has left local node */

}

struct GNUNET_DHT_PutHandle *

GNUNET_DHT_put (struct GNUNET_DHT_Handle *handle,

const struct GNUNET_HashCode *key,

uint32_t desired_replication_level,

enum GNUNET_DHT_RouteOption options, /* Route options, see next call */

enum GNUNET_BLOCK_Type type, size_t size, const void *data,

struct GNUNET_TIME_Absolute exp, /* When does the data expire? */

struct GNUNET_TIME_Relative timeout, /* How long to try to send the request */

GNUNET_DHT_PutContinuation cont,

void *cont_cls)

Exercise: Store a value in the DHT periodically to make sure it is available over time. You might consider using the function
GNUNET_SCHEDULER_add_delayed and call GNUNET_DHT_put from inside a helper function.

9.2 Obtaining data from the DHT

As we saw in the previous example, the DHT works in an asynchronous mode. Each request to the DHT is executed �in the
background� and the API calls return immediately. In order to receive results from the DHT, the API provides a callback. Once

24

started, the request runs in the service, the service will try to get as many results as possible (�ltering out duplicates) until the
timeout expires or we explicitly stop the request. It is possible to give a �forever� timeout with GNUNET_TIME_UNIT_FOREVER_REL.

If we give a route option GNUNET_DHT_RO_RECORD_ROUTE the callback will get a list of all the peers the data has travelled,
both on the PUT path and on the GET path.

static void

get_result_iterator (void *cls, struct GNUNET_TIME_Absolute expiration,

const struct GNUNET_HashCode *key,

const struct GNUNET_PeerIdentity *get_path,

unsigned int get_path_length,

const struct GNUNET_PeerIdentity *put_path,

unsigned int put_path_length,

enum GNUNET_BLOCK_Type type, size_t size, const void *data)

{

/* Do stuff with the data and/or route */

/* Optionally: */

GNUNET_DHT_get_stop (get_handle);

}

get_handle =

GNUNET_DHT_get_start (dht_handle,

block_type,

&key,

replication,

GNUNET_DHT_RO_NONE, /* Route options */

NULL, /* xquery: not used here */

0, /* xquery size */

&get_result_iterator,

cls)

Exercise: Store a value in the DHT and after a while retrieve it. Show the IDs of all the peers the requests have gone through.
In order to convert a peer ID to a string, use the function GNUNET_i2s. Pay attention to the route option parameters in
both calls!

9.3 Implementing a block plugin

In order to store data in the DHT, it is necessary to provide a block plugin. The DHT uses the block plugin to ensure that
only well-formed requests and replies are transmitted over the network.

The block plugin should be put in a �le plugin_block_SERVICE.c in the service's respective directory. The mandatory
functions that need to be implemented for a block plugin are described in the following sections.

9.3.1 Validating requests and replies

The evaluate function should validate a reply or a request. It returns a GNUNET_BLOCK_EvaluationResult, which is an enu-
meration. All possible answers are in gnunet_block_lib.h. The function will be called with a reply_block argument of NULL
for requests. Note that depending on how evaluate is called, only some of the possible return values are valid. The speci�c
meaning of the xquery argument is application-speci�c. Applications that do not use an extended query should check that the
xquery_size is zero. The Bloom �lter is typically used to �lter duplicate replies.

25

static enum GNUNET_BLOCK_EvaluationResult

block_plugin_SERVICE_evaluate (void *cls,

enum GNUNET_BLOCK_Type type,

const GNUNET_HashCode *query,

struct GNUNET_CONTAINER_BloomFilter **bf,

int32_t bf_mutator,

const void *xquery,

size_t xquery_size,

const void *reply_block,

size_t reply_block_size)

{

/* Verify type, block and bloomfilter */

}

Note that it is mandatory to detect duplicate replies in this function and return the respective status code. Duplicate
detection should be done by setting the respective bits in the Bloom �lter bf. Failure to do so may cause replies to circle in
the network.

9.3.2 Deriving a key from a reply

The DHT can operate more e�ciently if it is possible to derive a key from the value of the corresponding block. The get_key
function is used to obtain the key of a block � for example, by means of hashing. If deriving the key is not possible, the
function should simply return GNUNET_SYSERR (the DHT will still work just �ne with such blocks).

static int

block_plugin_SERVICE_get_key (void *cls, enum GNUNET_BLOCK_Type type,

const void *block, size_t block_size,

GNUNET_HashCode *key)

{

/* Store the key in the key argument, return GNUNET_OK on success. */

}

9.3.3 Initialization of the plugin

The plugin is realized as a shared C library. The library must export an initialization function which should initialize the plugin.
The initialization function speci�es what block types the plugin cares about and returns a struct with the functions that are to
be used for validation and obtaining keys (the ones just de�ned above).

void *

libgnunet_plugin_block_SERVICE_init (void *cls)

{

static enum GNUNET_BLOCK_Type types[] =

{

GNUNET_BLOCK_TYPE_SERVICE_BLOCKYPE, /* list of blocks we care about, from gnunet_block_lib.h */

GNUNET_BLOCK_TYPE_ANY /* end of list */

};

struct GNUNET_BLOCK_PluginFunctions *api;

26

api = GNUNET_malloc (sizeof (struct GNUNET_BLOCK_PluginFunctions));

api->evaluate = &block_plugin_SERICE_evaluate;

api->get_key = &block_plugin_SERVICE_get_key;

api->types = types;

return api;

}

9.3.4 Shutdown of the plugin

Following GNUnet's general plugin API concept, the plugin must export a second function for cleaning up. It usually does very
little.

void *

libgnunet_plugin_block_SERVICE_done (void *cls)

