/* This file is part of GNUnet (C) 2012 Christian Grothoff (and other contributing authors) GNUnet is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GNUnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNUnet; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /** * @file src/regex/regex.c * @brief library to create automatons from regular expressions * @author Maximilian Szengel */ #include "platform.h" #include "gnunet_container_lib.h" #include "gnunet_crypto_lib.h" #include "gnunet_regex_lib.h" #include "regex.h" #define initial_bits 10 /** * Context that contains an id counter for states and transitions as well as a * DLL of automatons used as a stack for NFA construction. */ struct GNUNET_REGEX_Context { /** * Unique state id. */ unsigned int state_id; /** * Unique transition id. */ unsigned int transition_id; /** * Unique SCC (Strongly Connected Component) id. */ unsigned int scc_id; /** * DLL of GNUNET_REGEX_Automaton's used as a stack. */ struct GNUNET_REGEX_Automaton *stack_head; /** * DLL of GNUNET_REGEX_Automaton's used as a stack. */ struct GNUNET_REGEX_Automaton *stack_tail; }; /** * Type of an automaton. */ enum GNUNET_REGEX_automaton_type { NFA, DFA }; /** * Automaton representation. */ struct GNUNET_REGEX_Automaton { /** * This is a linked list. */ struct GNUNET_REGEX_Automaton *prev; /** * This is a linked list. */ struct GNUNET_REGEX_Automaton *next; /** * First state of the automaton. This is mainly used for constructing an NFA, * where each NFA itself consists of one or more NFAs linked together. */ struct GNUNET_REGEX_State *start; /** * End state of the automaton. */ struct GNUNET_REGEX_State *end; /** * Number of states in the automaton. */ unsigned int state_count; /** * DLL of states. */ struct GNUNET_REGEX_State *states_head; /** * DLL of states */ struct GNUNET_REGEX_State *states_tail; /** * Type of the automaton. */ enum GNUNET_REGEX_automaton_type type; }; /** * A state. Can be used in DFA and NFA automatons. */ struct GNUNET_REGEX_State { /** * This is a linked list. */ struct GNUNET_REGEX_State *prev; /** * This is a linked list. */ struct GNUNET_REGEX_State *next; /** * Unique state id. */ unsigned int id; /** * If this is an accepting state or not. */ int accepting; /** * Marking of the state. This is used for marking all visited states when * traversing all states of an automaton and for cases where the state id * cannot be used (dfa minimization). */ int marked; /** * Marking the state as contained. This is used for checking, if the state is * contained in a set in constant time */ int contained; /** * Marking the state as part of an SCC (Strongly Connected Component). All * states with the same scc_id are part of the same SCC. scc_id is 0, if state * is not a part of any SCC. */ unsigned int scc_id; /** * Used for SCC detection. */ int index; /** * Used for SCC detection. */ int lowlink; /** * Human readable name of the automaton. Used for debugging and graph * creation. */ char *name; /** * Hash of the state. */ GNUNET_HashCode hash; /** * Proof for this state. */ char *proof; /** * Number of transitions from this state to other states. */ unsigned int transition_count; /** * DLL of transitions. */ struct Transition *transitions_head; /** * DLL of transitions. */ struct Transition *transitions_tail; /** * Set of states on which this state is based on. Used when creating a DFA out * of several NFA states. */ struct GNUNET_REGEX_StateSet *nfa_set; }; /** * Transition between two states. Each state can have 0-n transitions. If label * is 0, this is considered to be an epsilon transition. */ struct Transition { /** * This is a linked list. */ struct Transition *prev; /** * This is a linked list. */ struct Transition *next; /** * Unique id of this transition. */ unsigned int id; /** * Label for this transition. This is basically the edge label for the graph. */ char label; /** * State to which this transition leads. */ struct GNUNET_REGEX_State *to_state; /** * State from which this transition origins. */ struct GNUNET_REGEX_State *from_state; /** * Mark this transition. For example when reversing the automaton. */ int mark; }; /** * Set of states. */ struct GNUNET_REGEX_StateSet { /** * Array of states. */ struct GNUNET_REGEX_State **states; /** * Length of the 'states' array. */ unsigned int len; }; /* * Debug helper functions */ void debug_print_transitions (struct GNUNET_REGEX_State *); void debug_print_state (struct GNUNET_REGEX_State *s) { char *proof; if (NULL == s->proof) proof = "NULL"; else proof = s->proof; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "State %i: %s marked: %i accepting: %i scc_id: %i transitions: %i proof: %s\n", s->id, s->name, s->marked, s->accepting, s->scc_id, s->transition_count, proof); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transitions:\n"); debug_print_transitions (s); } void debug_print_states (struct GNUNET_REGEX_Automaton *a) { struct GNUNET_REGEX_State *s; for (s = a->states_head; NULL != s; s = s->next) debug_print_state (s); } void debug_print_transition (struct Transition *t) { char *to_state; char *from_state; char label; if (NULL == t) return; if (0 == t->label) label = '0'; else label = t->label; if (NULL == t->to_state) to_state = "NULL"; else to_state = t->to_state->name; if (NULL == t->from_state) from_state = "NULL"; else from_state = t->from_state->name; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transition %i: From %s on %c to %s\n", t->id, from_state, label, to_state); } void debug_print_transitions (struct GNUNET_REGEX_State *s) { struct Transition *t; for (t = s->transitions_head; NULL != t; t = t->next) debug_print_transition (t); } /** * Recursive function doing DFS with 'v' as a start, detecting all SCCs inside * the subgraph reachable from 'v'. Used with scc_tarjan