/* This file is part of GNUnet Copyright (C) 2010-2014, 2018, 2019 GNUnet e.V. GNUnet is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNUnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see . SPDX-License-Identifier: AGPL3.0-or-later */ /** * @file transport/gnunet-communicator-tcp.c * @brief Transport plugin using TCP. * @author Christian Grothoff * * TODO: * - support DNS names in BINDTO option (#5528) * - support NAT connection reversal method (#5529) * - support other TCP-specific NAT traversal methods (#5531) * - add replay protection support to the protocol by * adding a nonce in the KX and requiring (!) a * nounce ACK to be send within the first X bytes of * data (#5530) */ #include "platform.h" #include "gnunet_util_lib.h" #include "gnunet_protocols.h" #include "gnunet_signatures.h" #include "gnunet_constants.h" #include "gnunet_nt_lib.h" #include "gnunet_nat_service.h" #include "gnunet_statistics_service.h" #include "gnunet_transport_communication_service.h" /** * How long do we believe our addresses to remain up (before * the other peer should revalidate). */ #define ADDRESS_VALIDITY_PERIOD \ GNUNET_TIME_relative_multiply (GNUNET_TIME_UNIT_HOURS, 4) /** * How many messages do we keep at most in the queue to the * transport service before we start to drop (default, * can be changed via the configuration file). * Should be _below_ the level of the communicator API, as * otherwise we may read messages just to have them dropped * by the communicator API. */ #define DEFAULT_MAX_QUEUE_LENGTH 8 /** * Size of our IO buffers for ciphertext data. Must be at * least UINT_MAX + sizeof (struct TCPBox). */ #define BUF_SIZE (2 * 64 * 1024 + sizeof(struct TCPBox)) /** * How often do we rekey based on time (at least) */ #define DEFAULT_REKEY_INTERVAL GNUNET_TIME_UNIT_DAYS /** * How long do we wait until we must have received the initial KX? */ #define PROTO_QUEUE_TIMEOUT GNUNET_TIME_UNIT_MINUTES /** * How often do we rekey based on number of bytes transmitted? * (additionally randomized). */ #define REKEY_MAX_BYTES (1024LLU * 1024 * 1024 * 4LLU) /** * Size of the initial key exchange message sent first in both * directions. */ #define INITIAL_KX_SIZE \ (sizeof(struct GNUNET_CRYPTO_EcdhePublicKey) \ + sizeof(struct TCPConfirmation)) /** * Address prefix used by the communicator. */ #define COMMUNICATOR_ADDRESS_PREFIX "tcp" /** * Configuration section used by the communicator. */ #define COMMUNICATOR_CONFIG_SECTION "communicator-tcp" GNUNET_NETWORK_STRUCT_BEGIN /** * Signature we use to verify that the ephemeral key was really chosen by * the specified sender. */ struct TcpHandshakeSignature { /** * Purpose must be #GNUNET_SIGNATURE_COMMUNICATOR_TCP_HANDSHAKE */ struct GNUNET_CRYPTO_EccSignaturePurpose purpose; /** * Identity of the inititor of the TCP connection (TCP client). */ struct GNUNET_PeerIdentity sender; /** * Presumed identity of the target of the TCP connection (TCP server) */ struct GNUNET_PeerIdentity receiver; /** * Ephemeral key used by the @e sender. */ struct GNUNET_CRYPTO_EcdhePublicKey ephemeral; /** * Monotonic time of @e sender, to possibly help detect replay attacks * (if receiver persists times by sender). */ struct GNUNET_TIME_AbsoluteNBO monotonic_time; }; /** * Encrypted continuation of TCP initial handshake. */ struct TCPConfirmation { /** * Sender's identity */ struct GNUNET_PeerIdentity sender; /** * Sender's signature of type #GNUNET_SIGNATURE_COMMUNICATOR_TCP_HANDSHAKE */ struct GNUNET_CRYPTO_EddsaSignature sender_sig; /** * Monotonic time of @e sender, to possibly help detect replay attacks * (if receiver persists times by sender). */ struct GNUNET_TIME_AbsoluteNBO monotonic_time; }; /** * TCP message box. Always sent encrypted! */ struct TCPBox { /** * Type is #GNUNET_MESSAGE_TYPE_COMMUNICATOR_TCP_BOX. Warning: the * header size EXCLUDES the size of the `struct TCPBox`. We usually * never do this, but here the payload may truly be 64k *after* the * TCPBox (as we have no MTU)!! */ struct GNUNET_MessageHeader header; /** * HMAC for the following encrypted message. Yes, we MUST use * mac-then-encrypt here, as we want to hide the message sizes on * the wire (zero plaintext design!). Using CTR mode, padding oracle * attacks do not apply. Besides, due to the use of ephemeral keys * (hopefully with effective replay protection from monotonic time!) * the attacker is limited in using the oracle. */ struct GNUNET_ShortHashCode hmac; /* followed by as may bytes of payload as indicated in @e header, excluding the TCPBox itself! */ }; /** * TCP rekey message box. Always sent encrypted! Data after * this message will use the new key. */ struct TCPRekey { /** * Type is #GNUNET_MESSAGE_TYPE_COMMUNICATOR_TCP_REKEY. */ struct GNUNET_MessageHeader header; /** * HMAC for the following encrypted message. Yes, we MUST use * mac-then-encrypt here, as we want to hide the message sizes on * the wire (zero plaintext design!). Using CTR mode padding oracle * attacks do not apply. Besides, due to the use of ephemeral keys * (hopefully with effective replay protection from monotonic time!) * the attacker is limited in using the oracle. */ struct GNUNET_ShortHashCode hmac; /** * New ephemeral key. */ struct GNUNET_CRYPTO_EcdhePublicKey ephemeral; /** * Sender's signature of type #GNUNET_SIGNATURE_COMMUNICATOR_TCP_REKEY */ struct GNUNET_CRYPTO_EddsaSignature sender_sig; /** * Monotonic time of @e sender, to possibly help detect replay attacks * (if receiver persists times by sender). */ struct GNUNET_TIME_AbsoluteNBO monotonic_time; }; /** * TCP finish. Sender asks for the connection to be closed. * Needed/useful in case we drop RST/FIN packets on the GNUnet * port due to the possibility of malicious RST/FIN injection. */ struct TCPFinish { /** * Type is #GNUNET_MESSAGE_TYPE_COMMUNICATOR_TCP_FINISH. */ struct GNUNET_MessageHeader header; /** * HMAC for the following encrypted message. Yes, we MUST use * mac-then-encrypt here, as we want to hide the message sizes on * the wire (zero plaintext design!). Using CTR mode padding oracle * attacks do not apply. Besides, due to the use of ephemeral keys * (hopefully with effective replay protection from monotonic time!) * the attacker is limited in using the oracle. */ struct GNUNET_ShortHashCode hmac; }; GNUNET_NETWORK_STRUCT_END /** * Handle for a queue. */ struct Queue { /** * To whom are we talking to. */ struct GNUNET_PeerIdentity target; /** * socket that we transmit all data with on this queue */ struct GNUNET_NETWORK_Handle *sock; /** * cipher for decryption of incoming data. */ gcry_cipher_hd_t in_cipher; /** * cipher for encryption of outgoing data. */ gcry_cipher_hd_t out_cipher; /** * Shared secret for HMAC verification on incoming data. */ struct GNUNET_HashCode in_hmac; /** * Shared secret for HMAC generation on outgoing data, ratcheted after * each operation. */ struct GNUNET_HashCode out_hmac; /** * Our