/* This file is part of GNUnet (C) 2010, 2011 Christian Grothoff (and other contributing authors) GNUnet is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GNUnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNUnet; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /** * @file transport/plugin_transport_udp.c * @brief Implementation of the UDP NAT punching * transport service * @author Christian Grothoff * @author Nathan Evans */ #include "platform.h" #include "gnunet_hello_lib.h" #include "gnunet_util_lib.h" #include "gnunet_fragmentation_lib.h" #include "gnunet_nat_lib.h" #include "gnunet_protocols.h" #include "gnunet_resolver_service.h" #include "gnunet_signatures.h" #include "gnunet_constants.h" #include "gnunet_statistics_service.h" #include "gnunet_transport_service.h" #include "gnunet_transport_plugin.h" #include "transport.h" #define LOG(kind,...) GNUNET_log_from (kind, "transport-udp", __VA_ARGS__) #define DEBUG_UDP GNUNET_EXTRA_LOGGING /** * MTU for fragmentation subsystem. Should be conservative since * all communicating peers MUST work with this MTU. */ #define UDP_MTU 1400 /** * Number of messages we can defragment in parallel. We only really * defragment 1 message at a time, but if messages get re-ordered, we * may want to keep knowledge about the previous message to avoid * discarding the current message in favor of a single fragment of a * previous message. 3 should be good since we don't expect massive * message reorderings with UDP. */ #define UDP_MAX_MESSAGES_IN_DEFRAG 3 /** * We keep a defragmentation queue per sender address. How many * sender addresses do we support at the same time? Memory consumption * is roughly a factor of 32k * UDP_MAX_MESSAGES_IN_DEFRAG times this * value. (So 128 corresponds to 12 MB and should suffice for * connecting to roughly 128 peers via UDP). */ #define UDP_MAX_SENDER_ADDRESSES_WITH_DEFRAG 128 GNUNET_NETWORK_STRUCT_BEGIN /** * UDP Message-Packet header (after defragmentation). */ struct UDPMessage { /** * Message header. */ struct GNUNET_MessageHeader header; /** * Always zero for now. */ uint32_t reserved; /** * What is the identity of the sender */ struct GNUNET_PeerIdentity sender; }; /** * UDP ACK Message-Packet header (after defragmentation). */ struct UDP_ACK_Message { /** * Message header. */ struct GNUNET_MessageHeader header; /** * Desired delay for flow control */ uint32_t delay; /** * What is the identity of the sender */ struct GNUNET_PeerIdentity sender; }; struct UDP_Beacon_Message { /** * Message header. */ struct GNUNET_MessageHeader header; /** * What is the identity of the sender */ struct GNUNET_PeerIdentity sender; }; /** * Network format for IPv4 addresses. */ struct IPv4UdpAddress { /** * IPv4 address, in network byte order. */ uint32_t ipv4_addr GNUNET_PACKED; /** * Port number, in network byte order. */ uint16_t u4_port GNUNET_PACKED; }; /** * Network format for IPv6 addresses. */ struct IPv6UdpAddress { /** * IPv6 address. */ struct in6_addr ipv6_addr GNUNET_PACKED; /** * Port number, in network byte order. */ uint16_t u6_port GNUNET_PACKED; }; GNUNET_NETWORK_STRUCT_END /* Forward definition */ struct Plugin; /** * Session with another peer. FIXME: why not make this into * a regular 'struct Session' and pass it around!? */ struct Session { /** * Which peer is this session for? */ struct GNUNET_PeerIdentity target; /** * Pointer to the global plugin struct. */ struct Plugin *plugin; /** * Address of the other peer */ const struct sockaddr *sock_addr; size_t addrlen; /** * ATS network type in NBO */ uint32_t ats_address_network_type; /** * Function to call upon completion of the transmission. */ GNUNET_TRANSPORT_TransmitContinuation cont; /** * Closure for 'cont'. */ void *cont_cls; /** * Current outgoing message to this peer. */ struct GNUNET_FRAGMENT_Context *frag; struct GNUNET_TIME_Absolute valid_until; GNUNET_SCHEDULER_TaskIdentifier invalidation_task; GNUNET_SCHEDULER_TaskIdentifier delayed_cont_task; /** * Desired delay for next sending we send to other peer */ struct GNUNET_TIME_Relative flow_delay_for_other_peer; /** * Desired delay for next sending we received from other peer */ struct GNUNET_TIME_Absolute flow_delay_from_other_peer; }; /** * Data structure to track defragmentation contexts based * on the source of the UDP traffic. */ struct ReceiveContext { /** * Defragmentation context. */ struct GNUNET_DEFRAGMENT_Context *defrag; /** * Source address this receive context is for (allocated at the * end of the struct). */ const struct sockaddr *src_addr; /** * Reference to master plugin struct. */ struct Plugin *plugin; /** * Node in the defrag heap. */ struct GNUNET_CONTAINER_HeapNode *hnode; /** * Length of 'src_addr' */ size_t addr_len; struct GNUNET_PeerIdentity id; }; struct BroadcastAddress { struct BroadcastAddress *next; struct BroadcastAddress *prev; void *addr; socklen_t addrlen; }; /** * Encapsulation of all of the state of the plugin. */ struct Plugin { /** * Our environment. */ struct GNUNET_TRANSPORT_PluginEnvironment *env; /** * Session of peers with whom we are currently connected, * map of peer identity to 'struct PeerSession'. */ struct GNUNET_CONTAINER_MultiHashMap *sessions; /** * Session of peers with whom we are currently connected, * map of peer identity to 'struct PeerSession'. */ struct GNUNET_CONTAINER_MultiHashMap *inbound_sessions; /** * Heap with all of our defragmentation activities. */ struct GNUNET_CONTAINER_Heap *defrags; /** * ID of select task */ GNUNET_SCHEDULER_TaskIdentifier select_task; /** * Tokenizer for inbound messages. */ struct GNUNET_SERVER_MessageStreamTokenizer *mst; /** * Bandwidth tracker to limit global UDP traffic. */ struct GNUNET_BANDWIDTH_Tracker tracker; /** * Address we were told to bind to exclusively (IPv4). */ char *bind4_address; /** * Address we were told to bind to exclusively (IPv6). */ char *bind6_address; /** * Handle to NAT traversal support. */ struct GNUNET_NAT_Handle *nat; /** * FD Read set */ struct GNUNET_NETWORK_FDSet *rs; /** * The read socket for IPv4 */ struct GNUNET_NETWORK_Handle *sockv4; /** * The read socket for IPv6 */ struct GNUNET_NETWORK_Handle *sockv6; /** * Beacon broadcasting * ------------------- */ /** * Broadcast interval */ struct GNUNET_TIME_Relative broadcast_interval; /** * Broadcast with IPv4 */ int broadcast_ipv4; /** * Broadcast with IPv6 */ int broadcast_ipv6; /** * Tokenizer for inbound messages. */ struct GNUNET_SERVER_MessageStreamTokenizer *broadcast_ipv6_mst; struct GNUNET_SERVER_MessageStreamTokenizer *broadcast_ipv4_mst; /** * ID of select broadcast task */ GNUNET_SCHEDULER_TaskIdentifier send_ipv4_broadcast_task; /** * ID of select broadcast task */ GNUNET_SCHEDULER_TaskIdentifier send_ipv6_broadcast_task; /** * IPv6 multicast address */ struct sockaddr_in6 ipv6_multicast_address; /** * DLL of IPv4 broadcast addresses */ struct BroadcastAddress *ipv4_broadcast_tail; struct BroadcastAddress *ipv4_broadcast_head; /** * expected delay for ACKs */ struct GNUNET_TIME_Relative last_expected_delay; /** * Port we broadcasting on. */ uint16_t broadcast_port; /** * Port we listen on. */ uint16_t port; /** * Port we advertise on. */ uint16_t aport; }; struct PeerSessionIteratorContext { struct Session *result; const void *addr; size_t addrlen; }; /** * Lookup the session for the given peer. * * @param plugin the plugin * @param peer peer's identity * @return NULL if we have no session */ static struct Session * find_session (struct Plugin *plugin, const struct GNUNET_PeerIdentity *peer) { return GNUNET_CONTAINER_multihashmap_get (plugin->sessions, &peer->hashPubKey); } static int inbound_session_iterator (void *cls, const GNUNET_HashCode * key, void *value) { struct PeerSessionIteratorContext *psc = cls; struct Session *s = value; if (s->addrlen == psc->addrlen) { if (0 == memcmp (&s[1], psc->addr, s->addrlen)) psc->result = s; } if (psc->result != NULL) return GNUNET_NO; return GNUNET_YES; } /** * Lookup the session for the given peer. * * @param plugin the plugin * @param peer peer's identity * @param addr address * @param addrlen address length * @return NULL if we have no session */ static struct Session * find_inbound_session (struct Plugin *plugin, const struct GNUNET_PeerIdentity *peer, const void *addr, size_t addrlen) { struct PeerSessionIteratorContext psc; psc.result = NULL; psc.addrlen = addrlen; psc.addr = addr; GNUNET_CONTAINER_multihashmap_get_multiple (plugin->inbound_sessions, &peer->hashPubKey, &inbound_session_iterator, &psc); return psc.result; } static int inbound_session_by_addr_iterator (void *cls, const GNUNET_HashCode * key, void *value) { struct PeerSessionIteratorContext *psc = cls; struct Session *s = value; if (s->addrlen == psc->addrlen) { if (0 == memcmp (&s[1], psc->addr, s->addrlen)) psc->result = s; } if (psc->result != NULL) return GNUNET_NO; else return GNUNET_YES; }; /** * Lookup the session for the given peer just by address. * * @param plugin the plugin * @param addr address * @param addrlen address length * @return NULL if we have no session */ static struct Session * find_inbound_session_by_addr (struct Plugin *plugin, const void *addr, size_t addrlen) { struct PeerSessionIteratorContext psc; psc.result = NULL; psc.addrlen = addrlen; psc.addr = addr; GNUNET_CONTAINER_multihashmap_iterate (plugin->inbound_sessions, &inbound_session_by_addr_iterator, &psc); return psc.result; } /** * Destroy a session, plugin is being unloaded. * * @param cls unused * @param key hash of public key of target peer * @param value a 'struct PeerSession*' to clean up * @return GNUNET_OK (continue to iterate) */ static int destroy_session (void *cls, const GNUNET_HashCode * key, void *value) { struct Session *peer_session = value; GNUNET_assert (GNUNET_YES == GNUNET_CONTAINER_multihashmap_remove (peer_session-> plugin->sessions, &peer_session-> target.hashPubKey, peer_session)); if (peer_session->frag != NULL) GNUNET_FRAGMENT_context_destroy (peer_session->frag); if (GNUNET_SCHEDULER_NO_TASK != peer_session->delayed_cont_task) GNUNET_SCHEDULER_cancel (peer_session->delayed_cont_task); GNUNET_free (peer_session); return GNUNET_OK; } /** * Destroy a session, plugin is being unloaded. * * @param cls unused * @param key hash of public key of target peer * @param value a 'struct PeerSession*' to clean up * @return GNUNET_OK (continue to iterate) */ static int destroy_inbound_session (void *cls, const GNUNET_HashCode * key, void *value) { struct Session *s = value; if (s->invalidation_task != GNUNET_SCHEDULER_NO_TASK) GNUNET_SCHEDULER_cancel (s->invalidation_task); if (GNUNET_SCHEDULER_NO_TASK != s->delayed_cont_task) GNUNET_SCHEDULER_cancel (s->delayed_cont_task); GNUNET_CONTAINER_multihashmap_remove (s->plugin->inbound_sessions, &s->target.hashPubKey, s); GNUNET_free (s); return GNUNET_OK; } /** * Disconnect from a remote node. Clean up session if we have one for this peer * * @param cls closure for this call (should be handle to Plugin) * @param target the peeridentity of the peer to disconnect * @return GNUNET_OK on success, GNUNET_SYSERR if the operation failed */ static void udp_disconnect (void *cls, const struct GNUNET_PeerIdentity *target) { struct Plugin *plugin = cls; struct Session *session; session = find_session (plugin, target); if (NULL == session) return; GNUNET_assert (GNUNET_OK == GNUNET_CONTAINER_multihashmap_remove (plugin->sessions, &target->hashPubKey, session)); GNUNET_CONTAINER_multihashmap_get_multiple (plugin->inbound_sessions, &target->hashPubKey, &destroy_inbound_session, NULL); plugin->last_expected_delay = GNUNET_FRAGMENT_context_destroy (session->frag); if (GNUNET_SCHEDULER_NO_TASK != session->delayed_cont_task) GNUNET_SCHEDULER_cancel (session->delayed_cont_task); if (session->cont != NULL) session->cont (session->cont_cls, target, GNUNET_SYSERR); GNUNET_free (session); } static struct Session * create_session (struct Plugin *plugin, const struct GNUNET_PeerIdentity *target, const void *addr, size_t addrlen, GNUNET_TRANSPORT_TransmitContinuation cont, void *cont_cls) { struct Session *peer_session; const struct IPv4UdpAddress *t4; const struct IPv6UdpAddress *t6; struct sockaddr_in *v4; struct sockaddr_in6 *v6; size_t len; struct GNUNET_ATS_Information ats; switch (addrlen) { case sizeof (struct IPv4UdpAddress): if (NULL == plugin->sockv4) { return NULL; } t4 = addr; peer_session = GNUNET_malloc (sizeof (struct Session) + sizeof (struct sockaddr_in)); len = sizeof (struct sockaddr_in); v4 = (struct sockaddr_in *) &peer_session[1]; v4->sin_family = AF_INET; #if HAVE_SOCKADDR_IN_SIN_LEN v4->sin_len = sizeof (struct sockaddr_in); #endif v4->sin_port = t4->u4_port; v4->sin_addr.s_addr = t4->ipv4_addr; ats = plugin->env->get_address_type (plugin->env->cls, (const struct sockaddr *) v4, sizeof (struct sockaddr_in)); break; case sizeof (struct IPv6UdpAddress): if (NULL == plugin->sockv6) { return NULL; } t6 = addr; peer_session = GNUNET_malloc (sizeof (struct Session) + sizeof (struct sockaddr_in6)); len = sizeof (struct sockaddr_in6); v6 = (struct sockaddr_in6 *) &peer_session[1]; v6->sin6_family = AF_INET6; #if HAVE_SOCKADDR_IN_SIN_LEN v6->sin6_len = sizeof (struct sockaddr_in6); #endif v6->sin6_port = t6->u6_port; v6->sin6_addr = t6->ipv6_addr; ats = plugin->env->get_address_type (plugin->env->cls, (const struct sockaddr *) v6, sizeof (struct sockaddr_in6)); break; default: /* Must have a valid address to send to */ GNUNET_break_op (0); return NULL; } peer_session->ats_address_network_type = ats.value; peer_session->valid_until = GNUNET_TIME_absolute_get_zero (); peer_session->invalidation_task = GNUNET_SCHEDULER_NO_TASK; peer_session->addrlen = len; peer_session->target = *target; peer_session->plugin = plugin; peer_session->sock_addr = (const struct sockaddr *) &peer_session[1]; peer_session->cont = cont; peer_session->cont_cls = cont_cls; return peer_session; } static int session_cmp_it (void *cls, const GNUNET_HashCode * key, void *value) { int res = GNUNET_OK; /* struct GNUNET_HELLO_Address *address = cls; struct Session *s = value; struct IPv4UdpAddress * u4 = NULL; struct IPv4UdpAddress * u6 = NULL; if ((s->addrlen == address->address_length) && (0 == memcmp (s->sock_addr, address->address, address->address_length))) { } */ return res; } /** * Creates a new outbound session the transport service will use to send data to the * peer * * @param cls the plugin * @param address the address * @return the session or NULL of max connections exceeded */ static struct Session * udp_plugin_get_session (void *cls, const struct GNUNET_HELLO_Address *address) { struct Session * s = NULL; struct Plugin * plugin = cls; GNUNET_assert (plugin != NULL); GNUNET_assert (address != NULL); if ((address->address == NULL) || ((address->address_length != sizeof (struct IPv4UdpAddress)) && (address->address_length != sizeof (struct IPv6UdpAddress)))) { GNUNET_break (0); return NULL; } /* check if session already exists */ GNUNET_CONTAINER_multihashmap_get_multiple(plugin->sessions, &address->peer.hashPubKey, session_cmp_it, (void *) address); /* otherwise create new */ s = create_session (plugin, &address->peer, address->address, address->address_length, NULL, NULL); return s; } /** * Function that can be used by the transport service to transmit * a message using the plugin. Note that in the case of a * peer disconnecting, the continuation MUST be called * prior to the disconnect notification itself. This function * will be called with this peer's HELLO message to initiate * a fresh connection to another peer. * * @param cls closure * @param session which session must be used * @param msgbuf the message to transmit * @param msgbuf_size number of bytes in 'msgbuf' * @param priority how important is the message (most plugins will * ignore message priority and just FIFO) * @param to how long to wait at most for the transmission (does not * require plugins to discard the message after the timeout, * just advisory for the desired delay; most plugins will ignore * this as well) * @param cont continuation to call once the message has * been transmitted (or if the transport is ready * for the next transmission call; or if the * peer disconnected...); can be NULL * @param cont_cls closure for cont * @return number of bytes used (on the physical network, with overheads); * -1 on hard errors (i.e. address invalid); 0 is a legal value * and does NOT mean that the message was not transmitted (DV) */ static ssize_t udp_plugin_send (void *cls, struct Session *session, const char *msgbuf, size_t msgbuf_size, unsigned int priority, struct GNUNET_TIME_Relative to, GNUNET_TRANSPORT_TransmitContinuation cont, void *cont_cls) { ssize_t sent = -1; GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "To be implemented\n"); GNUNET_break (0); return sent; } /** * Actually send out the message. * * @param plugin the plugin * @param sa the address to send the message to * @param msg message to transmit * @return the number of bytes written */ static ssize_t udp_send (struct Plugin *plugin, const struct sockaddr *sa, const struct GNUNET_MessageHeader *msg) { ssize_t sent; size_t slen; switch (sa->sa_family) { case AF_INET: if (NULL == plugin->sockv4) return 0; sent = GNUNET_NETWORK_socket_sendto (plugin->sockv4, msg, ntohs (msg->size), sa, slen = sizeof (struct sockaddr_in)); break; case AF_INET6: if (NULL == plugin->sockv6) return 0; sent = GNUNET_NETWORK_socket_sendto (plugin->sockv6, msg, ntohs (msg->size), sa, slen = sizeof (struct sockaddr_in6)); break; default: GNUNET_break (0); return 0; } if (GNUNET_SYSERR == sent) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_ERROR, "sendto"); LOG (GNUNET_ERROR_TYPE_ERROR, "UDP transmited %u-byte message to %s (%d: %s)\n", (unsigned int) ntohs (msg->size), GNUNET_a2s (sa, slen), (int) sent, (sent < 0) ? STRERROR (errno) : "ok"); } LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP transmited %u-byte message to %s (%d: %s)\n", (unsigned int) ntohs (msg->size), GNUNET_a2s (sa, slen), (int) sent, (sent < 0) ? STRERROR (errno) : "ok"); return sent; } /** * Function that is called with messages created by the fragmentation * module. In the case of the 'proc' callback of the * GNUNET_FRAGMENT_context_create function, this function must * eventually call 'GNUNET_FRAGMENT_context_transmission_done'. * * @param cls closure, the 'struct PeerSession' * @param msg the message that was created */ static void send_fragment (void *cls, const struct GNUNET_MessageHeader *msg) { struct Session *session = cls; udp_send (session->plugin, session->sock_addr, msg); GNUNET_FRAGMENT_context_transmission_done (session->frag); } static const char * udp_address_to_string (void *cls, const void *addr, size_t addrlen); static void udp_call_continuation (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct Session *s = cls; GNUNET_TRANSPORT_TransmitContinuation cont = s->cont; s->delayed_cont_task = GNUNET_SCHEDULER_NO_TASK; s->cont = NULL; cont (s->cont_cls, &s->target, GNUNET_OK); } /** * Function that can be used by the transport service to transmit * a message using the plugin. * * @param cls closure * @param target who should receive this message (ignored by UDP) * @param msgbuf one or more GNUNET_MessageHeader(s) strung together * @param msgbuf_size the size of the msgbuf to send * @param priority how important is the message (ignored by UDP) * @param timeout when should we time out (give up) if we can not transmit? * @param session identifier used for this session (NULL for UDP) * @param addr the addr to send the message to * @param addrlen the len of addr * @param force_address not used, we had better have an address to send to * because we are stateless!! * @param cont continuation to call once the message has * been transmitted (or if the transport is ready * for the next transmission call; or if the * peer disconnected...) * @param cont_cls closure for cont * * @return the number of bytes written (may return 0 and the message can * still be transmitted later!) */ static ssize_t udp_plugin_send_old (void *cls, const struct GNUNET_PeerIdentity *target, const char *msgbuf, size_t msgbuf_size, unsigned int priority, struct GNUNET_TIME_Relative timeout, struct Session *session, const void *addr, size_t addrlen, int force_address, GNUNET_TRANSPORT_TransmitContinuation cont, void *cont_cls) { struct Plugin *plugin = cls; struct Session *peer_session; struct Session *s; const struct IPv4UdpAddress *t4; const struct IPv6UdpAddress *t6; size_t mlen = msgbuf_size + sizeof (struct UDPMessage); char mbuf[mlen]; struct UDPMessage *udp; struct GNUNET_TIME_Relative delta; if (mlen >= GNUNET_SERVER_MAX_MESSAGE_SIZE) { GNUNET_break (0); return GNUNET_SYSERR; } LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP transmits %u-byte message to `%s' using address `%s' session 0x%X mode %i\n", msgbuf_size, GNUNET_i2s (target), udp_address_to_string (NULL, addr, addrlen), session, force_address); if ((force_address == GNUNET_SYSERR) && (session == NULL)) return GNUNET_SYSERR; s = NULL; /* safety check: comparing address to address stored in session */ if ((session != NULL) && (addr != NULL) && (addrlen != 0)) { s = session; GNUNET_assert (GNUNET_YES == GNUNET_CONTAINER_multihashmap_contains_value (plugin->inbound_sessions, &target->hashPubKey, s)); if (0 != memcmp (&s->target, target, sizeof (struct GNUNET_PeerIdentity))) return GNUNET_SYSERR; switch (addrlen) { case sizeof (struct IPv4UdpAddress): if (NULL == plugin->sockv4) { if (cont != NULL) cont (cont_cls, target, GNUNET_SYSERR); return GNUNET_SYSERR; } t4 = addr; if (s->addrlen != (sizeof (struct sockaddr_in))) return GNUNET_SYSERR; struct sockaddr_in *a4 = (struct sockaddr_in *) s->sock_addr; GNUNET_assert (a4->sin_port == t4->u4_port); GNUNET_assert (0 == memcmp (&a4->sin_addr, &t4->ipv4_addr, sizeof (struct in_addr))); LOG (GNUNET_ERROR_TYPE_DEBUG, "Session 0x%X successfully checked!\n", session); break; case sizeof (struct IPv6UdpAddress): if (NULL == plugin->sockv6) { if (cont != NULL) cont (cont_cls, target, GNUNET_SYSERR); return GNUNET_SYSERR; } t6 = addr; GNUNET_assert (s->addrlen == sizeof (struct sockaddr_in6)); struct sockaddr_in6 *a6 = (struct sockaddr_in6 *) s->sock_addr; GNUNET_assert (a6->sin6_port == t6->u6_port); GNUNET_assert (0 == memcmp (&a6->sin6_addr, &t6->ipv6_addr, sizeof (struct in6_addr))); LOG (GNUNET_ERROR_TYPE_DEBUG, "Session 0x%X successfully checked!