function to detect all * SCCs inside an automaton. * * @param ctx context * @param v start vertex * @param index current index * @param stack stack for saving all SCCs * @param stack_size current size of the stack */ static void scc_tarjan_strongconnect (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_State *v, int *index, struct GNUNET_REGEX_State **stack, unsigned int *stack_size) { struct GNUNET_REGEX_State *w; struct Transition *t; v->index = *index; v->lowlink = *index; (*index)++; stack[(*stack_size)++] = v; v->contained = 1; for (t = v->transitions_head; NULL != t; t = t->next) { w = t->to_state; if (NULL != w && w->index < 0) { scc_tarjan_strongconnect (ctx, w, index, stack, stack_size); v->lowlink = (v->lowlink > w->lowlink) ? w->lowlink : v->lowlink; } else if (0 != w->contained) v->lowlink = (v->lowlink > w->index) ? w->index : v->lowlink; } if (v->lowlink == v->index) { w = stack[--(*stack_size)]; w->contained = 0; if (v != w) { ctx->scc_id++; while (v != w) { w->scc_id = ctx->scc_id; w = stack[--(*stack_size)]; w->contained = 0; } w->scc_id = ctx->scc_id; } } } /** * Detect all SCCs (Strongly Connected Components) inside the given automaton. * SCCs will be marked using the scc_id on each state. * * @param ctx context * @param a automaton */ static void scc_tarjan (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_Automaton *a) { int index; struct GNUNET_REGEX_State *v; struct GNUNET_REGEX_State *stack[a->state_count]; unsigned int stack_size; for (v = a->states_head; NULL != v; v = v->next) { v->contained = 0; v->index = -1; v->lowlink = -1; } stack_size = 0; index = 0; for (v = a->states_head; NULL != v; v = v->next) { if (v->index < 0) scc_tarjan_strongconnect (ctx, v, &index, stack, &stack_size); } } /** * Adds a transition from one state to another on 'label'. Does not add * duplicate states. * * @param ctx context * @param from_state starting state for the transition * @param label transition label * @param to_state state to where the transition should point to */ static void state_add_transition (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_State *from_state, const char label, struct GNUNET_REGEX_State *to_state) { int is_dup; struct Transition *t; if (NULL == from_state) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not create Transition.\n"); return; } // Do not add duplicate state transitions is_dup = GNUNET_NO; for (t = from_state->transitions_head; NULL != t; t = t->next) { if (t->to_state == to_state && t->label == label && t->from_state == from_state) { is_dup = GNUNET_YES; break; } } if (is_dup) return; t = GNUNET_malloc (sizeof (struct Transition)); t->id = ctx->transition_id++; t->label = label; t->to_state = to_state; t->from_state = from_state; // Add outgoing transition to 'from_state' from_state->transition_count++; GNUNET_CONTAINER_DLL_insert (from_state->transitions_head, from_state->transitions_tail, t); } /** * Compare two states. Used for sorting. * * @param a first state * @param b second state * * @return an integer less than, equal to, or greater than zero * if the first argument is considered to be respectively * less than, equal to, or greater than the second. */ static int state_compare (const void *a, const void *b) { struct GNUNET_REGEX_State **s1; struct GNUNET_REGEX_State **s2; s1 = (struct GNUNET_REGEX_State **) a; s2 = (struct GNUNET_REGEX_State **) b; return (*s1)->id - (*s2)->id; } /** * Get all edges leaving state 's'. * * @param s state. * @param edges all edges leaving 's'. * * @return number of edges. */ static unsigned int state_get_edges (struct GNUNET_REGEX_State *s, struct GNUNET_REGEX_Edge *edges) { struct Transition *t; unsigned int count; if (NULL == s) return 0; count = 0; for (t = s->transitions_head; NULL != t; t = t->next) { if (NULL != t->to_state) { edges[count].label = &t->label; edges[count].destination = t->to_state->hash; count++; } } return count; } /** * Compare to state sets by comparing the id's of the states that are contained * in each set. Both sets are expected to be sorted by id! * * @param sset1 first state set * @param sset2 second state set * * @return an integer less than, equal to, or greater than zero * if the first argument is considered to be respectively * less than, equal to, or greater than the second. */ static int state_set_compare (struct GNUNET_REGEX_StateSet *sset1, struct GNUNET_REGEX_StateSet *sset2) { int result; int i; if (NULL == sset1 || NULL == sset2) return 1; result = sset1->len - sset2->len; for (i = 0; i < sset1->len; i++) { if (0 != result) break; result = state_compare (&sset1->states[i], &sset2->states[i]); } return result; } /** * Clears the given StateSet 'set' * * @param set set to be cleared */ static void state_set_clear (struct GNUNET_REGEX_StateSet *set) { if (NULL != set) { if (NULL != set->states) GNUNET_free (set->states); GNUNET_free (set); } } /** * Clears an automaton fragment. Does not destroy the states inside the * automaton. * * @param a automaton to be cleared */ static void automaton_fragment_clear (struct GNUNET_REGEX_Automaton *a) { if (NULL == a) return; a->start = NULL; a->end = NULL; a->states_head = NULL; a->states_tail = NULL; a->state_count = 0; GNUNET_free (a); } /** * Frees the memory used by State 's' * * @param s state that should be destroyed */ static void automaton_destroy_state (struct GNUNET_REGEX_State *s) { struct Transition *t; struct Transition *next_t; if (NULL == s) return; if (NULL != s->name) GNUNET_free (s->name); if (NULL != s->proof) GNUNET_free (s->proof); for (t = s->transitions_head; NULL != t; t = next_t) { next_t = t->next; GNUNET_CONTAINER_DLL_remove (s->transitions_head, s->transitions_tail, t); GNUNET_free (t); } state_set_clear (s->nfa_set); GNUNET_free (s); } /** * Remove a state from the given automaton 