ephemeral key. Stored here temporarily during rekeying / key * generation. */ struct GNUNET_CRYPTO_EcdhePrivateKey ephemeral; /** * ID of read task for this connection. */ struct GNUNET_SCHEDULER_Task *read_task; /** * ID of write task for this connection. */ struct GNUNET_SCHEDULER_Task *write_task; /** * Address of the other peer. */ struct sockaddr *address; /** * How many more bytes may we sent with the current @e out_cipher * before we should rekey? */ uint64_t rekey_left_bytes; /** * Until what time may we sent with the current @e out_cipher * before we should rekey? */ struct GNUNET_TIME_Absolute rekey_time; /** * Length of the address. */ socklen_t address_len; /** * Message queue we are providing for the #ch. */ struct GNUNET_MQ_Handle *mq; /** * handle for this queue with the #ch. */ struct GNUNET_TRANSPORT_QueueHandle *qh; /** * Number of bytes we currently have in our write queue. */ unsigned long long bytes_in_queue; /** * Buffer for reading ciphertext from network into. */ char cread_buf[BUF_SIZE]; /** * buffer for writing ciphertext to network. */ char cwrite_buf[BUF_SIZE]; /** * Plaintext buffer for decrypted plaintext. */ char pread_buf[UINT16_MAX + 1 + sizeof(struct TCPBox)]; /** * Plaintext buffer for messages to be encrypted. */ char pwrite_buf[UINT16_MAX + 1 + sizeof(struct TCPBox)]; /** * At which offset in the ciphertext read buffer should we * append more ciphertext for transmission next? */ size_t cread_off; /** * At which offset in the ciphertext write buffer should we * append more ciphertext from reading next? */ size_t cwrite_off; /** * At which offset in the plaintext input buffer should we * append more plaintext from decryption next? */ size_t pread_off; /** * At which offset in the plaintext output buffer should we * append more plaintext for encryption next? */ size_t pwrite_off; /** * Timeout for this queue. */ struct GNUNET_TIME_Absolute timeout; /** * How may messages did we pass from this queue to CORE for which we * have yet to receive an acknoweldgement that CORE is done with * them? If "large" (or even just non-zero), we should throttle * reading to provide flow control. See also #DEFAULT_MAX_QUEUE_LENGTH * and #max_queue_length. */ unsigned int backpressure; /** * Which network type does this queue use? */ enum GNUNET_NetworkType nt; /** * Is MQ awaiting a #GNUNET_MQ_impl_send_continue() call? */ int mq_awaits_continue; /** * Did we enqueue a finish message and are closing down the queue? */ int finishing; /** * Did we technically destroy this queue, but kept the allocation * around because of @e backpressure not being zero yet? Used * simply to delay the final #GNUNET_free() operation until * #core_read_finished_cb() has been called. */ int destroyed; /** * #GNUNET_YES if we just rekeyed and must thus possibly * re-decrypt ciphertext. */ int rekeyed; }; /** * Handle for an incoming connection where we do not yet have enough * information to setup a full queue. */ struct ProtoQueue { /** * Kept in a DLL. */ struct ProtoQueue *next; /** * Kept in a DLL. */ struct ProtoQueue *prev; /** * socket that we transmit all data with on this queue */ struct GNUNET_NETWORK_Handle *sock; /** * ID of read task for this connection. */ struct GNUNET_SCHEDULER_Task *read_task; /** * Address of the other peer. */ struct sockaddr *address; /** * Length of the address. */ socklen_t address_len; /** * Timeout for this protoqueue. */ struct GNUNET_TIME_Absolute timeout; /** * Buffer for reading all the information we need to upgrade from * protoqueue to queue. */ char ibuf[INITIAL_KX_SIZE]; /** * Current offset for reading into @e ibuf. */ size_t ibuf_off; }; /** * ID of listen task */ static struct GNUNET_SCHEDULER_Task *listen_task; /** * Maximum queue length before we stop reading towards the transport service. */ static unsigned long long max_queue_length; /** * For logging statistics. */ static struct GNUNET_STATISTICS_Handle *stats; /** * Our environment. */ static struct GNUNET_TRANSPORT_CommunicatorHandle *ch; /** * Queues (map from peer identity to `struct Queue`) */ static struct GNUNET_CONTAINER_MultiPeerMap *queue_map; /** * Listen socket. */ static struct GNUNET_NETWORK_Handle *listen_sock; /** * Our public key. */ static struct GNUNET_PeerIdentity my_identity; /** * The rekey interval */ static struct GNUNET_TIME_Relative rekey_interval; /** * Our private key. */ static struct GNUNET_CRYPTO_EddsaPrivateKey *my_private_key; /** * Our configuration. */ static const struct GNUNET_CONFIGURATION_Handle *cfg; /** * Network scanner to determine network types. */ static struct GNUNET_NT_InterfaceScanner *is; /** * Connection to NAT service. */ static struct GNUNET_NAT_Handle *nat; /** * Protoqueues DLL head. */ static struct ProtoQueue *proto_head; /** * Protoqueues DLL tail. */ static struct ProtoQueue *proto_tail; /** * We have been notified that our listen socket has something to * read. Do the read and reschedule this function to be called again * once more is available. * * @param cls NULL */ static void listen_cb (void *cls); /** * Functions with this signature are called whenever we need * to close a queue due to a disconnect or failure to * establish a connection. * * @param queue queue to close down */ static void queue_destroy (struct Queue *queue) { struct GNUNET_MQ_Handle *mq; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Disconnecting queue for peer `%s'\n", GNUNET_i2s (&queue->target)); if (NULL != (mq = queue->mq)) { queue->mq = NULL; GNUNET_MQ_destroy (mq); } if (NULL != queue->qh) { GNUNET_TRANSPORT_communicator_mq_del (queue->qh); queue->qh = NULL; } GNUNET_assert ( GNUNET_YES == GNUNET_CONTAINER_multipeermap_remove (queue_map, &queue->target, queue)); GNUNET_STATISTICS_set (stats, "# queues active", GNUNET_CONTAINER_multipeermap_size (queue_map), GNUNET_NO); if (NULL != queue->read_task) { GNUNET_SCHEDULER_cancel (queue->read_task); queue->read_task = NULL; } if (NULL != queue->write_task) { GNUNET_SCHEDULER_cancel (queue->write_task); queue->write_task = NULL; } GNUNET_NETWORK_socket_close (queue->sock); gcry_cipher_close (queue->in_cipher); gcry_cipher_close (queue->out_cipher); GNUNET_free (queue->address); if (0 != queue->backpressure) queue->destroyed = GNUNET_YES; else GNUNET_free (queue); if (NULL == listen_task) listen_task = GNUNET_SCHEDULER_add_read_net (GNUNET_TIME_UNIT_FOREVER_REL, listen_sock, &listen_cb, NULL); } /** * Compute @a mac over @a buf, and ratched the @a hmac_secret. * * @param[in,out] hmac_secret secret for HMAC calculation * @param buf buffer to MAC * @param buf_size number of bytes in @a buf * @param smac[out] where to write the HMAC */ static void calculate_hmac (struct GNUNET_HashCode *hmac_secret, const void *buf, size_t buf_size, struct GNUNET_ShortHashCode *smac) { struct GNUNET_HashCode mac; GNUNET_CRYPTO_hmac_raw (hmac_secret, sizeof(struct GNUNET_HashCode), buf, buf_size, &mac); /* truncate