\n", session); break; default: /* Must have a valid address to send to */ GNUNET_break_op (0); } } //session_invalid: if ((addr == NULL) || (addrlen == 0)) return GNUNET_SYSERR; peer_session = create_session (plugin, target, addr, addrlen, cont, cont_cls); if (peer_session == NULL) { if (cont != NULL) cont (cont_cls, target, GNUNET_SYSERR); return GNUNET_SYSERR;; } /* Message */ udp = (struct UDPMessage *) mbuf; udp->header.size = htons (mlen); udp->header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_MESSAGE); udp->reserved = htonl (0); udp->sender = *plugin->env->my_identity; memcpy (&udp[1], msgbuf, msgbuf_size); if (s != NULL) delta = GNUNET_TIME_absolute_get_remaining (s->flow_delay_from_other_peer); else delta = GNUNET_TIME_UNIT_ZERO; if (mlen <= UDP_MTU) { mlen = udp_send (plugin, peer_session->sock_addr, &udp->header); if (cont != NULL) { if ((delta.rel_value > 0) && (mlen > 0)) { s->cont = cont; s->cont_cls = cont_cls; s->delayed_cont_task = GNUNET_SCHEDULER_add_delayed (delta, &udp_call_continuation, s); } else cont (cont_cls, target, (mlen > 0) ? GNUNET_OK : GNUNET_SYSERR); } GNUNET_free_non_null (peer_session); } else { GNUNET_assert (GNUNET_OK == GNUNET_CONTAINER_multihashmap_put (plugin->sessions, &target->hashPubKey, peer_session, GNUNET_CONTAINER_MULTIHASHMAPOPTION_UNIQUE_ONLY)); peer_session->frag = GNUNET_FRAGMENT_context_create (plugin->env->stats, UDP_MTU, &plugin->tracker, plugin->last_expected_delay, &udp->header, &send_fragment, peer_session); } return mlen; } /** * Closure for 'process_inbound_tokenized_messages' */ struct SourceInformation { /** * Sender identity. */ struct GNUNET_PeerIdentity sender; /** * Source address. */ const void *arg; /** * Number of bytes in source address. */ size_t args; struct Session *session; }; /** * Message tokenizer has broken up an incomming message. Pass it on * to the service. * * @param cls the 'struct Plugin' * @param client the 'struct SourceInformation' * @param hdr the actual message */ static void process_inbound_tokenized_messages (void *cls, void *client, const struct GNUNET_MessageHeader *hdr) { struct Plugin *plugin = cls; struct SourceInformation *si = client; struct GNUNET_ATS_Information atsi[2]; struct GNUNET_TIME_Relative delay; /* setup ATS */ atsi[0].type = htonl (GNUNET_ATS_QUALITY_NET_DISTANCE); atsi[0].value = htonl (1); atsi[1].type = htonl (GNUNET_ATS_NETWORK_TYPE); atsi[1].value = si->session->ats_address_network_type; GNUNET_break (ntohl(si->session->ats_address_network_type) != GNUNET_ATS_NET_UNSPECIFIED); LOG (GNUNET_ERROR_TYPE_DEBUG, "Giving Session %X %s to transport\n", si->session, GNUNET_i2s (&si->session->target)); delay = plugin->env->receive (plugin->env->cls, &si->sender, hdr, (const struct GNUNET_ATS_Information *) &atsi, 2, si->session, si->arg, si->args); si->session->flow_delay_for_other_peer = delay; } static void invalidation_task (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct Session *s = cls; s->invalidation_task = GNUNET_SCHEDULER_NO_TASK; LOG (GNUNET_ERROR_TYPE_DEBUG, "Session %X (`%s') is now invalid\n", s, GNUNET_a2s (s->sock_addr, s->addrlen)); s->plugin->env->session_end (s->plugin->env->cls, &s->target, s); GNUNET_assert (GNUNET_YES == GNUNET_CONTAINER_multihashmap_remove (s-> plugin->inbound_sessions, &s->target.hashPubKey, s)); GNUNET_free (s); } /** * We've received a UDP Message. Process it (pass contents to main service). * * @param plugin plugin context * @param msg the message * @param sender_addr sender address * @param sender_addr_len number of bytes in sender_addr */ static void process_udp_message (struct Plugin *plugin, const struct UDPMessage *msg, const struct sockaddr *sender_addr, socklen_t sender_addr_len) { struct SourceInformation si; struct IPv4UdpAddress u4; struct IPv6UdpAddress u6; struct GNUNET_ATS_Information ats; const void *arg; size_t args; if (0 != ntohl (msg->reserved)) { GNUNET_break_op (0); return; } if (ntohs (msg->header.size) < sizeof (struct GNUNET_MessageHeader) + sizeof (struct UDPMessage)) { GNUNET_break_op (0); return; } ats.type = htonl (GNUNET_ATS_NETWORK_TYPE); ats.value = htonl (GNUNET_ATS_NET_UNSPECIFIED); /* convert address */ switch (sender_addr->sa_family) { case AF_INET: GNUNET_assert (sender_addr_len == sizeof (struct sockaddr_in)); u4.ipv4_addr = ((struct sockaddr_in *) sender_addr)->sin_addr.s_addr; u4.u4_port = ((struct sockaddr_in *) sender_addr)->sin_port; arg = &u4; args = sizeof (u4); break; case AF_INET6: GNUNET_assert (sender_addr_len == sizeof (struct sockaddr_in6)); u6.ipv6_addr = ((struct sockaddr_in6 *) sender_addr)->sin6_addr; u6.u6_port = ((struct sockaddr_in6 *) sender_addr)->sin6_port; arg = &u6; args = sizeof (u6); break; default: GNUNET_break (0); return; } #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Received message with %u bytes from peer `%s' at `%s'\n", (unsigned int) ntohs (msg->header.size), GNUNET_i2s (&msg->sender), GNUNET_a2s (sender_addr, sender_addr_len)); #endif /* create a session for inbound connections */ const struct UDPMessage *udp_msg = (const struct UDPMessage *) msg; LOG (GNUNET_ERROR_TYPE_DEBUG, "Lookup inbound UDP sessions for peer `%s' address `%s'\n", GNUNET_i2s (&udp_msg->sender), udp_address_to_string (NULL, arg, args)); struct Session *s = NULL; s = find_inbound_session (plugin, &udp_msg->sender, sender_addr, sender_addr_len); if (s != NULL) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Found existing inbound UDP sessions 0x%X for peer `%s' address `%s'\n", s, GNUNET_i2s (&s->target), udp_address_to_string (NULL, arg, args)); } else { s = create_session (plugin, &udp_msg->sender, arg, args, NULL, NULL); ats = plugin->env->get_address_type (plugin->env->cls, sender_addr, sender_addr_len); s->ats_address_network_type = ats.value; LOG (GNUNET_ERROR_TYPE_DEBUG, "Creating inbound UDP sessions 0x%X for peer `%s' address `%s'\n", s, GNUNET_i2s (&s->target), udp_address_to_string (NULL, arg, args)); GNUNET_assert (GNUNET_OK == GNUNET_CONTAINER_multihashmap_put (plugin->inbound_sessions, &s->target.hashPubKey, s, GNUNET_CONTAINER_MULTIHASHMAPOPTION_MULTIPLE)); } s->valid_until = GNUNET_TIME_relative_to_absolute (GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT); if (s->invalidation_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (s->invalidation_task); s->invalidation_task = GNUNET_SCHEDULER_NO_TASK; LOG (GNUNET_ERROR_TYPE_DEBUG, "Rescheduling %X' `%s'\n", s, udp_address_to_string (NULL, arg, args)); } s->invalidation_task = GNUNET_SCHEDULER_add_delayed (GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT, &invalidation_task, s); /* iterate over all embedded messages */ si.sender = msg->sender; si.arg = arg; si.args = args; si.session = s; GNUNET_SERVER_mst_receive (plugin->mst, &si, (const char *) &msg[1], ntohs (msg->header.size) - sizeof (struct UDPMessage), GNUNET_YES, GNUNET_NO); } /** * Process a defragmented message. * * @param cls the 'struct ReceiveContext' * @param msg the message */ static void fragment_msg_proc (void *cls, const struct GNUNET_MessageHeader *msg) { struct ReceiveContext *rc = cls; if (ntohs (msg->type) != GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_MESSAGE) { GNUNET_break (0); return; } if (ntohs (msg->size) < sizeof (struct UDPMessage)) { GNUNET_break (0); return; } process_udp_message (rc->plugin, (const struct UDPMessage *) msg, rc->src_addr, rc->addr_len); } /** * Transmit an acknowledgement. * * @param cls the 'struct ReceiveContext' * @param id message ID (unused) * @param msg ack to transmit */ static void ack_proc (void *cls, uint32_t id, const struct GNUNET_MessageHeader *msg) { struct ReceiveContext *rc = cls; size_t msize = sizeof (struct UDP_ACK_Message) + ntohs (msg->size); char buf[msize]; struct UDP_ACK_Message *udp_ack; uint32_t delay = 0; struct Session *s; s = find_inbound_session_by_addr (rc->plugin, rc->src_addr, rc->addr_len); if (s != NULL) { if (s->flow_delay_for_other_peer.rel_value <= UINT32_MAX) delay = s->flow_delay_for_other_peer.rel_value; else delay = UINT32_MAX; } #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Sending ACK to `%s' including delay of %u ms\n", GNUNET_a2s (rc->src_addr, (rc->src_addr->sa_family == AF_INET) ? sizeof (struct sockaddr_in) : sizeof (struct sockaddr_in6)), delay); #endif udp_ack = (struct UDP_ACK_Message *) buf; udp_ack->header.size = htons ((uint16_t) msize); udp_ack->header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_ACK); udp_ack->delay = htonl (delay); udp_ack->sender = *rc->plugin->env->my_identity; memcpy (&udp_ack[1], msg, ntohs (msg->size)); (void) udp_send (rc->plugin, rc->src_addr, &udp_ack->header); } /** * Closure for 'find_receive_context'. */ struct FindReceiveContext { /** * Where to store the result. */ struct ReceiveContext *rc; /** * Address to find. */ const struct sockaddr *addr; /** * Number of bytes in 'addr'. */ socklen_t addr_len; struct Session *session; }; /** * Scan the heap for a receive context with the given address. * * @param cls the 'struct FindReceiveContext' * @param node internal node of the heap * @param element value stored at the node (a 'struct ReceiveContext') * @param cost cost associated with the node * @return GNUNET_YES if we should continue to iterate, * GNUNET_NO if not. */ static int find_receive_context (void *cls, struct GNUNET_CONTAINER_HeapNode *node, void *element, GNUNET_CONTAINER_HeapCostType cost) { struct FindReceiveContext *frc = cls; struct ReceiveContext *e = element; if ((frc->addr_len == e->addr_len) && (0 == memcmp (frc->addr, e->src_addr, frc->addr_len))) { frc->rc = e; return GNUNET_NO; } return GNUNET_YES; } struct Mstv4Context { struct Plugin *plugin; struct IPv4UdpAddress addr; /** * ATS network type in NBO */ uint32_t ats_address_network_type; }; struct Mstv6Context { struct Plugin *plugin; struct IPv6UdpAddress addr; /** * ATS network type in NBO */ uint32_t ats_address_network_type; }; /** * Read and process a message from the given socket. * * @param plugin the overall plugin * @param rsock socket to read from */ static void udp_read (struct Plugin *plugin, struct GNUNET_NETWORK_Handle *rsock) { socklen_t fromlen; char addr[32]; char buf[65536]; ssize_t ret; const struct GNUNET_MessageHeader *msg; const struct GNUNET_MessageHeader *ack; struct Session *peer_session; const struct UDP_ACK_Message *udp_ack; struct ReceiveContext *rc; struct GNUNET_TIME_Absolute now; struct FindReceiveContext frc; struct Session *s = NULL; struct GNUNET_TIME_Relative flow_delay; struct GNUNET_ATS_Information ats; fromlen = sizeof (addr); memset (&addr, 0, sizeof (addr)); ret = GNUNET_NETWORK_socket_recvfrom (rsock, buf, sizeof (buf), (struct sockaddr *) &addr, &fromlen); if (ret < sizeof (struct GNUNET_MessageHeader)) { GNUNET_break_op (0); return; } msg = (const struct GNUNET_MessageHeader *) buf; LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP received %u-byte message from `%s' type %i\n", (unsigned int) ret, GNUNET_a2s ((const struct sockaddr *) addr, fromlen), ntohs (msg->type)); if (ret != ntohs (msg->size)) { GNUNET_break_op (0); return; } switch (ntohs (msg->type)) { case GNUNET_MESSAGE_TYPE_TRANSPORT_BROADCAST_BEACON: { if (fromlen == sizeof (struct sockaddr_in)) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Received IPv4 HELLO beacon broadcast with %i bytes from address %s\n", ret, GNUNET_a2s ((const struct sockaddr *) &addr, fromlen)); struct Mstv4Context *mc; mc = GNUNET_malloc (sizeof (struct Mstv4Context)); struct sockaddr_in *av4 = (struct sockaddr_in *) &addr; mc->addr.ipv4_addr = av4->sin_addr.s_addr; mc->addr.u4_port = av4->sin_port; ats = plugin->env->get_address_type (plugin->env->cls, (const struct sockaddr *) &addr, fromlen); mc->ats_address_network_type = ats.value; if (GNUNET_OK != GNUNET_SERVER_mst_receive (plugin->broadcast_ipv4_mst, mc, buf, ret, GNUNET_NO, GNUNET_NO)) GNUNET_free (mc); } else if (fromlen == sizeof (struct sockaddr_in6)) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Received IPv6 HELLO beacon broadcast with %i bytes from address %s\n", ret, GNUNET_a2s ((const struct sockaddr *) &addr, fromlen)); struct Mstv6Context *mc; mc = GNUNET_malloc (sizeof (struct Mstv6Context)); struct sockaddr_in6 *av6 = (struct sockaddr_in6 *) &addr; mc->addr.ipv6_addr = av6->sin6_addr; mc->addr.u6_port = av6->sin6_port; ats = plugin->env->get_address_type (plugin->env->cls, (const struct sockaddr *) &addr, fromlen); mc->ats_address_network_type = ats.value; if (GNUNET_OK != GNUNET_SERVER_mst_receive (plugin->broadcast_ipv6_mst, mc, buf, ret, GNUNET_NO, GNUNET_NO)) GNUNET_free (mc); } return; } case GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_MESSAGE: if (ntohs (msg->size) < sizeof (struct UDPMessage)) { GNUNET_break_op (0); return; } process_udp_message (plugin, (const struct UDPMessage *) msg, (const struct sockaddr *) addr, fromlen); return; case GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_ACK: if (ntohs (msg->size) < sizeof (struct UDP_ACK_Message) + sizeof (struct GNUNET_MessageHeader)) { GNUNET_break_op (0); return; } udp_ack = (const struct UDP_ACK_Message *) msg; s = find_inbound_session (plugin, &udp_ack->sender, addr, fromlen); if (s != NULL) { flow_delay.rel_value = (uint64_t) ntohl (udp_ack->delay); LOG (GNUNET_ERROR_TYPE_DEBUG, "We received a sending delay of %llu\n", flow_delay.rel_value); s->flow_delay_from_other_peer = GNUNET_TIME_relative_to_absolute (flow_delay); } ack = (const struct GNUNET_MessageHeader *) &udp_ack[1]; if (ntohs (ack->size) != ntohs (msg->size) - sizeof (struct UDP_ACK_Message)) { GNUNET_break_op (0); return; } #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP processes %u-byte acknowledgement from `%s' at `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_i2s (&udp_ack->sender), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); #endif peer_session = find_session (plugin, &udp_ack->sender); if (NULL == peer_session) { #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Session for ACK not found, dropping ACK!