'a'. Always use this function when * altering the states of an automaton. Will also remove all transitions leading * to this state, before destroying it. * * @param a automaton * @param s state to remove */ static void automaton_remove_state (struct GNUNET_REGEX_Automaton *a, struct GNUNET_REGEX_State *s) { struct GNUNET_REGEX_State *ss; struct GNUNET_REGEX_State *s_check; struct Transition *t_check; if (NULL == a || NULL == s) return; // remove state ss = s; GNUNET_CONTAINER_DLL_remove (a->states_head, a->states_tail, s); a->state_count--; // remove all transitions leading to this state for (s_check = a->states_head; NULL != s_check; s_check = s_check->next) { for (t_check = s_check->transitions_head; NULL != t_check; t_check = t_check->next) { if (t_check->to_state == ss) { GNUNET_CONTAINER_DLL_remove (s_check->transitions_head, s_check->transitions_tail, t_check); s_check->transition_count--; } } } automaton_destroy_state (ss); } /** * Merge two states into one. Will merge 's1' and 's2' into 's1' and destroy * 's2'. * * @param ctx context * @param a automaton * @param s1 first state * @param s2 second state, will be destroyed */ static void automaton_merge_states (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_Automaton *a, struct GNUNET_REGEX_State *s1, struct GNUNET_REGEX_State *s2) { struct GNUNET_REGEX_State *s_check; struct Transition *t_check; char *new_name; GNUNET_assert (NULL != ctx && NULL != a && NULL != s1 && NULL != s2); if (s1 == s2) return; // 1. Make all transitions pointing to s2 point to s1 for (s_check = a->states_head; NULL != s_check; s_check = s_check->next) { for (t_check = s_check->transitions_head; NULL != t_check; t_check = t_check->next) { if (s2 == t_check->to_state) t_check->to_state = s1; } } // 2. Add all transitions from s2 to sX to s1 for (t_check = s2->transitions_head; NULL != t_check; t_check = t_check->next) { if (t_check->to_state != s1) state_add_transition (ctx, s1, t_check->label, t_check->to_state); } // 3. Rename s1 to {s1,s2} new_name = GNUNET_strdup (s1->name); if (NULL != s1->name) { GNUNET_free (s1->name); s1->name = NULL; } GNUNET_asprintf (&s1->name, "{%s,%s}", new_name, s2->name); GNUNET_free (new_name); // remove state GNUNET_CONTAINER_DLL_remove (a->states_head, a->states_tail, s2); a->state_count--; automaton_destroy_state (s2); } /** * Add a state to the automaton 'a', always use this function to alter the * states DLL of the automaton. * * @param a automaton to add the state to * @param s state that should be added */ static void automaton_add_state (struct GNUNET_REGEX_Automaton *a, struct GNUNET_REGEX_State *s) { GNUNET_CONTAINER_DLL_insert (a->states_head, a->states_tail, s); a->state_count++; } /** * Function that is called with each state, when traversing an automaton. * * @param cls closure * @param s state */ typedef void (*GNUNET_REGEX_traverse_action) (void *cls, struct GNUNET_REGEX_State * s); /** * Traverses all states that are reachable from state 's'. Expects the states to * be unmarked (s->marked == GNUNET_NO). Performs 'action' on each visited * state. * * @param cls closure. * @param s start state. * @param action action to be performed on each state. */ static void automaton_state_traverse (void *cls, struct GNUNET_REGEX_State *s, GNUNET_REGEX_traverse_action action) { struct Transition *t; if (GNUNET_NO == s->marked) { s->marked = GNUNET_YES; if (action > 0) action (cls, s); for (t = s->transitions_head; NULL != t; t = t->next) automaton_state_traverse (cls, t->to_state, action); } } /** * Traverses the given automaton from it's start state, visiting all reachable * states and calling 'action' on each one of them. * * @param cls closure. * @param a automaton. * @param action action to be performed on each state. */ static void automaton_traverse (void *cls, struct GNUNET_REGEX_Automaton *a, GNUNET_REGEX_traverse_action action) { struct GNUNET_REGEX_State *s; for (s = a->states_head; NULL != s; s = s->next) s->marked = GNUNET_NO; automaton_state_traverse (cls, a->start, action); } /** * Reverses all transitions of the given automaton. * * @param a automaton. */ static void automaton_reverse (struct GNUNET_REGEX_Automaton *a) { struct GNUNET_REGEX_State *s; struct Transition *t; struct Transition *t_next; struct GNUNET_REGEX_State *s_swp; for (s = a->states_head; NULL != s; s = s->next) for (t = s->transitions_head; NULL != t; t = t->next) t->mark = GNUNET_NO; for (s = a->states_head; NULL != s; s = s->next) { for (t = s->transitions_head; NULL != t; t = t_next) { t_next = t->next; if (GNUNET_YES == t->mark || t->from_state == t->to_state) continue; t->mark = GNUNET_YES; GNUNET_CONTAINER_DLL_remove (t->from_state->transitions_head, t->from_state->transitions_tail, t); t->from_state->transition_count--; GNUNET_CONTAINER_DLL_insert (t->to_state->transitions_head, t->to_state->transitions_tail, t); t->to_state->transition_count++; s_swp = t->from_state; t->from_state = t->to_state; t->to_state = s_swp; } } } /** * Create proof for the given state. * * @param cls closure. * @param s state. */ static void automaton_create_proofs_step (void *cls, struct GNUNET_REGEX_State *s) { struct Transition *t; int i; char *tmp; for (i = 0, t = s->transitions_head; NULL != t; t = t->next, i++) { if (t->to_state == s) GNUNET_asprintf (&tmp, "%c*", t->label); else if (i != s->transition_count - 1) GNUNET_asprintf (&tmp, "%c|", t->label); else GNUNET_asprintf (&tmp, "%c", t->label); if (NULL != s->proof) s->proof = GNUNET_realloc (s->proof, strlen (s->proof) + strlen (tmp) + 1); else s->proof = GNUNET_malloc (strlen (tmp) + 1); strcat (s->proof, tmp); GNUNET_free (tmp); } } /** * Create proofs for all states in the given automaton. * * @param a automaton. */ static void automaton_create_proofs (struct GNUNET_REGEX_Automaton *a) { struct