to `struct GNUNET_ShortHashCode` */ memcpy (smac, &mac, sizeof(struct GNUNET_ShortHashCode)); /* ratchet hmac key */ GNUNET_CRYPTO_hash (hmac_secret, sizeof(struct GNUNET_HashCode), hmac_secret); } /** * Append a 'finish' message to the outgoing transmission. Once the * finish has been transmitted, destroy the queue. * * @param queue queue to shut down nicely */ static void queue_finish (struct Queue *queue) { struct TCPFinish fin; memset (&fin, 0, sizeof(fin)); fin.header.size = htons (sizeof(fin)); fin.header.type = htons (GNUNET_MESSAGE_TYPE_COMMUNICATOR_TCP_FINISH); calculate_hmac (&queue->out_hmac, &fin, sizeof(fin), &fin.hmac); /* if there is any message left in pwrite_buf, we overwrite it (possibly dropping the last message from CORE hard here) */ memcpy (queue->pwrite_buf, &fin, sizeof(fin)); queue->pwrite_off = sizeof(fin); /* This flag will ensure that #queue_write() no longer notifies CORE about the possibility of sending more data, and that #queue_write() will call #queue_destroy() once the @c fin was fully written. */ queue->finishing = GNUNET_YES; } /** * Increment queue timeout due to activity. We do not immediately * notify the monitor here as that might generate excessive * signalling. * * @param queue queue for which the timeout should be rescheduled */ static void reschedule_queue_timeout (struct Queue *queue) { queue->timeout = GNUNET_TIME_relative_to_absolute (GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT); } /** * Queue read task. If we hit the timeout, disconnect it * * @param cls the `struct Queue *` to disconnect */ static void queue_read (void *cls); /** * Core tells us it is done processing a message that transport * received on a queue with status @a success. * * @param cls a `struct Queue *` where the message originally came from * @param success #GNUNET_OK on success */ static void core_read_finished_cb (void *cls, int success) { struct Queue *queue = cls; if (GNUNET_OK != success) GNUNET_STATISTICS_update (stats, "# messages lost in communicator API towards CORE", 1, GNUNET_NO); queue->backpressure--; /* handle deferred queue destruction */ if ((queue->destroyed) && (0 == queue->backpressure)) { GNUNET_free (queue); return; } reschedule_queue_timeout (queue); /* possibly unchoke reading, now that CORE made progress */ if (NULL == queue->read_task) queue->read_task = GNUNET_SCHEDULER_add_read_net (GNUNET_TIME_absolute_get_remaining ( queue->timeout), queue->sock, &queue_read, queue); } /** * We received @a plaintext_len bytes of @a plaintext on @a queue. * Pass it on to CORE. If transmission is actually happening, * increase backpressure counter. * * @param queue the queue that received the plaintext * @param plaintext the plaintext that was received * @param plaintext_len number of bytes of plaintext received */ static void pass_plaintext_to_core (struct Queue *queue, const void *plaintext, size_t plaintext_len) { const struct GNUNET_MessageHeader *hdr = plaintext; int ret; if (ntohs (hdr->size) != plaintext_len) { /* NOTE: If we ever allow multiple CORE messages in one BOX, this will have to change! */ GNUNET_break (0); return; } ret = GNUNET_TRANSPORT_communicator_receive (ch, &queue->target, hdr, ADDRESS_VALIDITY_PERIOD, &core_read_finished_cb, queue); if (GNUNET_OK == ret) queue->backpressure++; GNUNET_break (GNUNET_NO != ret); /* backpressure not working!? */ if (GNUNET_SYSERR == ret) GNUNET_STATISTICS_update (stats, "# bytes lost due to CORE not running", plaintext_len, GNUNET_NO); } /** * Setup @a cipher based on shared secret @a dh and decrypting * peer @a pid. * * @param dh shared secret * @param pid decrypting peer's identity * @param cipher[out] cipher to initialize * @param hmac_key[out] HMAC key to initialize */ static void setup_cipher (const struct GNUNET_HashCode *dh, const struct GNUNET_PeerIdentity *pid, gcry_cipher_hd_t *cipher, struct GNUNET_HashCode *hmac_key) { char key[256 / 8]; char ctr[128 / 8]; gcry_cipher_open (cipher, GCRY_CIPHER_AES256 /* low level: go for speed */, GCRY_CIPHER_MODE_CTR, 0 /* flags */); GNUNET_assert (GNUNET_YES == GNUNET_CRYPTO_kdf (key, sizeof(key), "TCP-key", strlen ("TCP-key"), dh, sizeof(*dh), pid, sizeof(*pid), NULL, 0)); gcry_cipher_setkey (*cipher, key, sizeof(key)); GNUNET_assert (GNUNET_YES == GNUNET_CRYPTO_kdf (ctr, sizeof(ctr), "TCP-ctr", strlen ("TCP-ctr"), dh, sizeof(*dh), pid, sizeof(*pid), NULL, 0)); gcry_cipher_setctr (*cipher, ctr, sizeof(ctr)); GNUNET_assert (GNUNET_YES == GNUNET_CRYPTO_kdf (hmac_key, sizeof(struct GNUNET_HashCode), "TCP-hmac", strlen ("TCP-hmac"), dh, sizeof(*dh), pid, sizeof(*pid), NULL, 0)); } /** * Setup cipher of @a queue for decryption. * * @param ephemeral ephemeral key we received from the other peer * @param queue[in,out] queue to initialize decryption cipher for */ static void setup_in_cipher (const struct GNUNET_CRYPTO_EcdhePublicKey *ephemeral, struct Queue *queue) { struct GNUNET_HashCode dh; GNUNET_CRYPTO_eddsa_ecdh (my_private_key, ephemeral, &dh); setup_cipher (&dh, &my_identity, &queue->in_cipher, &queue->in_hmac); } /** * Handle @a rekey message on @a queue. The message was already * HMAC'ed, but we should additionally still check the signature. * Then we need to stop the old cipher and start afresh. * * @param queue the queue @a rekey was received on * @param rekey the rekey message */ static void do_rekey (struct Queue *queue, const struct TCPRekey *rekey) { struct TcpHandshakeSignature thp; thp.purpose.purpose = htonl (GNUNET_SIGNATURE_COMMUNICATOR_TCP_REKEY); thp.purpose.size = htonl (sizeof(thp)); thp.sender = queue->target; thp.receiver = my_identity; thp.ephemeral = rekey->ephemeral; thp.monotonic_time = rekey->monotonic_time; /* FIXME: check monotonic time is monotonic... */ if (GNUNET_OK != GNUNET_CRYPTO_eddsa_verify (GNUNET_SIGNATURE_COMMUNICATOR_TCP_REKEY, &thp, &rekey->sender_sig, &queue->target.public_key)) { GNUNET_break (0); queue_finish (queue); return; } gcry_cipher_close (queue->in_cipher); queue->rekeyed = GNUNET_YES; setup_in_cipher (&rekey->ephemeral, queue); } /** * Test if we have received a full message in plaintext. * If so, handle it. * * @param queue queue to process inbound plaintext for * @return number of bytes of plaintext handled, 0 for none */ static size_t try_handle_plaintext (struct Queue *queue) { const struct GNUNET_MessageHeader *hdr = (const struct GNUNET_MessageHeader *) queue->pread_buf; const struct TCPBox *box = (const struct TCPBox *) queue->pread_buf; const struct TCPRekey *rekey = (const struct TCPRekey *) queue->pread_buf; const struct TCPFinish *fin = (const struct TCPFinish *) queue->pread_buf; struct TCPRekey rekeyz; struct TCPFinish finz; struct GNUNET_ShortHashCode tmac; uint16_t type; size_t size = 0; /* make compiler happy */ if (sizeof(*hdr) > queue->pread_off) return 0; /* not even a header */ type = ntohs (hdr->type); switch (type) { case