\n"); #endif return; } if (GNUNET_OK != GNUNET_FRAGMENT_process_ack (peer_session->frag, ack)) return; GNUNET_assert (GNUNET_OK == GNUNET_CONTAINER_multihashmap_remove (plugin->sessions, &udp_ack-> sender.hashPubKey, peer_session)); plugin->last_expected_delay = GNUNET_FRAGMENT_context_destroy (peer_session->frag); if (peer_session->cont != NULL) peer_session->cont (peer_session->cont_cls, &udp_ack->sender, GNUNET_OK); GNUNET_free (peer_session); return; case GNUNET_MESSAGE_TYPE_FRAGMENT: frc.rc = NULL; frc.addr = (const struct sockaddr *) addr; frc.addr_len = fromlen; GNUNET_CONTAINER_heap_iterate (plugin->defrags, &find_receive_context, &frc); now = GNUNET_TIME_absolute_get (); rc = frc.rc; if (rc == NULL) { /* need to create a new RC */ rc = GNUNET_malloc (sizeof (struct ReceiveContext) + fromlen); memcpy (&rc[1], addr, fromlen); rc->src_addr = (const struct sockaddr *) &rc[1]; rc->addr_len = fromlen; rc->plugin = plugin; rc->defrag = GNUNET_DEFRAGMENT_context_create (plugin->env->stats, UDP_MTU, UDP_MAX_MESSAGES_IN_DEFRAG, rc, &fragment_msg_proc, &ack_proc); rc->hnode = GNUNET_CONTAINER_heap_insert (plugin->defrags, rc, (GNUNET_CONTAINER_HeapCostType) now.abs_value); } #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP processes %u-byte fragment from `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); #endif if (GNUNET_OK == GNUNET_DEFRAGMENT_process_fragment (rc->defrag, msg)) { /* keep this 'rc' from expiring */ GNUNET_CONTAINER_heap_update_cost (plugin->defrags, rc->hnode, (GNUNET_CONTAINER_HeapCostType) now.abs_value); } if (GNUNET_CONTAINER_heap_get_size (plugin->defrags) > UDP_MAX_SENDER_ADDRESSES_WITH_DEFRAG) { /* remove 'rc' that was inactive the longest */ rc = GNUNET_CONTAINER_heap_remove_root (plugin->defrags); GNUNET_assert (NULL != rc); GNUNET_DEFRAGMENT_context_destroy (rc->defrag); GNUNET_free (rc); } return; default: GNUNET_break_op (0); return; } } /** * We have been notified that our writeset has something to read. We don't * know which socket needs to be read, so we have to check each one * Then reschedule this function to be called again once more is available. * * @param cls the plugin handle * @param tc the scheduling context (for rescheduling this function again) */ static void udp_plugin_select (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct Plugin *plugin = cls; plugin->select_task = GNUNET_SCHEDULER_NO_TASK; if ((tc->reason & GNUNET_SCHEDULER_REASON_SHUTDOWN) != 0) return; if ((NULL != plugin->sockv4) && (GNUNET_NETWORK_fdset_isset (tc->read_ready, plugin->sockv4))) udp_read (plugin, plugin->sockv4); if ((NULL != plugin->sockv6) && (GNUNET_NETWORK_fdset_isset (tc->read_ready, plugin->sockv6))) udp_read (plugin, plugin->sockv6); plugin->select_task = GNUNET_SCHEDULER_add_select (GNUNET_SCHEDULER_PRIORITY_DEFAULT, GNUNET_SCHEDULER_NO_TASK, GNUNET_TIME_UNIT_FOREVER_REL, plugin->rs, NULL, &udp_plugin_select, plugin); } void broadcast_ipv4_mst_cb (void *cls, void *client, const struct GNUNET_MessageHeader *message) { struct Plugin *plugin = cls; struct Mstv4Context *mc = client; const struct GNUNET_MessageHeader *hello; struct UDP_Beacon_Message *msg; msg = (struct UDP_Beacon_Message *) message; if (GNUNET_MESSAGE_TYPE_TRANSPORT_BROADCAST_BEACON != ntohs (msg->header.type)) return; LOG (GNUNET_ERROR_TYPE_DEBUG, "Received beacon with %u bytes from peer `%s' via address `%s'\n", ntohs (msg->header.size), GNUNET_i2s (&msg->sender), udp_address_to_string (NULL, &mc->addr, sizeof (mc->addr))); struct GNUNET_ATS_Information atsi[2]; /* setup ATS */ atsi[0].type = htonl (GNUNET_ATS_QUALITY_NET_DISTANCE); atsi[0].value = htonl (1); atsi[1].type = htonl (GNUNET_ATS_NETWORK_TYPE); atsi[1].value = mc->ats_address_network_type; GNUNET_break (ntohl(mc->ats_address_network_type) != GNUNET_ATS_NET_UNSPECIFIED); hello = (struct GNUNET_MessageHeader *) &msg[1]; plugin->env->receive (plugin->env->cls, &msg->sender, hello, (const struct GNUNET_ATS_Information *) &atsi, 2, NULL, (const char *) &mc->addr, sizeof (mc->addr)); GNUNET_STATISTICS_update (plugin->env->stats, _ ("# IPv4 broadcast HELLO beacons received via udp"), 1, GNUNET_NO); GNUNET_free (mc); } void broadcast_ipv6_mst_cb (void *cls, void *client, const struct GNUNET_MessageHeader *message) { struct Plugin *plugin = cls; struct Mstv6Context *mc = client; const struct GNUNET_MessageHeader *hello; struct UDP_Beacon_Message *msg; msg = (struct UDP_Beacon_Message *) message; if (GNUNET_MESSAGE_TYPE_TRANSPORT_BROADCAST_BEACON != ntohs (msg->header.type)) return; LOG (GNUNET_ERROR_TYPE_DEBUG, "Received beacon with %u bytes from peer `%s' via address `%s'\n", ntohs (msg->header.size), GNUNET_i2s (&msg->sender), udp_address_to_string (NULL, &mc->addr, sizeof (mc->addr))); struct GNUNET_ATS_Information atsi[2]; /* setup ATS */ atsi[0].type = htonl (GNUNET_ATS_QUALITY_NET_DISTANCE); atsi[0].value = htonl (1); atsi[1].type = htonl (GNUNET_ATS_NETWORK_TYPE); atsi[1].value = mc->ats_address_network_type; GNUNET_break (ntohl(mc->ats_address_network_type) != GNUNET_ATS_NET_UNSPECIFIED); hello = (struct GNUNET_MessageHeader *) &msg[1]; plugin->env->receive (plugin->env->cls, &msg->sender, hello, (const struct GNUNET_ATS_Information *) &atsi, 2, NULL, (const char *) &mc->addr, sizeof (mc->addr)); GNUNET_STATISTICS_update (plugin->env->stats, _ ("# IPv6 multicast HELLO beacons received via udp"), 1, GNUNET_NO); GNUNET_free (mc); } static void udp_ipv4_broadcast_send (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct Plugin *plugin = cls; int sent; uint16_t msg_size; uint16_t hello_size; char buf[65536]; const struct GNUNET_MessageHeader *hello; struct UDP_Beacon_Message *msg; struct BroadcastAddress *baddr; plugin->send_ipv4_broadcast_task = GNUNET_SCHEDULER_NO_TASK; hello = plugin->env->get_our_hello (); hello_size = GNUNET_HELLO_size ((struct GNUNET_HELLO_Message *) hello); msg_size = hello_size + sizeof (struct UDP_Beacon_Message); if (hello_size < (sizeof (struct GNUNET_MessageHeader)) || (msg_size > (UDP_MTU))) return; msg = (struct UDP_Beacon_Message *) buf; msg->sender = *(plugin->env->my_identity); msg->header.size = ntohs (msg_size); msg->header.type = ntohs (GNUNET_MESSAGE_TYPE_TRANSPORT_BROADCAST_BEACON); memcpy (&msg[1], hello, hello_size); sent = 0; baddr = plugin->ipv4_broadcast_head; /* just IPv4 */ while ((baddr != NULL) && (baddr->addrlen == sizeof (struct sockaddr_in))) { struct sockaddr_in *addr = (struct sockaddr_in *) baddr->addr; addr->sin_port = htons (plugin->port); sent = GNUNET_NETWORK_socket_sendto (plugin->sockv4, msg, msg_size, (const struct sockaddr *) addr, baddr->addrlen); if (sent == GNUNET_SYSERR) GNUNET_log_strerror (GNUNET_ERROR_TYPE_ERROR, "sendto"); else LOG (GNUNET_ERROR_TYPE_DEBUG, "Sent HELLO beacon broadcast with %i bytes to address %s\n", sent, GNUNET_a2s (baddr->addr, baddr->addrlen)); baddr = baddr->next; } plugin->send_ipv4_broadcast_task = GNUNET_SCHEDULER_add_delayed (plugin->broadcast_interval, &udp_ipv4_broadcast_send, plugin); } static void udp_ipv6_broadcast_send (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct Plugin *plugin = cls; int sent; uint16_t msg_size; uint16_t hello_size; char buf[65536]; const struct GNUNET_MessageHeader *hello; struct UDP_Beacon_Message *msg; plugin->send_ipv6_broadcast_task = GNUNET_SCHEDULER_NO_TASK; hello = plugin->env->get_our_hello (); hello_size = GNUNET_HELLO_size ((struct GNUNET_HELLO_Message *) hello); msg_size = hello_size + sizeof (struct UDP_Beacon_Message); if (hello_size < (sizeof (struct GNUNET_MessageHeader)) || (msg_size > (UDP_MTU))) return; msg = (struct UDP_Beacon_Message *) buf; msg->sender = *(plugin->env->my_identity); msg->header.size = ntohs (msg_size); msg->header.type = ntohs (GNUNET_MESSAGE_TYPE_TRANSPORT_BROADCAST_BEACON); memcpy (&msg[1], hello, hello_size); sent = 0; sent = GNUNET_NETWORK_socket_sendto (plugin->sockv6, msg, msg_size, (const struct sockaddr *) &plugin->ipv6_multicast_address, sizeof (struct sockaddr_in6)); if (sent == GNUNET_SYSERR) GNUNET_log_strerror (GNUNET_ERROR_TYPE_ERROR, "sendto"); else LOG (GNUNET_ERROR_TYPE_DEBUG, "Sending IPv6 HELLO beacon broadcast with %i bytes to address %s\n", sent, GNUNET_a2s ((const struct sockaddr *) &plugin->ipv6_multicast_address, sizeof (struct sockaddr_in6))); plugin->send_ipv6_broadcast_task = GNUNET_SCHEDULER_add_delayed (plugin->broadcast_interval, &udp_ipv6_broadcast_send, plugin); } /** * Check if the given port is plausible (must be either our listen * port or our advertised