GNUNET_REGEX_State *s; automaton_reverse (a); for (s = a->states_head; NULL != s; s = s->next) automaton_create_proofs_step (NULL, s); automaton_reverse (a); } /** * Creates a new DFA state based on a set of NFA states. Needs to be freed using * automaton_destroy_state. * * @param ctx context * @param nfa_states set of NFA states on which the DFA should be based on * * @return new DFA state */ static struct GNUNET_REGEX_State * dfa_state_create (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_StateSet *nfa_states) { struct GNUNET_REGEX_State *s; char *name; int len = 0; struct GNUNET_REGEX_State *cstate; struct Transition *ctran; int insert = 1; struct Transition *t; int i; s = GNUNET_malloc (sizeof (struct GNUNET_REGEX_State)); s->id = ctx->state_id++; s->accepting = 0; s->marked = 0; s->name = NULL; s->scc_id = 0; s->index = -1; s->lowlink = -1; s->contained = 0; s->proof = NULL; if (NULL == nfa_states) { GNUNET_asprintf (&s->name, "s%i", s->id); return s; } s->nfa_set = nfa_states; if (nfa_states->len < 1) return s; // Create a name based on 'sset' s->name = GNUNET_malloc (sizeof (char) * 2); strcat (s->name, "{"); name = NULL; for (i = 0; i < nfa_states->len; i++) { cstate = nfa_states->states[i]; GNUNET_asprintf (&name, "%i,", cstate->id); if (NULL != name) { len = strlen (s->name) + strlen (name) + 1; s->name = GNUNET_realloc (s->name, len); strcat (s->name, name); GNUNET_free (name); name = NULL; } // Add a transition for each distinct label to NULL state for (ctran = cstate->transitions_head; NULL != ctran; ctran = ctran->next) { if (0 != ctran->label) { insert = 1; for (t = s->transitions_head; NULL != t; t = t->next) { if (t->label == ctran->label) { insert = 0; break; } } if (insert) state_add_transition (ctx, s, ctran->label, NULL); } } // If the nfa_states contain an accepting state, the new dfa state is also // accepting if (cstate->accepting) s->accepting = 1; } s->name[strlen (s->name) - 1] = '}'; return s; } /** * Move from the given state 's' to the next state on transition 'label' * * @param s starting state * @param label edge label to follow * * @return new state or NULL, if transition on label not possible */ static struct GNUNET_REGEX_State * dfa_move (struct GNUNET_REGEX_State *s, const char label) { struct Transition *t; struct GNUNET_REGEX_State *new_s; if (NULL == s) return NULL; new_s = NULL; for (t = s->transitions_head; NULL != t; t = t->next) { if (label == t->label) { new_s = t->to_state; break; } } return new_s; } /** * Remove all unreachable states from DFA 'a'. Unreachable states are those * states that are not reachable from the starting state. * * @param a DFA automaton */ static void dfa_remove_unreachable_states (struct GNUNET_REGEX_Automaton *a) { struct GNUNET_REGEX_State *s; struct GNUNET_REGEX_State *s_next; // 1. unmark all states for (s = a->states_head; NULL != s; s = s->next) s->marked = GNUNET_NO; // 2. traverse dfa from start state and mark all visited states automaton_traverse (NULL, a, NULL); // 3. delete all states that were not visited for (s = a->states_head; NULL != s; s = s_next) { s_next = s->next; if (GNUNET_NO == s->marked) automaton_remove_state (a, s); } } /** * Remove all dead states from the DFA 'a'. Dead states are those states that do * not transition to any other state but themselfes. * * @param a DFA automaton */ static void dfa_remove_dead_states (struct GNUNET_REGEX_Automaton *a) { struct GNUNET_REGEX_State *s; struct Transition *t; int dead; GNUNET_assert (DFA == a->type); for (s = a->states_head; NULL != s; s = s->next) { if (s->accepting) continue; dead = 1; for (t = s->transitions_head; NULL != t; t = t->next) { if (NULL != t->to_state && t->to_state != s) { dead = 0; break; } } if (0 == dead) continue; // state s is dead, remove it automaton_remove_state (a, s); } } /** * Merge all non distinguishable states in the DFA 'a' * * @param ctx context * @param a DFA automaton */ static void dfa_merge_nondistinguishable_states (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_Automaton *a) { int i; int table[a->state_count][a->state_count]; struct GNUNET_REGEX_State *s1; struct GNUNET_REGEX_State *s2; struct Transition *t1; struct Transition *t2; struct GNUNET_REGEX_State *s1_next; struct GNUNET_REGEX_State *s2_next; int change; int num_equal_edges; for (i = 0, s1 = a->states_head; i < a->state_count && NULL != s1; i++, s1 = s1->next) { s1->marked = i; } // Mark all pairs of accepting/!accepting states for (s1 = a->states_head; NULL != s1; s1 = s1->next) { for (s2 = a->states_head; NULL != s2; s2 = s2->next) { table[s1->marked][s2->marked] = 0; if ((s1->accepting && !s2->accepting) || (!s1->accepting && s2->accepting)) { table[s1->marked][s2->marked] = 1; } } } // Find all equal states change = 1; while (0 != change) { change = 0; for (s1 = a->states_head; NULL != s1; s1 = s1->next) { for (s2 = a->states_head; NULL != s2 && s1 != s2; s2 = s2->next) { if (0 != table[s1->marked][s2->marked]) continue; num_equal_edges = 0; for (t1 = s1->transitions_head; NULL != t1; t1 = t1->next) { for (t2 = s2->transitions_head; NULL != t2; t2 = t2->next) { if (t1->label == t2->label) { num_equal_edges++; if (0 != table[t1->to_state->marked][t2->to_state->marked] || 0 != table[t2->to_state->marked][t1->to_state->marked]) { table[s1->marked][s2->marked] = t1->label != 0 ? t1->label : 1; change = 1; } } } } if (num_equal_edges != s1->transition_count || num_equal_edges != s2->transition_count) { // Make sure ALL edges of possible equal states are the same table[s1->marked][s2->marked] = -2; } } } } // Merge states that are equal for (s1 = a->states_head; NULL != s1; s1 = s1_next) { s1_next = s1->next; for (s2 = a->states_head; NULL != s2 && s1 != s2; s2 = s2_next) { s2_next = s2->next; if (table[s1->marked][s2->marked] == 0) automaton_merge_states (ctx, a, s1, s2); } } } /** * Minimize the given DFA 'a' by removing all unreachable states, removing all * dead states and merging all non distinguishable states * * @param ctx context * @param a DFA automaton */ static void dfa_minimize (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_Automaton *a) { if (NULL == a) return; GNUNET_assert (DFA == a->type); // 1. remove unreachable states dfa_remove_unreachable_states (a); // 2. remove dead states dfa_remove_dead_states (a); // 3. Merge nondistinguishable states dfa_merge_nondistinguishable_states (ctx, a); } /** * Creates a new NFA fragment. Needs to be cleared using * automaton_fragment_clear. * * @param start starting state * @param end end state * * @return new NFA fragment */ static struct GNUNET_REGEX_Automaton * nfa_fragment_create (struct GNUNET_REGEX_State *start, struct GNUNET_REGEX_State *end) { struct GNUNET_REGEX_Automaton *n; n = GNUNET_malloc (sizeof (struct GNUNET_REGEX_Automaton)); n->type = NFA; n->start = NULL; n->end = NULL; if (NULL == start && NULL == end) return n; automaton_add_state (n, end); automaton_add_state (n, start); n->start = start; n->end = end; return n; } /** * Adds a list of states to the given automaton 'n'. * * @param n automaton to which the states should be added * @param states_head head of the DLL of states * @param states_tail tail of the DLL of states */ static void nfa_add_states (struct GNUNET_REGEX_Automaton *n, struct GNUNET_REGEX_State *states_head, struct GNUNET_REGEX_State *states_tail) { struct GNUNET_REGEX_State *s; if (NULL == n || NULL == states_head) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not add states\n"); return; } if (NULL == n->states_head) { n->states_head = states_head; n->states_tail = states_tail; return; } if (NULL != states_head) { n->states_tail->next = states_head; n->states_tail = states_tail; } for (s = states_head; NULL != s; s = s->next) n->state_count++; } /** * Creates a new NFA state. Needs to be freed using automaton_destroy_state. * * @param ctx context * @param accepting is it an accepting state or not * * @return new NFA state */ static struct GNUNET_REGEX_State * nfa_state_create (struct GNUNET_REGEX_Context *ctx, int accepting) { struct GNUNET_REGEX_State *s; s = GNUNET_malloc (sizeof (struct GNUNET_REGEX_State)); s->id = ctx->state_id++; s->accepting = accepting; s->marked = 0; s->contained = 0; s->index = -1; s->lowlink = -1; s->scc_id = 0; s->name = NULL; GNUNET_asprintf (&s->name, "s%i", s->id); return s; } /** * Calculates the NFA closure set for the given state. * * @param nfa the NFA containing 's' * @param s starting point state * @param label transitioning label on which to base the closure on, * pass 0 for epsilon transition * * @return sorted nfa closure on 'label' (epsilon closure if 'label' is 0) */ static struct GNUNET_REGEX_StateSet * nfa_closure_create (struct GNUNET_REGEX_Automaton *nfa, struct GNUNET_REGEX_State *s, const char label) { struct GNUNET_REGEX_StateSet *cls; struct GNUNET_REGEX_StateSet *cls_check; struct GNUNET_REGEX_State *clsstate; struct GNUNET_REGEX_State *currentstate; struct Transition *ctran; if (NULL == s) return NULL; cls = GNUNET_malloc (sizeof (struct GNUNET_REGEX_StateSet)); cls_check = GNUNET_malloc (sizeof (struct GNUNET_REGEX_StateSet)); for (clsstate = nfa->states_head; NULL != clsstate; clsstate = clsstate->next) clsstate->contained = 0; // Add start state to closure only for epsilon closure if (0 == label) GNUNET_array_append (cls->states, cls->len, s); GNUNET_array_append (cls_check->states, cls_check->len, s); while (cls_check->len > 0) { currentstate = cls_check->states[cls_check->len - 1]; GNUNET_array_grow (cls_check->states, cls_check->len, cls_check->len - 1); for (ctran = currentstate->transitions_head; NULL != ctran; ctran = ctran->next) { if (NULL != ctran->to_state && label == ctran->label) { clsstate = ctran->to_state; if (NULL != clsstate && 0 == clsstate->contained) { GNUNET_array_append (cls->states, cls->len, clsstate); GNUNET_array_append (cls_check->states, cls_check->len, clsstate); clsstate->contained = 1; } } } } GNUNET_assert (0 == cls_check->len); GNUNET_free (cls_check); if (cls->len > 1) qsort (cls->states, cls->len, sizeof (struct GNUNET_REGEX_State *), state_compare); return cls; } /** * Calculates the closure set for the given set of states. * * @param nfa the NFA containing 's' * @param states list of states on which to base the closure on * @param label transitioning label for which to base the closure on, * pass 0 for epsilon transition * * @return sorted nfa closure on 'label' (epsilon closure if 'label' is 0) */ static struct GNUNET_REGEX_StateSet * nfa_closure_set_create (struct GNUNET_REGEX_Automaton *nfa, struct GNUNET_REGEX_StateSet *states, const char label) { struct GNUNET_REGEX_State *s; struct GNUNET_REGEX_StateSet *sset; struct GNUNET_REGEX_StateSet *cls; int i; int j; int k; int contains; if (NULL == states) return NULL; cls = GNUNET_malloc (sizeof (struct GNUNET_REGEX_StateSet)); for (i = 0; i < states->len; i++) { s = states->states[i]; sset = nfa_closure_create (nfa, s, label); for (j = 0; j < sset->len; j++) { contains = 0; for (k = 0; k < cls->len; k++) { if (sset->states[j]->id == cls->states[k]->id) { contains = 1; break; } } if (!contains) GNUNET_array_append (cls->states, cls->len, sset->states[j]); } state_set_clear (sset); } if (cls->len > 1) qsort (cls->states, cls->len, sizeof (struct GNUNET_REGEX_State *), state_compare); return cls; } /** * Pops two NFA fragments (a, b) from the stack and concatenates them (ab) * * @param ctx context */ static void nfa_add_concatenation (struct GNUNET_REGEX_Context *ctx) { struct GNUNET_REGEX_Automaton *a; struct GNUNET_REGEX_Automaton *b; struct GNUNET_REGEX_Automaton *new; b = ctx->stack_tail; GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, b); a = ctx->stack_tail; GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); state_add_transition (ctx, a->end, 0, b->start); a->end->accepting = 0; b->end->accepting = 1; new = nfa_fragment_create (NULL, NULL); nfa_add_states (new, a->states_head, a->states_tail); nfa_add_states (new, b->states_head, b->states_tail); new->start = a->start; new->end = b->end; automaton_fragment_clear (a); automaton_fragment_clear (b); GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new); } /** * Pops a NFA fragment from the stack (a) and adds a new fragment (a*) * * @param ctx context */ static void nfa_add_star_op (struct GNUNET_REGEX_Context *ctx) { struct GNUNET_REGEX_Automaton *a; struct GNUNET_REGEX_Automaton *new; struct GNUNET_REGEX_State *start; struct GNUNET_REGEX_State *end; a = ctx->stack_tail; GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); if (NULL == a) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "nfa_add_star_op failed, because there was no element on the stack"); return; } start = nfa_state_create (ctx, 0); end = nfa_state_create (ctx, 1); state_add_transition (ctx, start, 0, a->start); state_add_transition (ctx, start, 0, end); state_add_transition (ctx, a->end, 0, a->start); state_add_transition (ctx, a->end, 0, end); a->end->accepting = 0; end->accepting = 1; new = nfa_fragment_create (start, end); nfa_add_states (new, a->states_head, a->states_tail); automaton_fragment_clear (a); GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new); } /** * Pops an NFA fragment (a) from the stack and adds a new fragment (a+) * * @param ctx context */ static void nfa_add_plus_op (struct GNUNET_REGEX_Context *ctx) { struct GNUNET_REGEX_Automaton *a; a = ctx->stack_tail; GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); state_add_transition (ctx, a->end, 0, a->start); GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, a); } /** * Pops an NFA fragment (a) from the stack and adds a new fragment (a?) * * @param ctx context */ static void nfa_add_question_op (struct GNUNET_REGEX_Context *ctx) { struct GNUNET_REGEX_Automaton *a; struct GNUNET_REGEX_Automaton *new; struct GNUNET_REGEX_State *start; struct GNUNET_REGEX_State *end; a = ctx->stack_tail; GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); if (NULL == a) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "nfa_add_question_op failed, because there was no element on the stack"); return; } start = nfa_state_create (ctx, 0); end = nfa_state_create (ctx, 1); state_add_transition (ctx, start, 0, a->start); state_add_transition (ctx, start, 0, end); state_add_transition (ctx, a->end, 0, end); a->end->accepting = 0; new = nfa_fragment_create (start, end); nfa_add_states (new, a->states_head, a->states_tail); automaton_fragment_clear (a); GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new); } /** * Pops two NFA fragments (a, b) from the stack and adds a new NFA fragment that * alternates between a and b (a|b) * * @param ctx context */ static void nfa_add_alternation (struct GNUNET_REGEX_Context *ctx) { struct GNUNET_REGEX_Automaton *a; struct GNUNET_REGEX_Automaton *b; struct GNUNET_REGEX_Automaton *new; struct GNUNET_REGEX_State *start; struct GNUNET_REGEX_State *end; b = ctx->stack_tail; GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, b); a = ctx->stack_tail; GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a); start = nfa_state_create (ctx, 0); end = nfa_state_create (ctx, 1); state_add_transition (ctx, start, 0, a->start); state_add_transition (ctx, start, 0, b->start); state_add_transition (ctx, a->end, 0, end); state_add_transition (ctx, b->end, 0, end); a->end->accepting = 0; b->end->accepting = 0; end->accepting = 1; new = nfa_fragment_create (start, end); nfa_add_states (new, a->states_head, a->states_tail); nfa_add_states (new, b->states_head, b->states_tail); automaton_fragment_clear (a); automaton_fragment_clear (b); GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new); } /** * Adds a new nfa fragment to the stack * * @param ctx context * @param lit label for nfa transition */ static void nfa_add_label (struct GNUNET_REGEX_Context *ctx, const char lit) { struct GNUNET_REGEX_Automaton *n; struct GNUNET_REGEX_State *start; struct GNUNET_REGEX_State *end; GNUNET_assert (NULL != ctx); start = nfa_state_create (ctx, 0); end = nfa_state_create (ctx, 1); state_add_transition (ctx, start, lit, end); n = nfa_fragment_create (start, end); GNUNET_assert (NULL != n); GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, n); } /** * Initialize a new context * * @param ctx context */ static void GNUNET_REGEX_context_init (struct GNUNET_REGEX_Context *ctx) { if (NULL == ctx) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Context was NULL!"); return; } ctx->state_id = 0; ctx->transition_id = 0; ctx->scc_id = 0; ctx->stack_head = NULL; ctx->stack_tail = NULL; } /** * Construct an NFA by parsing the regex string of length 'len'. * * @param regex regular expression string * @param len length of the string * * @return NFA, needs to be freed using GNUNET_REGEX_destroy_automaton */ struct GNUNET_REGEX_Automaton * GNUNET_REGEX_construct_nfa (const char *regex, const size_t len) { struct GNUNET_REGEX_Context ctx; struct GNUNET_REGEX_Automaton *nfa; const char *regexp; char *error_msg; unsigned int count; unsigned int altcount; unsigned int atomcount; unsigned int pcount; struct { int altcount; int atomcount; } *p; GNUNET_REGEX_context_init (&ctx); regexp = regex; p = NULL; error_msg = NULL; altcount = 0; atomcount = 0; pcount = 0; for (count = 0; count < len && *regexp; count++, regexp++) { switch (*regexp) { case '(': if (atomcount > 1) { --atomcount; nfa_add_concatenation (&ctx); } GNUNET_array_grow (p, pcount, pcount + 1); p[pcount - 