GNUNET_MESSAGE_TYPE_COMMUNICATOR_TCP_BOX: /* Special case: header size excludes box itself! */ if (ntohs (hdr->size) + sizeof(struct TCPBox) > queue->pread_off) return 0; calculate_hmac (&queue->in_hmac, &box[1], ntohs (hdr->size), &tmac); if (0 != memcmp (&tmac, &box->hmac, sizeof(tmac))) { GNUNET_break_op (0); queue_finish (queue); return 0; } pass_plaintext_to_core (queue, (const void *) &box[1], ntohs (hdr->size)); size = ntohs (hdr->size) + sizeof(*box); break; case GNUNET_MESSAGE_TYPE_COMMUNICATOR_TCP_REKEY: if (sizeof(*rekey) > queue->pread_off) return 0; if (ntohs (hdr->size) != sizeof(*rekey)) { GNUNET_break_op (0); queue_finish (queue); return 0; } rekeyz = *rekey; memset (&rekeyz.hmac, 0, sizeof(rekeyz.hmac)); calculate_hmac (&queue->in_hmac, &rekeyz, sizeof(rekeyz), &tmac); if (0 != memcmp (&tmac, &rekey->hmac, sizeof(tmac))) { GNUNET_break_op (0); queue_finish (queue); return 0; } do_rekey (queue, rekey); size = ntohs (hdr->size); break; case GNUNET_MESSAGE_TYPE_COMMUNICATOR_TCP_FINISH: if (sizeof(*fin) > queue->pread_off) return 0; if (ntohs (hdr->size) != sizeof(*fin)) { GNUNET_break_op (0); queue_finish (queue); return 0; } finz = *fin; memset (&finz.hmac, 0, sizeof(finz.hmac)); calculate_hmac (&queue->in_hmac, &rekeyz, sizeof(rekeyz), &tmac); if (0 != memcmp (&tmac, &fin->hmac, sizeof(tmac))) { GNUNET_break_op (0); queue_finish (queue); return 0; } /* handle FINISH by destroying queue */ queue_destroy (queue); break; default: GNUNET_break_op (0); queue_finish (queue); return 0; } GNUNET_assert (0 != size); return size; } /** * Queue read task. If we hit the timeout, disconnect it * * @param cls the `struct Queue *` to disconnect */ static void queue_read (void *cls) { struct Queue *queue = cls; struct GNUNET_TIME_Relative left; ssize_t rcvd; queue->read_task = NULL; rcvd = GNUNET_NETWORK_socket_recv (queue->sock, &queue->cread_buf[queue->cread_off], BUF_SIZE - queue->cread_off); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Received %lu bytes from TCP queue\n", rcvd); if (-1 == rcvd) { if ((EAGAIN != errno) && (EINTR != errno)) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_DEBUG, "recv"); queue_finish (queue); return; } /* try again */ left = GNUNET_TIME_absolute_get_remaining (queue->timeout); queue->read_task = GNUNET_SCHEDULER_add_read_net (left, queue->sock, &queue_read, queue); return; } if (0 != rcvd) reschedule_queue_timeout (queue); queue->cread_off += rcvd; while ((queue->pread_off < sizeof(queue->pread_buf)) && (queue->cread_off > 0)) { size_t max = GNUNET_MIN (sizeof(queue->pread_buf) - queue->pread_off, queue->cread_off); size_t done; size_t total; size_t old_pread_off = queue->pread_off; GNUNET_assert (0 == gcry_cipher_decrypt (queue->in_cipher, &queue->pread_buf[queue->pread_off], max, queue->cread_buf, max)); queue->pread_off += max; total = 0; while (0 != (done = try_handle_plaintext (queue))) { /* 'done' bytes of plaintext were used, shift buffer */ GNUNET_assert (done <= queue->pread_off); /* NOTE: this memmove() could possibly sometimes be avoided if we pass 'total' into try_handle_plaintext() and use it at an offset into the buffer there! */ memmove (queue->pread_buf, &queue->pread_buf[done], queue->pread_off - done); queue->pread_off -= done; total += done; /* The last plaintext was a rekey, abort for now */ if (GNUNET_YES == queue->rekeyed) break; } /* when we encounter a rekey message, the decryption above uses the wrong key for everything after the rekey; in that case, we have to re-do the decryption at 'total' instead of at 'max'. However, we have to take into account that the plaintext buffer may have already contained data and not jumpt too far ahead in the ciphertext. If there is no rekey and the last message is incomplete (max > total), it is safe to keep the decryption so we shift by 'max' */if (GNUNET_YES == queue->rekeyed) { max = total - old_pread_off; queue->rekeyed = GNUNET_NO; queue->pread_off = 0; } memmove (queue->cread_buf, &queue->cread_buf[max], queue->cread_off - max); queue->cread_off -= max; } if (BUF_SIZE == queue->cread_off) return; /* buffer full, suspend reading */ left = GNUNET_TIME_absolute_get_remaining (queue->timeout); if (0 != left.rel_value_us) { if (max_queue_length > queue->backpressure) { /* continue reading */ left = GNUNET_TIME_absolute_get_remaining (queue->timeout); queue->read_task = GNUNET_SCHEDULER_add_read_net (left, queue->sock, &queue_read, queue); } return; } GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Queue %p was idle for %s, disconnecting\n", queue, GNUNET_STRINGS_relative_time_to_string ( GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT, GNUNET_YES)); queue_finish (queue); } /** * Convert TCP bind specification to a `struct sockaddr *` * * @param bindto bind specification to convert * @param[out] sock_len set to the length of the address * @return converted bindto specification */ static struct sockaddr * tcp_address_to_sockaddr (const char *bindto, socklen_t *sock_len) { struct sockaddr *in; unsigned int port; char dummy[2]; char *colon; char *cp; if (1 == sscanf (bindto, "%u%1s", &port, dummy)) { /* interpreting value as just a PORT number */ if (port > UINT16_MAX) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "BINDTO specification `%s' invalid: value too large for port\n", bindto); return NULL; } if ((GNUNET_NO == GNUNET_NETWORK_test_pf (PF_INET6)) || (GNUNET_YES == GNUNET_CONFIGURATION_get_value_yesno (cfg, COMMUNICATOR_CONFIG_SECTION, "DISABLE_V6"))) { struct sockaddr_in *i4; i4 = GNUNET_malloc (sizeof(struct sockaddr_in)); i4->sin_family = AF_INET; i4->sin_port = htons ((uint16_t) port); #if HAVE_SOCKADDR_IN_SIN_LEN i4->sin_len = sizeof(sizeof(struct sockaddr_in)); #endif *sock_len = sizeof(struct sockaddr_in); in = (struct sockaddr *) i4; } else { struct sockaddr_in6 *i6; i6 = GNUNET_malloc (sizeof(struct sockaddr_in6)); i6->sin6_family = AF_INET6; i6->sin6_port = htons ((uint16_t) port); #if HAVE_SOCKADDR_IN_SIN_LEN i6->sin6_len = sizeof(sizeof(struct sockaddr_in6)); #endif *sock_len = sizeof(struct sockaddr_in6); in = (struct sockaddr *) i6; } return in; } cp = GNUNET_strdup (bindto); colon = strrchr (cp, ':'); if (NULL != colon) { /* interpet value after colon as port */ *colon = '\0'; colon++; if (1 == sscanf (colon, "%u%1s", &port, dummy)) { /* interpreting value as just a PORT number */ if (port > UINT16_MAX) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "BINDTO specification `%s' invalid: value too large for port\n", bindto); GNUNET_free (cp); return NULL; } } else { GNUNET_log ( GNUNET_ERROR_TYPE_ERROR, "BINDTO specification `%s' invalid: last ':' not followed by number\n", bindto); GNUNET_free (cp); return NULL; } } else { /* interpret missing port as 0, aka pick any free one */ port = 0; } { /* try IPv4 */ struct sockaddr_in v4; if (1 == inet_pton (AF_INET, cp, &v4.sin_addr)) { v4.sin_family = AF_INET; v4.sin_port = htons ((uint16_t) port); #if HAVE_SOCKADDR_IN_SIN_LEN v4.sin_len = sizeof(struct sockaddr_in); #endif in = GNUNET_memdup (&v4, sizeof(v4)); *sock_len = sizeof(v4); GNUNET_free (cp); return in; } } { /* try IPv6 */ struct sockaddr_in6 v6; const char *start; start = cp; if (('[' == *cp) && (']' == cp[strlen (cp) - 1])) { start++; /* skip over '[' */ cp[strlen (cp) - 1] = '\0'; /* eat ']' */ } if (1 == inet_pton (AF_INET6, start, &v6.sin6_addr)) { v6.sin6_family = AF_INET6; v6.sin6_port = htons ((uint16_t) port); #if HAVE_SOCKADDR_IN_SIN_LEN v6.sin6_len = sizeof(sizeof(struct sockaddr_in6)); #endif in = GNUNET_memdup (&v6, sizeof(v6)); *sock_len = sizeof(v6); GNUNET_free (cp); return in; } } /* #5528 FIXME (feature!): maybe also try getnameinfo()? */ GNUNET_free (cp); return NULL; } /** * Setup cipher for outgoing data stream based on target and * our ephemeral private key. * * @param queue queue to setup outgoing (encryption) cipher for */ static void setup_out_cipher (struct Queue *queue) { struct GNUNET_HashCode dh; GNUNET_CRYPTO_ecdh_eddsa (&queue->ephemeral, &queue->target.public_key, &dh); /* we don't need the private key anymore, drop it! */ memset (&queue->ephemeral, 0, sizeof(queue->ephemeral)); setup_cipher (&dh, &queue->target, &queue->out_cipher, &queue->out_hmac); queue->rekey_time = GNUNET_TIME_relative_to_absolute (rekey_interval); queue->rekey_left_bytes = GNUNET_CRYPTO_random_u64 (GNUNET_CRYPTO_QUALITY_WEAK, REKEY_MAX_BYTES); } /** * Inject a `struct TCPRekey` message into the queue's plaintext * buffer. * * @param queue queue to perform rekeying on */ static void inject_rekey (struct Queue *queue) { struct TCPRekey rekey; struct TcpHandshakeSignature thp; GNUNET_assert (0 == queue->pwrite_off); memset (&rekey, 0, sizeof(rekey)); GNUNET_CRYPTO_ecdhe_key_create (&queue->ephemeral); rekey.header.type = ntohs (GNUNET_MESSAGE_TYPE_COMMUNICATOR_TCP_REKEY); rekey.header.size = ntohs (sizeof(rekey)); GNUNET_CRYPTO_ecdhe_key_get_public (&queue->ephemeral, &rekey.ephemeral); rekey.monotonic_time = GNUNET_TIME_absolute_hton (GNUNET_TIME_absolute_get_monotonic (cfg)); thp.purpose.purpose = htonl (GNUNET_SIGNATURE_COMMUNICATOR_TCP_REKEY); thp.purpose.size = htonl (sizeof(thp)); thp.sender = my_identity; thp.receiver = queue->target; thp.ephemeral = rekey.ephemeral; thp.monotonic_time = rekey.monotonic_time; GNUNET_CRYPTO_eddsa_sign (my_private_key, &thp, &rekey.sender_sig); calculate_hmac (&queue->out_hmac, &rekey, sizeof(rekey), &rekey.hmac); /* Encrypt rekey message with 'old' cipher */ GNUNET_assert (0 == gcry_cipher_encrypt (queue->out_cipher, &queue->cwrite_buf[queue->cwrite_off], sizeof(rekey), &rekey, sizeof(rekey))); queue->cwrite_off += sizeof(rekey); /* Setup new cipher for successive messages */ gcry_cipher_close (queue->out_cipher); setup_out_cipher (queue); } /** * We have been notified that our socket is ready to write. * Then reschedule this function to be called again once more is available. * * @param cls a `struct Queue` */ static void queue_write (void *cls) { struct Queue *queue = cls; ssize_t sent; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "In queue write\n"); queue->write_task = NULL; if (0 != queue->cwrite_off) { sent = GNUNET_NETWORK_socket_send (queue->sock, queue->cwrite_buf, queue->cwrite_off); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Sent %lu bytes to TCP queue\n", sent); if ((-1 == sent) && (EAGAIN != errno) && (EINTR != errno)) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_WARNING, "send"); queue_destroy (queue); return; } if (sent > 0) { size_t usent = (size_t) sent; queue->cwrite_off -= usent; memmove (queue->cwrite_buf, &queue->cwrite_buf[usent], queue->cwrite_off); reschedule_queue_timeout (queue); } } /* can we encrypt more? (always encrypt full messages, needed such that #mq_cancel() can work!) */ if ((0 < queue->rekey_left_bytes) && (queue->pwrite_off > 0) && (queue->cwrite_off + queue->pwrite_off <= BUF_SIZE)) { GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Encrypting %lu bytes\n", queue->pwrite_off); GNUNET_assert (0 == gcry_cipher_encrypt (queue->out_cipher, &queue->cwrite_buf[queue->cwrite_off], queue->pwrite_off, queue->pwrite_buf, queue->pwrite_off)); if (queue->rekey_left_bytes > queue->pwrite_off) queue->rekey_left_bytes -= queue->pwrite_off; else queue->rekey_left_bytes = 0; queue->cwrite_off += queue->pwrite_off; queue->pwrite_off = 0; } if ((0 == queue->pwrite_off) && ((0 == queue->rekey_left_bytes) || (0 == GNUNET_TIME_absolute_get_remaining (queue->rekey_time).rel_value_us))) { inject_rekey (queue); } if ((0 == queue->pwrite_off) && (! queue->finishing) && (GNUNET_YES == queue->mq_awaits_continue)) { queue->mq_awaits_continue = GNUNET_NO; GNUNET_MQ_impl_send_continue (queue->mq); } /* did we just finish writing 'finish'? */ if ((0 == queue->cwrite_off) && (GNUNET_YES == queue->finishing)) { GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Finishing queue\n"); queue_destroy (queue); return; } /* do we care to write more? */ if ((0 < queue->cwrite_off) || (0 < queue->pwrite_off)) queue->write_task = GNUNET_SCHEDULER_add_write_net (GNUNET_TIME_UNIT_FOREVER_REL, queue->sock, &queue_write, queue); } /** * Signature of functions implementing the sending functionality of a * message queue. * * @param mq the message queue * @param msg the message to send * @param impl_state our `struct Queue` */ static void mq_send (struct GNUNET_MQ_Handle *mq, const struct GNUNET_MessageHeader *msg, void *impl_state) { struct Queue *queue = impl_state; uint16_t msize = ntohs (msg->size); struct TCPBox box; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "In MQ send. Queue finishing: %s; write task running: %s\n", (GNUNET_YES == queue->finishing) ? "yes" : "no", (NULL == queue->write_task) ? "yes" : "no"); GNUNET_assert (mq == queue->mq); queue->mq_awaits_continue = GNUNET_YES; if (GNUNET_YES == queue->finishing) return; /* this queue is dying, drop msg */ GNUNET_assert (0 == queue->pwrite_off); box.header.type = htons (GNUNET_MESSAGE_TYPE_COMMUNICATOR_TCP_BOX); box.header.size = htons (msize); calculate_hmac (&queue->out_hmac, msg, msize, &box.hmac); memcpy (&queue->pwrite_buf[queue->pwrite_off], &box, sizeof(box)); queue->pwrite_off += sizeof(box); memcpy (&queue->pwrite_buf[queue->pwrite_off], msg, msize); queue->pwrite_off += msize; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "%lu bytes of plaintext to send\n", queue->pwrite_off); GNUNET_assert (NULL != queue->sock); if (NULL == queue->write_task) queue->write_task = GNUNET_SCHEDULER_add_write_net (GNUNET_TIME_UNIT_FOREVER_REL, queue->sock, &queue_write, queue); } /** * Signature of functions implementing the destruction of a message * queue. Implementations must not free @a mq, but should take care * of @a impl_state. * * @param mq the message queue to destroy * @param impl_state our `struct Queue` */ static void mq_destroy (struct