{

struct GNUNET_TRANSPORT_PluginFunctions *api = cls;

GNUNET_free (api);

return NULL;

}

9.3.5 Integration of the plugin with the build system

In order to compile the plugin, the Makefile.am �le for the service SERVICE should contain a rule similar to this:

plugindir = $(libdir)/gnunet

plugin_LTLIBRARIES = \

libgnunet_plugin_block_ext.la

libgnunet_plugin_block_ext_la_SOURCES = \

plugin_block_ext.c

libgnunet_plugin_block_ext_la_LIBADD = \

$(prefix)/lib/libgnunethello.la \

$(prefix)/lib/libgnunetblock.la \

$(prefix)/lib/libgnunetutil.la

libgnunet_plugin_block_ext_la_LDFLAGS = \

$(GN_PLUGIN_LDFLAGS)

libgnunet_plugin_block_ext_la_DEPENDENCIES = \

$(prefix)/lib/libgnunetblock.la

Exercise: Write a block plugin that accepts all queries and all replies but prints information about queries and replies when
the respective validation hooks are called.

9.4 Monitoring the DHT

It is possible to monitor the functioning of the local DHT service. When monitoring the DHT, the service will alert the
monitoring program of any events, both started locally or received for routing from another peer. The are three di�erent types
of events possible: a GET request, a PUT request or a response (a reply to a GET).

27

Since the di�erent events have di�erent associated data, the API gets 3 di�erent callbacks (one for each message type) and
optional type and key parameters, to allow for �ltering of messages. When an event happens, the appropiate callback is called
with all the information about the event.

void

get_callback (void *cls,

enum GNUNET_DHT_RouteOption options,

enum GNUNET_BLOCK_Type type,

uint32_t hop_count,

uint32_t desired_replication_level,

unsigned int path_length,

const struct GNUNET_PeerIdentity *path,

const struct GNUNET_HashCode *key)

{

}

void

get_resp_callback (void *cls,

enum GNUNET_BLOCK_Type type,

const struct GNUNET_PeerIdentity *get_path,

unsigned int get_path_length,

const struct GNUNET_PeerIdentity *put_path,

unsigned int put_path_length,

struct GNUNET_TIME_Absolute exp,

const struct GNUNET_HashCode *key,

const void *data,

size_t size)

{

}

void

put_callback (void *cls,

enum GNUNET_DHT_RouteOption options,

enum GNUNET_BLOCK_Type type,

uint32_t hop_count,

uint32_t desired_replication_level,

unsigned int path_length,

const struct GNUNET_PeerIdentity *path,

struct GNUNET_TIME_Absolute exp,

const struct GNUNET_HashCode *key,

const void *data,

size_t size)

{

}

monitor_handle = GNUNET_DHT_monitor_start (dht_handle,

block_type, /* GNUNET_BLOCK_TYPE_ANY for all */

28

key, /* NULL for all */

&get_callback,

&get_resp_callback,

&put_callback,

cls);

10 Debugging with gnunet-arm

Even if services are managed by gnunet-arm, you can start them with gdb or valgrind. For example, you could add the
following lines to your con�guration �le to start the DHT service in a gdb session in a fresh xterm:

[dht]

PREFIX=xterm -e gdb --args

Alternatively, you can stop a service that was started via ARM and run it manually:

$ gnunet-arm -k dht

$ gdb --args gnunet-service-dht -L DEBUG

$ valgrind gnunet-service-dht -L DEBUG

Assuming other services are well-written, they will automatically re-integrate the restarted service with the peer.
GNUnet provides a powerful logging mechanism providing log levels ERROR, WARNING, INFO and DEBUG. The current log level is

con�gured using the $GNUNET_FORCE_LOG environmental variable. The DEBUG level is only available if --enable-logging=verbose
was used when running configure. More details about logging can be found under https://gnunet.org/logging.

You should also probably enable the creation of core �les, by setting ulimit, and echo'ing 1 into /proc/sys/kernel/core_uses_pid.
Then you can investigate the core dumps with gdb, which is often the fastest method to �nd simple errors.

Exercise: Add a memory leak to your service and obtain a trace pointing to the leak using valgrind while running the
service from gnunet-service-arm.

29

https://gnunet.org/logging

	Installing GNUnet
	Obtaining a stable version
	Installing Build Tool Chain and Dependencies
	Obtaining the latest version from Subversion
	Compiling and Installing GNUnet
	Common Issues - Check your GNUnet installation

	Background: GNUnet Architecture
	First Steps with GNUnet
	Configure your peer
	Start a peer
	Monitor a peer
	Starting Two Peers by Hand
	Setup a second peer
	Start the second peer and connect the peers
	How to connect manually

	Starting Peers Using the Testbed Service

	Developing Applications
	gnunet-ext
	Adapting the Template

	Writing a Client Application
	Handling command-line options
	Writing a Client Library
	Connecting to the Service
	GNUnet Messages
	Sending Requests to the Service
	Receiving Replies from the Service

	Writing a user interface

	Writing a Service
	Code Placement
	Starting a Service
	Receiving Requests from Clients
	Responding to Clients

	Interacting directly with other Peers using the CORE Service
	New P2P connections
	Receiving P2P Messages
	Sending P2P Messages
	End of P2P connections

	Storing peer-specific data using the PEERSTORE service
	Storing records
	Retrieving records
	Monitoring records
	Disconnecting from PEERSTORE

	Using the DHT
	Storing data in the DHT
	Obtaining data from the DHT
	Implementing a block plugin
	Validating requests and replies
	Deriving a key from a reply
	Initialization of the plugin
	Shutdown of the plugin
	Integration of the plugin with the build system

	Monitoring the DHT

	Debugging with gnunet-arm