1].altcount = altcount; p[pcount - 1].atomcount = atomcount; altcount = 0; atomcount = 0; break; case '|': if (0 == atomcount) { error_msg = "Cannot append '|' to nothing"; goto error; } while (--atomcount > 0) nfa_add_concatenation (&ctx); altcount++; break; case ')': if (0 == pcount) { error_msg = "Missing opening '('"; goto error; } if (0 == atomcount) { // Ignore this: "()" pcount--; altcount = p[pcount].altcount; atomcount = p[pcount].atomcount; break; } while (--atomcount > 0) nfa_add_concatenation (&ctx); for (; altcount > 0; altcount--) nfa_add_alternation (&ctx); pcount--; altcount = p[pcount].altcount; atomcount = p[pcount].atomcount; atomcount++; break; case '*': if (atomcount == 0) { error_msg = "Cannot append '*' to nothing"; goto error; } nfa_add_star_op (&ctx); break; case '+': if (atomcount == 0) { error_msg = "Cannot append '+' to nothing"; goto error; } nfa_add_plus_op (&ctx); break; case '?': if (atomcount == 0) { error_msg = "Cannot append '?' to nothing"; goto error; } nfa_add_question_op (&ctx); break; case 92: /* escape: \ */ regexp++; count++; default: if (atomcount > 1) { --atomcount; nfa_add_concatenation (&ctx); } nfa_add_label (&ctx, *regexp); atomcount++; break; } } if (0 != pcount) { error_msg = "Unbalanced parenthesis"; goto error; } while (--atomcount > 0) nfa_add_concatenation (&ctx); for (; altcount > 0; altcount--) nfa_add_alternation (&ctx); if (NULL != p) GNUNET_free (p); nfa = ctx.stack_tail; GNUNET_CONTAINER_DLL_remove (ctx.stack_head, ctx.stack_tail, nfa); if (NULL != ctx.stack_head) { error_msg = "Creating the NFA failed. NFA stack was not empty!"; goto error; } return nfa; error: GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not parse regex\n"); if (NULL != error_msg) GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "%s\n", error_msg); if (NULL != p) GNUNET_free (p); while (NULL != ctx.stack_tail) { GNUNET_REGEX_automaton_destroy (ctx.stack_tail); GNUNET_CONTAINER_DLL_remove (ctx.stack_head, ctx.stack_tail, ctx.stack_tail); } return NULL; } /** * Create DFA states based on given 'nfa' and starting with 'dfa_state'. * * @param ctx context. * @param nfa NFA automaton. * @param dfa DFA automaton. * @param dfa_state current dfa state, pass epsilon closure of first nfa state * for starting. */ static void construct_dfa_states (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_Automaton *nfa, struct GNUNET_REGEX_Automaton *dfa, struct GNUNET_REGEX_State *dfa_state) { struct Transition *ctran; struct GNUNET_REGEX_State *state_iter; struct GNUNET_REGEX_State *new_dfa_state; struct GNUNET_REGEX_State *state_contains; struct GNUNET_REGEX_StateSet *tmp; struct GNUNET_REGEX_StateSet *nfa_set; for (ctran = dfa_state->transitions_head; NULL != ctran; ctran = ctran->next) { if (0 == ctran->label || NULL != ctran->to_state) continue; tmp = nfa_closure_set_create (nfa, dfa_state->nfa_set, ctran->label); nfa_set = nfa_closure_set_create (nfa, tmp, 0); state_set_clear (tmp); new_dfa_state = dfa_state_create (ctx, nfa_set); state_contains = NULL; for (state_iter = dfa->states_head; NULL != state_iter; state_iter = state_iter->next) { if (0 == state_set_compare (state_iter->nfa_set, new_dfa_state->nfa_set)) state_contains = state_iter; } if (NULL == state_contains) { automaton_add_state (dfa, new_dfa_state); ctran->to_state = new_dfa_state; construct_dfa_states (ctx, nfa, dfa, new_dfa_state); } else { ctran->to_state = state_contains; automaton_destroy_state (new_dfa_state); } } } /** * Construct DFA for the given 'regex' of length 'len' * * @param regex regular expression string * @param len length of the regular expression * * @return DFA, needs to be freed using GNUNET_REGEX_destroy_automaton */ struct GNUNET_REGEX_Automaton * GNUNET_REGEX_construct_dfa (const char *regex, const size_t len) { struct GNUNET_REGEX_Context ctx; struct GNUNET_REGEX_Automaton *dfa; struct GNUNET_REGEX_Automaton *nfa; struct GNUNET_REGEX_StateSet *nfa_set; GNUNET_REGEX_context_init (&ctx); // Create NFA nfa = GNUNET_REGEX_construct_nfa (regex, len); if (NULL == nfa) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not create DFA, because NFA creation failed\n"); return NULL; } dfa = GNUNET_malloc (sizeof (struct GNUNET_REGEX_Automaton)); dfa->type = DFA; // Create DFA start state from epsilon closure nfa_set = nfa_closure_create (nfa, nfa->start, 0); dfa->start = dfa_state_create (&ctx, nfa_set); automaton_add_state (dfa, dfa->start); construct_dfa_states (&ctx, nfa, dfa, dfa->start); GNUNET_REGEX_automaton_destroy (nfa); // Minimize DFA dfa_minimize (&ctx, dfa); // Calculate SCCs scc_tarjan (&ctx, dfa); // Create proofs for all states automaton_create_proofs (dfa); return dfa; } /** * Free the memory allocated by constructing the GNUNET_REGEX_Automaton data * structure. * * @param a automaton to be destroyed */ void GNUNET_REGEX_automaton_destroy (struct GNUNET_REGEX_Automaton *a) { struct GNUNET_REGEX_State *s; struct GNUNET_REGEX_State *next_state; if (NULL == a) return; for (s = a->states_head; NULL != s;) { next_state = s->next; automaton_destroy_state (s); s = next_state; } GNUNET_free (a); } /** * Save the given automaton as a GraphViz dot file * * @param a the automaton to be saved * @param filename where to save the file */ void GNUNET_REGEX_automaton_save_graph (struct GNUNET_REGEX_Automaton *a, const char *filename) { struct GNUNET_REGEX_State *s; struct Transition *ctran; char *s_acc = NULL; char *s_tran = NULL; char *start; char *end; FILE *p; if (NULL == a) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not print NFA, was NULL!"); return; } if (NULL == filename || strlen (filename) < 1) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "No Filename given!"); return; } p = fopen (filename, "w"); if (NULL == p) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not open file for writing: %s", filename); return; } start = "digraph G {\nrankdir=LR\n"; fwrite (start, strlen (start), 1, p); for (s = a->states_head; NULL != s; s = s->next) { if (s->accepting) { GNUNET_asprintf (&s_acc, "\"%s\" [shape=doublecircle, color=\"0.