GNUNET_MQ_Handle *mq, void *impl_state) { struct Queue *queue = impl_state; if (mq == queue->mq) { queue->mq = NULL; queue_finish (queue); } } /** * Implementation function that cancels the currently sent message. * * @param mq message queue * @param impl_state our `struct Queue` */ static void mq_cancel (struct GNUNET_MQ_Handle *mq, void *impl_state) { struct Queue *queue = impl_state; GNUNET_assert (0 != queue->pwrite_off); queue->pwrite_off = 0; } /** * Generic error handler, called with the appropriate * error code and the same closure specified at the creation of * the message queue. * Not every message queue implementation supports an error handler. * * @param cls our `struct Queue` * @param error error code */ static void mq_error (void *cls, enum GNUNET_MQ_Error error) { struct Queue *queue = cls; GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "MQ error in queue to %s: %d\n", GNUNET_i2s (&queue->target), (int) error); queue_finish (queue); } /** * Add the given @a queue to our internal data structure. Setup the * MQ processing and inform transport that the queue is ready. Must * be called after the KX for outgoing messages has been bootstrapped. * * @param queue queue to boot */ static void boot_queue (struct Queue *queue, enum GNUNET_TRANSPORT_ConnectionStatus cs) { queue->nt = GNUNET_NT_scanner_get_type (is, queue->address, queue->address_len); (void) GNUNET_CONTAINER_multipeermap_put ( queue_map, &queue->target, queue, GNUNET_CONTAINER_MULTIHASHMAPOPTION_MULTIPLE); GNUNET_STATISTICS_set (stats, "# queues active", GNUNET_CONTAINER_multipeermap_size (queue_map), GNUNET_NO); queue->timeout = GNUNET_TIME_relative_to_absolute (GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT); queue->mq = GNUNET_MQ_queue_for_callbacks (&mq_send, &mq_destroy, &mq_cancel, queue, NULL, &mq_error, queue); { char *foreign_addr; switch (queue->address->sa_family) { case AF_INET: GNUNET_asprintf (&foreign_addr, "%s-%s", COMMUNICATOR_ADDRESS_PREFIX, GNUNET_a2s (queue->address, queue->address_len)); break; case AF_INET6: GNUNET_asprintf (&foreign_addr, "%s-%s", COMMUNICATOR_ADDRESS_PREFIX, GNUNET_a2s (queue->address, queue->address_len)); break; default: GNUNET_assert (0); } queue->qh = GNUNET_TRANSPORT_communicator_mq_add (ch, &queue->target, foreign_addr, 0 /* no MTU */, queue->nt, cs, queue->mq); GNUNET_free (foreign_addr); } } /** * Generate and transmit our ephemeral key and the signature for * the initial KX with the other peer. Must be called first, before * any other bytes are ever written to the output buffer. Note that * our cipher must already be initialized when calling this function. * Helper function for #start_initial_kx_out(). * * @param queue queue to do KX for * @param epub our public key for the KX */ static void transmit_kx (struct Queue *queue, const struct GNUNET_CRYPTO_EcdhePublicKey *epub) { struct TcpHandshakeSignature ths; struct TCPConfirmation tc; memcpy (queue->cwrite_buf, epub, sizeof(*epub)); queue->cwrite_off = sizeof(*epub); /* compute 'tc' and append in encrypted format to cwrite_buf */ tc.sender = my_identity; tc.monotonic_time = GNUNET_TIME_absolute_hton (GNUNET_TIME_absolute_get_monotonic (cfg)); ths.purpose.purpose = htonl (GNUNET_SIGNATURE_COMMUNICATOR_TCP_HANDSHAKE); ths.purpose.size = htonl (sizeof(ths)); ths.sender = my_identity; ths.receiver = queue->target; ths.ephemeral = *epub; ths.monotonic_time = tc.monotonic_time; GNUNET_CRYPTO_eddsa_sign (my_private_key, &ths, &tc.sender_sig); GNUNET_assert (0 == gcry_cipher_encrypt (queue->out_cipher, &queue->cwrite_buf[queue->cwrite_off], sizeof(tc), &tc, sizeof(tc))); queue->cwrite_off += sizeof(tc); } /** * Initialize our key material for outgoing transmissions and * inform the other peer about it. Must be called first before * any data is sent. * * @param queue the queue to setup */ static void start_initial_kx_out (struct Queue *queue) { struct GNUNET_CRYPTO_EcdhePublicKey epub; GNUNET_CRYPTO_ecdhe_key_create (&queue->ephemeral); GNUNET_CRYPTO_ecdhe_key_get_public (&queue->ephemeral, &epub); setup_out_cipher (queue); transmit_kx (queue, &epub); } /** * We have received the first bytes from the other side on a @a queue. * Decrypt the @a tc contained in @a ibuf and check the signature. * Note that #setup_in_cipher() must have already been called. * * @param queue queue to decrypt initial bytes from other peer for * @param tc[out] where to store the result * @param ibuf incoming data, of size * `INITIAL_KX_SIZE` * @return #GNUNET_OK if the signature was OK, #GNUNET_SYSERR if not */ static int decrypt_and_check_tc (struct Queue *queue, struct TCPConfirmation *tc, char *ibuf) { struct TcpHandshakeSignature ths; GNUNET_assert ( 0 == gcry_cipher_decrypt (queue->in_cipher, tc, sizeof(*tc), &ibuf[sizeof(struct GNUNET_CRYPTO_EcdhePublicKey)], sizeof(*tc))); ths.purpose.purpose = htonl (GNUNET_SIGNATURE_COMMUNICATOR_TCP_HANDSHAKE); ths.purpose.size = htonl (sizeof(ths)); ths.sender = tc->sender; ths.receiver = my_identity; memcpy (&ths.ephemeral, ibuf, sizeof(struct GNUNET_CRYPTO_EcdhePublicKey)); ths.monotonic_time = tc->monotonic_time; /* FIXME: check monotonic time against previous mono times from this sender! */ return GNUNET_CRYPTO_eddsa_verify ( GNUNET_SIGNATURE_COMMUNICATOR_TCP_HANDSHAKE, &ths, &tc->sender_sig, &tc->sender.public_key); } /** * Closes socket and frees memory associated with @a pq. * * @param pq proto queue to free */ static void free_proto_queue (struct ProtoQueue *pq) { GNUNET_NETWORK_socket_close (pq->sock); GNUNET_free (pq->address); GNUNET_CONTAINER_DLL_remove (proto_head, proto_tail, pq); GNUNET_free (pq); } /** * Read from the socket of the proto queue until we have enough data * to upgrade to full queue. * * @param cls a `struct ProtoQueue` */ static void proto_read_kx (void *cls) { struct ProtoQueue *pq = cls; ssize_t rcvd; struct GNUNET_TIME_Relative left; struct Queue *queue; struct TCPConfirmation tc; pq->read_task = NULL; left = GNUNET_TIME_absolute_get_remaining (pq->timeout); if (0 == left.rel_value_us) { free_proto_queue (pq); return; } rcvd = GNUNET_NETWORK_socket_recv (pq->sock, &pq->ibuf[pq->ibuf_off], sizeof(pq->ibuf) - pq->ibuf_off); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Received %lu bytes for KX\n", rcvd); if (-1 == rcvd) { if ((EAGAIN != errno) && (EINTR != errno)) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_DEBUG, "recv"); free_proto_queue (pq); return; } /* try again */ pq->read_task = GNUNET_SCHEDULER_add_read_net (left, pq->sock, &proto_read_kx, pq); return; } pq->ibuf_off += rcvd; if (pq->ibuf_off > sizeof(pq->ibuf)) { /* read more */ pq->read_task = GNUNET_SCHEDULER_add_read_net (left, pq->sock, &proto_read_kx, pq); return; } /* we got all the data, let's find out who we are talking to! */ queue = GNUNET_new (struct Queue); setup_in_cipher ((const struct GNUNET_CRYPTO_EcdhePublicKey *) pq->ibuf, queue); if (GNUNET_OK != decrypt_and_check_tc (queue, &tc, pq->ibuf)) { GNUNET_log (GNUNET_ERROR_TYPE_INFO, "Invalid TCP KX received from %s\n", GNUNET_a2s (queue->address, queue->address_len)); gcry_cipher_close (queue->in_cipher); GNUNET_free (queue); free_proto_queue (pq); return; } queue->address = pq->address; /* steals reference */ queue->address_len = pq->address_len; queue->target = tc.sender; queue->sock = pq->sock; start_initial_kx_out (queue); boot_queue (queue, GNUNET_TRANSPORT_CS_INBOUND); queue->read_task = GNUNET_SCHEDULER_add_read_net (GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT, queue->sock, &queue_read, queue); queue->write_task = GNUNET_SCHEDULER_add_write_net (GNUNET_TIME_UNIT_FOREVER_REL, queue->sock, &queue_write, queue); GNUNET_CONTAINER_DLL_remove (proto_head, proto_tail, pq); GNUNET_free (pq); } /** * We have been notified that our listen socket has something to * read. Do the read and reschedule this function to be called again * once more is available. * * @param cls NULL */ static void listen_cb (void *cls) { struct sockaddr_storage in; socklen_t addrlen; struct GNUNET_NETWORK_Handle *sock; struct ProtoQueue *pq; listen_task = NULL; GNUNET_assert (NULL != listen_sock); addrlen = sizeof(in); memset (&in, 0, sizeof(in)); sock = GNUNET_NETWORK_socket_accept (listen_sock, (struct sockaddr*) &in, &addrlen); if ((NULL == sock) && ((EMFILE == errno) || (ENFILE == errno))) return; /* system limit reached, wait until connection goes down */ listen_task = GNUNET_SCHEDULER_add_read_net (GNUNET_TIME_UNIT_FOREVER_REL, listen_sock, &listen_cb, NULL); if ((NULL == sock) && ((EAGAIN == errno) || (ENOBUFS == errno))) return; if (NULL == sock) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_WARNING, "accept"); return; } pq = GNUNET_new (struct ProtoQueue); pq->address_len = addrlen; pq->address = GNUNET_memdup (&in, addrlen); pq->timeout = GNUNET_TIME_relative_to_absolute (PROTO_QUEUE_TIMEOUT); pq->sock = sock; pq->read_task = GNUNET_SCHEDULER_add_read_net (PROTO_QUEUE_TIMEOUT, pq->sock, &proto_read_kx, pq); GNUNET_CONTAINER_DLL_insert (proto_head, proto_tail, pq); } /** * Read from the socket of the queue until we have enough data * to initialize the decryption logic and can switch to regular * reading. * * @param cls a `struct Queue` */ static void queue_read_kx (void *cls) { struct Queue *queue = cls; ssize_t rcvd; struct GNUNET_TIME_Relative left; struct TCPConfirmation tc; queue->read_task = NULL; left = GNUNET_TIME_absolute_get_remaining (queue->timeout); if (0 == left.rel_value_us) { queue_destroy (queue); return; } rcvd = GNUNET_NETWORK_socket_recv (queue->sock, &queue->cread_buf[queue->cread_off], BUF_SIZE - queue->cread_off); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Received %lu bytes for KX\n", rcvd); if (-1 == rcvd) { if ((EAGAIN != errno) && (EINTR != errno)) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_DEBUG, "recv"); queue_destroy (queue); return; } queue->read_task = GNUNET_SCHEDULER_add_read_net (left, queue->sock, &queue_read_kx, queue); return; } queue->cread_off += rcvd; if (queue->cread_off < INITIAL_KX_SIZE) { /* read more */ queue->read_task = GNUNET_SCHEDULER_add_read_net (left, queue->sock, &queue_read_kx, queue); return; } /* we got all the data, let's find out who we are talking to! */ setup_in_cipher ((const struct GNUNET_CRYPTO_EcdhePublicKey *) queue->cread_buf, queue); if (GNUNET_OK != decrypt_and_check_tc (queue, &tc, queue->cread_buf)) { GNUNET_log (GNUNET_ERROR_TYPE_INFO, "Invalid TCP KX received from %s\n", GNUNET_a2s (queue->address, queue->address_len)); queue_destroy (queue); return; } if (0 != memcmp (&tc.sender, &queue->target, sizeof(struct GNUNET_PeerIdentity))) { GNUNET_log (GNUNET_ERROR_TYPE_WARNING, "Invalid sender in TCP KX received from %s\n", GNUNET_a2s (queue->address, queue->address_len)); queue_destroy (queue); return; } /* update queue timeout */ reschedule_queue_timeout (queue); /* prepare to continue with regular read task immediately */ memmove (queue->cread_buf, &queue->cread_buf[INITIAL_KX_SIZE], queue->cread_off - (INITIAL_KX_SIZE)); queue->cread_off -= INITIAL_KX_SIZE; if (0 < queue->cread_off) queue->read_task = GNUNET_SCHEDULER_add_now (&queue_read, queue); } /** * Function called by the transport service to initialize a * message queue given address information about another peer. * If and when the communication channel is established, the * communicator must call #GNUNET_TRANSPORT_communicator_mq_add() * to notify the service that the channel is now up. It is * the responsibility of the communicator to manage sane * retries and timeouts for any @a peer/@a address combination * provided by the transport service. Timeouts and retries * do not need to be signalled to the transport service. * * @param cls closure * @param peer identity of the other peer * @param address where to send the message, human-readable * communicator-specific format, 0-terminated, UTF-8 * @return #GNUNET_OK on success, #GNUNET_SYSERR if the provided address is * invalid */ static int mq_init (void *cls, const struct GNUNET_PeerIdentity *peer, const char *address) { struct Queue *queue; const char *path; struct sockaddr *in; socklen_t in_len; struct GNUNET_NETWORK_Handle *sock; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Connecting to %s\n", address); if (0 != strncmp (address, COMMUNICATOR_ADDRESS_PREFIX "-", strlen (COMMUNICATOR_ADDRESS_PREFIX "-"))) { GNUNET_break_op (0); return GNUNET_SYSERR; } path = &address[strlen (COMMUNICATOR_ADDRESS_PREFIX "-")]; in = tcp_address_to_sockaddr (path, &in_len); sock = GNUNET_NETWORK_socket_create (in->sa_family, SOCK_STREAM, IPPROTO_TCP); if (NULL == sock) { GNUNET_log (GNUNET_ERROR_TYPE_WARNING, "socket(%d) failed: %s", in->sa_family, strerror (errno)); GNUNET_free (in); return GNUNET_SYSERR; } if ((GNUNET_OK != GNUNET_NETWORK_socket_connect (sock, in, in_len)) && (errno != EINPROGRESS)) { GNUNET_log (GNUNET_ERROR_TYPE_WARNING, "connect to `%s' failed: %s", address, strerror (errno)); GNUNET_NETWORK_socket_close (sock); GNUNET_free (in); return GNUNET_SYSERR; } queue = GNUNET_new (struct Queue); queue->target = *peer; queue->address = in; queue->address_len = in_len; queue->sock = sock; boot_queue (queue, GNUNET_TRANSPORT_CS_OUTBOUND); // queue->mq_awaits_continue = GNUNET_YES; queue->read_task = GNUNET_SCHEDULER_add_read_net (GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT, queue->sock, &queue_read_kx, queue); start_initial_kx_out (queue); queue->write_task = GNUNET_SCHEDULER_add_write_net (GNUNET_TIME_UNIT_FOREVER_REL, queue->sock, &queue_write, queue); return GNUNET_OK; } /** * Iterator over all message queues to clean up. * * @param cls NULL * @param target unused * @param value the queue to destroy * @return #GNUNET_OK to continue to iterate */ static int get_queue_delete_it (void *cls, const struct GNUNET_PeerIdentity *target, void *value) { struct Queue *queue = value; (void) cls; (void) target; queue_destroy (queue); return GNUNET_OK; } /** * Shutdown the UNIX communicator. * * @param cls NULL (always) */ static void do_shutdown (void *cls) { while (NULL != proto_head) free_proto_queue (proto_head); if (NULL != nat) { GNUNET_NAT_unregister (nat); nat = NULL; } if (NULL != listen_task) { GNUNET_SCHEDULER_cancel (listen_task); listen_task = NULL; } if (NULL != listen_sock) { GNUNET_break (GNUNET_OK == GNUNET_NETWORK_socket_close (listen_sock)); listen_sock = NULL; } GNUNET_CONTAINER_multipeermap_iterate (queue_map, &get_queue_delete_it, NULL); GNUNET_CONTAINER_multipeermap_destroy (queue_map); if (NULL != ch) { GNUNET_TRANSPORT_communicator_disconnect (ch); ch = NULL; } if (NULL != stats) { GNUNET_STATISTICS_destroy (stats, GNUNET_NO); stats = NULL; } if (NULL != my_private_key) { GNUNET_free (my_private_key); my_private_key = NULL; } if (NULL != is) { GNUNET_NT_scanner_done (is); is = NULL; } } /** * Function called when the transport service has received an * acknowledgement for this communicator (!) via a different return * path. * * Not applicable for TCP. * * @param cls closure * @param sender which peer sent the notification * @param msg payload */ static void enc_notify_cb (void *cls, const struct GNUNET_PeerIdentity *sender, const struct GNUNET_MessageHeader *msg) { (void) cls; (void) sender; (void) msg; GNUNET_break_op (0); } /** * Signature of the callback passed to #GNUNET_NAT_register() for * a function to call whenever our set of 'valid' addresses changes. * * @param cls closure * @param app_ctx[in,out] location where the app can store stuff * on add and retrieve it on remove * @param add_remove #GNUNET_YES to add a new public IP address, * #GNUNET_NO to remove a previous (now invalid) one * @param ac address class the address belongs to * @param addr either the previous or the new public IP address * @param addrlen actual length of the @a addr */ static void nat_address_cb (void *cls, void **app_ctx, int add_remove, enum GNUNET_NAT_AddressClass ac, const struct sockaddr *addr, socklen_t addrlen) { char *my_addr; struct GNUNET_TRANSPORT_AddressIdentifier *ai; if (GNUNET_YES == add_remove) { enum GNUNET_NetworkType nt; GNUNET_asprintf (&my_addr, "%s-%s", COMMUNICATOR_ADDRESS_PREFIX, GNUNET_a2s (addr, addrlen)); nt = GNUNET_NT_scanner_get_type (is, addr, addrlen); ai = GNUNET_TRANSPORT_communicator_address_add (ch, my_addr, nt, GNUNET_TIME_UNIT_FOREVER_REL); GNUNET_free (my_addr); *app_ctx = ai; } else { ai = *app_ctx; GNUNET_TRANSPORT_communicator_address_remove (ai); *app_ctx = NULL; } } /** * Setup communicator and launch network interactions. * * @param cls NULL (always) * @param args remaining command-line arguments * @param cfgfile name of the configuration file used (for saving, can be NULL!) * @param c configuration */ static void run (void *cls, char *const *args, const char *cfgfile, const struct GNUNET_CONFIGURATION_Handle *c) { char *bindto; struct sockaddr *in; socklen_t in_len; struct sockaddr_storage in_sto; socklen_t sto_len; (void) cls; cfg = c; if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_string (cfg, COMMUNICATOR_CONFIG_SECTION, "BINDTO", &bindto)) { GNUNET_log_config_missing (GNUNET_ERROR_TYPE_ERROR, COMMUNICATOR_CONFIG_SECTION, "BINDTO"); return; } if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (cfg, COMMUNICATOR_CONFIG_SECTION, "MAX_QUEUE_LENGTH", &max_queue_length)) max_queue_length = DEFAULT_MAX_QUEUE_LENGTH; if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_time (cfg, COMMUNICATOR_CONFIG_SECTION, "REKEY_INTERVAL", &rekey_interval)) rekey_interval = DEFAULT_REKEY_INTERVAL; in = tcp_address_to_sockaddr (bindto, &in_len); if (NULL == in) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Failed to setup TCP socket address with path `%s'\n", bindto); GNUNET_free (bindto); return; } listen_sock = GNUNET_NETWORK_socket_create (in->sa_family, SOCK_STREAM, IPPROTO_TCP); if (NULL == listen_sock) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_ERROR, "socket"); GNUNET_free (in); GNUNET_free (bindto); return; } if (GNUNET_OK != GNUNET_NETWORK_socket_bind (listen_sock, in, in_len)) { GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_ERROR, "bind", bindto); GNUNET_NETWORK_socket_close (listen_sock); listen_sock = NULL; GNUNET_free (in); GNUNET_free (bindto); return; } if (GNUNET_OK != GNUNET_NETWORK_socket_listen (listen_sock, 5)) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_ERROR, "listen"); GNUNET_NETWORK_socket_close (listen_sock); listen_sock = NULL; GNUNET_free (in); GNUNET_free (bindto); } /* We might have bound to port 0, allowing the OS to figure it out; thus, get the real IN-address from the socket */ sto_len = sizeof(in_sto); if (0 != getsockname (GNUNET_NETWORK_get_fd (listen_sock), (struct sockaddr *) &in_sto, &sto_len)) { memcpy (&in_sto, in, in_len); sto_len = in_len; } GNUNET_free (in); GNUNET_free (bindto); in = (struct sockaddr *) &in_sto; in_len = sto_len; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Bound to `%s'\n", GNUNET_a2s ((const struct sockaddr *) &in_sto, sto_len)); stats = GNUNET_STATISTICS_create ("C-TCP", cfg); GNUNET_SCHEDULER_add_shutdown (&do_shutdown, NULL); is = GNUNET_NT_scanner_init (); my_private_key = GNUNET_CRYPTO_eddsa_key_create_from_configuration (cfg); if (NULL == my_private_key) { GNUNET_log ( GNUNET_ERROR_TYPE_ERROR, _ ( "Transport service is lacking key configuration settings. Exiting.\n")); GNUNET_SCHEDULER_shutdown (); return; } GNUNET_CRYPTO_eddsa_key_get_public (my_private_key, &my_identity.public_key); /* start listening */ listen_task = GNUNET_SCHEDULER_add_read_net (GNUNET_TIME_UNIT_FOREVER_REL, listen_sock, &listen_cb, NULL); queue_map = GNUNET_CONTAINER_multipeermap_create (10, GNUNET_NO); ch = GNUNET_TRANSPORT_communicator_connect (cfg, COMMUNICATOR_CONFIG_SECTION, COMMUNICATOR_ADDRESS_PREFIX, GNUNET_TRANSPORT_CC_RELIABLE, &mq_init, NULL, &enc_notify_cb, NULL); if (NULL == ch) { GNUNET_break (0); GNUNET_SCHEDULER_shutdown (); return; } nat = GNUNET_NAT_register (cfg, COMMUNICATOR_CONFIG_SECTION, IPPROTO_TCP, 1 /* one address */, (const struct sockaddr **) &in, &in_len, &nat_address_cb, NULL /* FIXME: support reversal: #5529 */, NULL /* closure */); } /** * The main function for the UNIX communicator. * * @param argc number of arguments from the command line * @param argv command line arguments * @return 0 ok, 1 on error */ int main (int argc, char *const *argv) { static const struct GNUNET_GETOPT_CommandLineOption options[] = { GNUNET_GETOPT_OPTION_END }; int ret; if (GNUNET_OK != GNUNET_STRINGS_get_utf8_args (argc, argv, &argc, &argv)) return 2; ret = (GNUNET_OK == GNUNET_PROGRAM_run (argc, argv, "gnunet-communicator-tcp", _ ("GNUnet TCP communicator"), options, &run, NULL)) ? 0 : 1; GNUNET_free_nz ((void *) argv); return ret; } /* end of gnunet-communicator-tcp.c */