%i 0.8 0.95\"];\n", s->name, s->scc_id); } else { GNUNET_asprintf (&s_acc, "\"%s\" [color=\"0.%i 0.8 0.95\"];\n", s->name, s->scc_id); } if (NULL == s_acc) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not print state %s\n", s->name); return; } fwrite (s_acc, strlen (s_acc), 1, p); GNUNET_free (s_acc); s_acc = NULL; for (ctran = s->transitions_head; NULL != ctran; ctran = ctran->next) { if (NULL == ctran->to_state) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Transition from State %i has has no state for transitioning\n", s->id); continue; } if (ctran->label == 0) { GNUNET_asprintf (&s_tran, "\"%s\" -> \"%s\" [label = \"epsilon\", color=\"0.%i 0.8 0.95\"];\n", s->name, ctran->to_state->name, s->scc_id); } else { GNUNET_asprintf (&s_tran, "\"%s\" -> \"%s\" [label = \"%c\", color=\"0.%i 0.8 0.95\"];\n", s->name, ctran->to_state->name, ctran->label, s->scc_id); } if (NULL == s_tran) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not print state %s\n", s->name); return; } fwrite (s_tran, strlen (s_tran), 1, p); GNUNET_free (s_tran); s_tran = NULL; } } end = "\n}\n"; fwrite (end, strlen (end), 1, p); fclose (p); } /** * Evaluates the given string using the given DFA automaton * * @param a automaton, type must be DFA * @param string string that should be evaluated * * @return 0 if string matches, non 0 otherwise */ static int evaluate_dfa (struct GNUNET_REGEX_Automaton *a, const char *string) { const char *strp; struct GNUNET_REGEX_State *s; if (DFA != a->type) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Tried to evaluate DFA, but NFA automaton given"); return -1; } s = a->start; for (strp = string; NULL != strp && *strp; strp++) { s = dfa_move (s, *strp); if (NULL == s) break; } if (NULL != s && s->accepting) return 0; return 1; } /** * Evaluates the given string using the given NFA automaton * * @param a automaton, type must be NFA * @param string string that should be evaluated * * @return 0 if string matches, non 0 otherwise */ static int evaluate_nfa (struct GNUNET_REGEX_Automaton *a, const char *string) { const char *strp; struct GNUNET_REGEX_State *s; struct GNUNET_REGEX_StateSet *sset; struct GNUNET_REGEX_StateSet *new_sset; int i; int result; if (NFA != a->type) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Tried to evaluate NFA, but DFA automaton given"); return -1; } result = 1; strp = string; sset = nfa_closure_create (a, a->start, 0); for (strp = string; NULL != strp && *strp; strp++) { new_sset = nfa_closure_set_create (a, sset, *strp); state_set_clear (sset); sset = nfa_closure_set_create (a, new_sset, 0); state_set_clear (new_sset); } for (i = 0; i < sset->len; i++) { s = sset->states[i]; if (NULL != s && s->accepting) { result = 0; break; } } state_set_clear (sset); return result; } /** * Evaluates the given 'string' against the given compiled regex * * @param a automaton * @param string string to check * * @return 0 if string matches, non 0 otherwise */ int GNUNET_REGEX_eval (struct GNUNET_REGEX_Automaton *a, const char *string) { int result; switch (a->type) { case DFA: result = evaluate_dfa (a, string); break; case NFA: result = evaluate_nfa (a, string); break; default: GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Evaluating regex failed, automaton has no type!\n"); result = GNUNET_SYSERR; break; } return result; } /** * Get the first key for the given 'input_string'. This hashes the first x bits * of the 'input_strings'. * * @param input_string string. * @param string_len length of the 'input_string'. * @param key pointer to where to write the hash code. * * @return number of bits of 'input_string' that have been consumed * to construct the key */ unsigned int GNUNET_REGEX_get_first_key (const char *input_string, unsigned int string_len, GNUNET_HashCode * key) { unsigned int size; size = string_len < initial_bits ? string_len : initial_bits; if (NULL == input_string) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Given input string was NULL!\n"); return 0; } GNUNET_CRYPTO_hash (input_string, size, key); return size; } /** * Check if the given 'proof' matches the given 'key'. * * @param proof partial regex * @param key hash * * @return GNUNET_OK if the proof is valid for the given key */ int GNUNET_REGEX_check_proof (const char *proof, const GNUNET_HashCode * key) { return GNUNET_OK; } /** * Iterate over all edges helper function starting from state 's', calling * iterator on for each edge. * * @param s state. * @param iterator iterator function called for each edge. * @param iterator_cls closure. */ static void iterate_edge (struct GNUNET_REGEX_State *s, GNUNET_REGEX_KeyIterator iterator, void *iterator_cls) { struct Transition *t; struct GNUNET_REGEX_Edge edges[s->transition_count]; unsigned int num_edges; if (GNUNET_YES != s->marked) { s->marked = GNUNET_YES; num_edges = state_get_edges (s, edges); iterator (iterator_cls, &s->hash, s->proof, s->accepting, num_edges, edges); for (t = s->transitions_head; NULL != t; t = t->next) iterate_edge (t->to_state, iterator, iterator_cls); } } /** * Iterate over all edges starting from start state of automaton 'a'. Calling * iterator for each edge. * * @param a automaton. * @param iterator iterator called for each edge. * @param iterator_cls closure. */ void GNUNET_REGEX_iterate_all_edges (struct GNUNET_REGEX_Automaton *a, GNUNET_REGEX_KeyIterator iterator, void *iterator_cls) { struct GNUNET_REGEX_State *s; for (s = a->states_head; NULL != s; s = s->next) s->marked = GNUNET_NO; iterate_edge (a->start, iterator, iterator_cls); }