port). If it is neither, we return * GNUNET_SYSERR. * * @param plugin global variables * @param in_port port number to check * @return GNUNET_OK if port is either open_port or adv_port */ static int check_port (struct Plugin *plugin, uint16_t in_port) { if ((in_port == plugin->port) || (in_port == plugin->aport)) return GNUNET_OK; return GNUNET_SYSERR; } /** * Function that will be called to check if a binary address for this * plugin is well-formed and corresponds to an address for THIS peer * (as per our configuration). Naturally, if absolutely necessary, * plugins can be a bit conservative in their answer, but in general * plugins should make sure that the address does not redirect * traffic to a 3rd party that might try to man-in-the-middle our * traffic. * * @param cls closure, should be our handle to the Plugin * @param addr pointer to the address * @param addrlen length of addr * @return GNUNET_OK if this is a plausible address for this peer * and transport, GNUNET_SYSERR if not * */ static int udp_plugin_check_address (void *cls, const void *addr, size_t addrlen) { struct Plugin *plugin = cls; struct IPv4UdpAddress *v4; struct IPv6UdpAddress *v6; if ((addrlen != sizeof (struct IPv4UdpAddress)) && (addrlen != sizeof (struct IPv6UdpAddress))) { GNUNET_break_op (0); return GNUNET_SYSERR; } if (addrlen == sizeof (struct IPv4UdpAddress)) { v4 = (struct IPv4UdpAddress *) addr; if (GNUNET_OK != check_port (plugin, ntohs (v4->u4_port))) return GNUNET_SYSERR; if (GNUNET_OK != GNUNET_NAT_test_address (plugin->nat, &v4->ipv4_addr, sizeof (struct in_addr))) return GNUNET_SYSERR; } else { v6 = (struct IPv6UdpAddress *) addr; if (IN6_IS_ADDR_LINKLOCAL (&v6->ipv6_addr)) { GNUNET_break_op (0); return GNUNET_SYSERR; } if (GNUNET_OK != check_port (plugin, ntohs (v6->u6_port))) return GNUNET_SYSERR; if (GNUNET_OK != GNUNET_NAT_test_address (plugin->nat, &v6->ipv6_addr, sizeof (struct in6_addr))) return GNUNET_SYSERR; } return GNUNET_OK; } /** * Function called for a quick conversion of the binary address to * a numeric address. Note that the caller must not free the * address and that the next call to this function is allowed * to override the address again. * * @param cls closure * @param addr binary address * @param addrlen length of the address * @return string representing the same address */ static const char * udp_address_to_string (void *cls, const void *addr, size_t addrlen) { static char rbuf[INET6_ADDRSTRLEN + 10]; char buf[INET6_ADDRSTRLEN]; const void *sb; struct in_addr a4; struct in6_addr a6; const struct IPv4UdpAddress *t4; const struct IPv6UdpAddress *t6; int af; uint16_t port; if (addrlen == sizeof (struct IPv6UdpAddress)) { t6 = addr; af = AF_INET6; port = ntohs (t6->u6_port); memcpy (&a6, &t6->ipv6_addr, sizeof (a6)); sb = &a6; } else if (addrlen == sizeof (struct IPv4UdpAddress)) { t4 = addr; af = AF_INET; port = ntohs (t4->u4_port); memcpy (&a4, &t4->ipv4_addr, sizeof (a4)); sb = &a4; } else { GNUNET_break_op (0); return NULL; } inet_ntop (af, sb, buf, INET6_ADDRSTRLEN); GNUNET_snprintf (rbuf, sizeof (rbuf), (af == AF_INET6) ? "[%s]:%u" : "%s:%u", buf, port); return rbuf; } /** * Closure for 'append_port'. */ struct PrettyPrinterContext { /** * Function to call with the result. */ GNUNET_TRANSPORT_AddressStringCallback asc; /** * Clsoure for 'asc'. */ void *asc_cls; /** * Port to add after the IP address. */ uint16_t port; }; /** * Append our port and forward the result. * * @param cls a 'struct PrettyPrinterContext' * @param hostname result from DNS resolver */ static void append_port (void *cls, const char *hostname) { struct PrettyPrinterContext *ppc = cls; char *ret; if (hostname == NULL) { ppc->asc (ppc->asc_cls, NULL); GNUNET_free (ppc); return; } GNUNET_asprintf (&ret, "%s:%d", hostname, ppc->port); ppc->asc (ppc->asc_cls, ret); GNUNET_free (ret); } /** * Convert the transports address to a nice, human-readable * format. * * @param cls closure * @param type name of the transport that generated the address * @param addr one of the addresses of the host, NULL for the last address * the specific address format depends on the transport * @param addrlen length of the address * @param numeric should (IP) addresses be displayed in numeric form? * @param timeout after how long should we give up? * @param asc function to call on each string * @param asc_cls closure for asc */ static void udp_plugin_address_pretty_printer (void *cls, const char *type, const void *addr, size_t addrlen, int numeric, struct GNUNET_TIME_Relative timeout, GNUNET_TRANSPORT_AddressStringCallback asc, void *asc_cls) { struct PrettyPrinterContext *ppc; const void *sb; size_t sbs; struct sockaddr_in a4; struct sockaddr_in6 a6; const struct IPv4UdpAddress *u4; const struct IPv6UdpAddress *u6; uint16_t port; if (addrlen == sizeof (struct IPv6UdpAddress)) { u6 = addr; memset (&a6, 0, sizeof (a6)); a6.sin6_family = AF_INET6; #if HAVE_SOCKADDR_IN_SIN_LEN a6.sin6_len = sizeof (a6); #endif a6.sin6_port = u6->u6_port; memcpy (&a6.sin6_addr, &u6->ipv6_addr, sizeof (struct in6_addr)); port = ntohs (u6->u6_port); sb = &a6; sbs = sizeof (a6); } else if (addrlen == sizeof (struct IPv4UdpAddress)) { u4 = addr; memset (&a4, 0, sizeof (a4)); a4.sin_family = AF_INET; #if HAVE_SOCKADDR_IN_SIN_LEN a4.sin_len = sizeof (a4); #endif a4.sin_port = u4->u4_port; a4.sin_addr.s_addr = u4->ipv4_addr; port = ntohs (u4->u4_port); sb = &a4; sbs = sizeof (a4); } else { /* invalid address */ GNUNET_break_op (0); asc (asc_cls, NULL); return; } ppc = GNUNET_malloc (sizeof (struct PrettyPrinterContext)); ppc->asc = asc; ppc->asc_cls = asc_cls; ppc->port = port; GNUNET_RESOLVER_hostname_get (sb, sbs, !numeric, timeout, &append_port, ppc); } /** * Our external IP address/port mapping has changed. * * @param cls closure, the 'struct LocalAddrList' * @param add_remove GNUNET_YES to mean the new public IP address, GNUNET_NO to mean * the previous (now invalid) one * @param addr either the previous or the new public IP address * @param addrlen actual lenght of the address */ static void udp_nat_port_map_callback (void *cls, int add_remove, const struct sockaddr *addr, socklen_t addrlen) { struct Plugin *plugin = cls; struct IPv4UdpAddress u4; struct IPv6UdpAddress u6; void *arg; size_t args; /* convert 'addr' to our internal format */ switch (addr->sa_family) { case AF_INET: GNUNET_assert (addrlen == sizeof (struct sockaddr_in)); u4.ipv4_addr = ((struct sockaddr_in *) addr)->sin_addr.s_addr; u4.u4_port = ((struct sockaddr_in *) addr)->sin_port; arg = &u4; args = sizeof (u4); break; case AF_INET6: GNUNET_assert (addrlen == sizeof (struct sockaddr_in6)); memcpy (&u6.ipv6_addr, &((struct sockaddr_in6 *) addr)->sin6_addr, sizeof (struct in6_addr)); u6.u6_port = ((struct sockaddr_in6 *) addr)->sin6_port; arg = &u6; args = sizeof (u6); break; default: GNUNET_break (0); return; } /* modify our published address list */ plugin->env->notify_address (plugin->env->cls, add_remove, arg, args); } static int iface_proc (void *cls, const char *name, int isDefault, const struct sockaddr *addr, const struct sockaddr *broadcast_addr, const struct sockaddr *netmask, socklen_t addrlen) { struct Plugin *plugin = cls; if (addr != NULL) { GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "address %s for interface %s %p\n ", GNUNET_a2s (addr, addrlen), name, addr); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "broadcast address %s for interface %s %p\n ", GNUNET_a2s (broadcast_addr, addrlen), name, broadcast_addr); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "netmask %s for interface %s %p\n ", GNUNET_a2s (netmask, addrlen), name, netmask); /* Collecting broadcast addresses */ if (broadcast_addr != NULL) { struct BroadcastAddress *ba = GNUNET_malloc (sizeof (struct BroadcastAddress)); ba->addr = GNUNET_malloc (addrlen); memcpy (ba->addr, broadcast_addr, addrlen); ba->addrlen = addrlen; GNUNET_CONTAINER_DLL_insert (plugin->ipv4_broadcast_head, plugin->ipv4_broadcast_tail, ba); } } return GNUNET_OK; } /** * The exported method. Makes the core api available via a global and * returns the udp transport API. * * @param cls our 'struct GNUNET_TRANSPORT_PluginEnvironment' * @return our 'struct GNUNET_TRANSPORT_PluginFunctions' */ void * libgnunet_plugin_transport_udp_init (void *cls) { struct GNUNET_TRANSPORT_PluginEnvironment *env = cls; unsigned long long port; unsigned long long aport; struct GNUNET_TRANSPORT_PluginFunctions *api; struct Plugin *plugin; int sockets_created; int broadcast; struct GNUNET_TIME_Relative interval; struct sockaddr_in serverAddrv4; struct sockaddr_in6 serverAddrv6; struct sockaddr *serverAddr; struct sockaddr *addrs[2]; socklen_t addrlens[2]; socklen_t addrlen; unsigned int tries; unsigned long long udp_max_bps; if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (env->cfg, "transport-udp", "PORT", &port)) port = 2086; broadcast = GNUNET_CONFIGURATION_get_value_yesno (env->cfg, "transport-udp", "BROADCAST"); if (broadcast == GNUNET_SYSERR) broadcast = GNUNET_NO; if (GNUNET_SYSERR == GNUNET_CONFIGURATION_get_value_time (env->cfg, "transport-udp", "BROADCAST_INTERVAL", &interval)) interval = GNUNET_TIME_relative_multiply (GNUNET_TIME_UNIT_SECONDS, 10); if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (env->cfg, "transport-udp", "MAX_BPS", &udp_max_bps)) udp_max_bps = 1024 * 1024 * 50; /* 50 MB/s == infinity for practical purposes */ if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (env->cfg, "transport-udp", "ADVERTISED_PORT", &aport)) aport = port; if (port > 65535) { LOG (GNUNET_ERROR_TYPE_WARNING, _("Given `%s' option is out of range: %llu > %u\n"), "PORT", port, 65535); return NULL; } memset (&serverAddrv6, 0, sizeof (serverAddrv6)); memset (&serverAddrv4, 0, sizeof (serverAddrv4)); plugin = GNUNET_malloc (sizeof (struct Plugin)); GNUNET_BANDWIDTH_tracker_init (&plugin->tracker, GNUNET_BANDWIDTH_value_init ((uint32_t) udp_max_bps), 30); plugin->last_expected_delay = GNUNET_TIME_UNIT_SECONDS; plugin->port = port; plugin->aport = aport; plugin->env = env; plugin->broadcast_interval = interval; api = GNUNET_malloc (sizeof (struct GNUNET_TRANSPORT_PluginFunctions)); api->cls = plugin; api->send = &udp_plugin_send_old; api->disconnect = &udp_disconnect; api->address_pretty_printer = &udp_plugin_address_pretty_printer; api->address_to_string = &udp_address_to_string; api->check_address = &udp_plugin_check_address; api->get_session = &udp_plugin_get_session; api->send_with_session = &udp_plugin_send; if (GNUNET_YES == GNUNET_CONFIGURATION_get_value_string (env->cfg, "transport-udp", "BINDTO", &plugin->bind4_address)) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding udp plugin to specific address: `%s'\n", plugin->bind4_address); if (1 != inet_pton (AF_INET, plugin->bind4_address, &serverAddrv4.sin_addr)) { GNUNET_free (plugin->bind4_address); GNUNET_free (plugin); GNUNET_free (api); return NULL; } } if (GNUNET_YES == GNUNET_CONFIGURATION_get_value_string (env->cfg, "transport-udp", "BINDTO6", &plugin->bind6_address)) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding udp plugin to specific address: `%s'\n", plugin->bind6_address); if (1 != inet_pton (AF_INET6, plugin->bind6_address, &serverAddrv6.sin6_addr)) { LOG (GNUNET_ERROR_TYPE_ERROR, _("Invalid IPv6 address: `%s'\n"), plugin->bind6_address); GNUNET_free_non_null (plugin->bind4_address); GNUNET_free (plugin->bind6_address); GNUNET_free (plugin); GNUNET_free (api); return NULL; } } plugin->defrags = GNUNET_CONTAINER_heap_create (GNUNET_CONTAINER_HEAP_ORDER_MIN); plugin->sessions = GNUNET_CONTAINER_multihashmap_create (UDP_MAX_SENDER_ADDRESSES_WITH_DEFRAG * 2); plugin->inbound_sessions = GNUNET_CONTAINER_multihashmap_create (UDP_MAX_SENDER_ADDRESSES_WITH_DEFRAG * 2); sockets_created = 0; if ((GNUNET_YES != GNUNET_CONFIGURATION_get_value_yesno (plugin->env->cfg, "nat", "DISABLEV6"))) { plugin->sockv6 = GNUNET_NETWORK_socket_create (PF_INET6, SOCK_DGRAM, 0); if (NULL == plugin->sockv6) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_WARNING, "socket"); } else { #if HAVE_SOCKADDR_IN_SIN_LEN serverAddrv6.sin6_len = sizeof (serverAddrv6); #endif serverAddrv6.sin6_family = AF_INET6; serverAddrv6.sin6_addr = in6addr_any; serverAddrv6.sin6_port = htons (plugin->port); addrlen = sizeof (serverAddrv6); serverAddr = (struct sockaddr *) &serverAddrv6; #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding to IPv6 port %d\n", ntohs (serverAddrv6.sin6_port)); #endif tries = 0; while (GNUNET_NETWORK_socket_bind (plugin->sockv6, serverAddr, addrlen) != GNUNET_OK) { serverAddrv6.sin6_port = htons (GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_STRONG, 33537) + 32000); /* Find a good, non-root port */ #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv6 Binding failed, trying new port %d\n", ntohs (serverAddrv6.sin6_port)); #endif tries++; if (tries > 10) { GNUNET_NETWORK_socket_close (plugin->sockv6); plugin->sockv6 = NULL; break; } } if (plugin->sockv6 != NULL) { addrs[sockets_created] = (struct sockaddr *) &serverAddrv6; addrlens[sockets_created] = sizeof (serverAddrv6); sockets_created++; } } } plugin->mst = GNUNET_SERVER_mst_create (&process_inbound_tokenized_messages, plugin); plugin->sockv4 = GNUNET_NETWORK_socket_create (PF_INET, SOCK_DGRAM, 0); if (NULL == plugin->sockv4) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_WARNING, "socket"); } else { #if HAVE_SOCKADDR_IN_SIN_LEN serverAddrv4.sin_len = sizeof (serverAddrv4); #endif serverAddrv4.sin_family = AF_INET; serverAddrv4.sin_addr.s_addr = INADDR_ANY; serverAddrv4.sin_port = htons (plugin->port); addrlen = sizeof (serverAddrv4); serverAddr = (struct sockaddr *) &serverAddrv4; #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding to IPv4 port %d\n", ntohs (serverAddrv4.sin_port)); #endif tries = 0; while (GNUNET_NETWORK_socket_bind (plugin->sockv4, serverAddr, addrlen) != GNUNET_OK) { serverAddrv4.sin_port = htons (GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_STRONG, 33537) + 32000); /* Find a good, non-root port */ #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv4 Binding failed, trying new port %d\n", ntohs (serverAddrv4.sin_port)); #endif tries++; if (tries > 10) { GNUNET_NETWORK_socket_close (plugin->sockv4); plugin->sockv4 = NULL; break; } } if (plugin->sockv4 != NULL) { addrs[sockets_created] = (struct sockaddr *) &serverAddrv4; addrlens[sockets_created] = sizeof (serverAddrv4); sockets_created++; } } plugin->rs = GNUNET_NETWORK_fdset_create (); GNUNET_NETWORK_fdset_zero (plugin->rs); if (NULL != plugin->sockv4) GNUNET_NETWORK_fdset_set (plugin->rs, plugin->sockv4); if (NULL != plugin->sockv6) GNUNET_NETWORK_fdset_set (plugin->rs, plugin->sockv6); plugin->select_task = GNUNET_SCHEDULER_add_select (GNUNET_SCHEDULER_PRIORITY_DEFAULT, GNUNET_SCHEDULER_NO_TASK, GNUNET_TIME_UNIT_FOREVER_REL, plugin->rs, NULL, &udp_plugin_select, plugin); if (broadcast) { /* create IPv4 broadcast socket */ plugin->broadcast_ipv4 = GNUNET_NO; if (plugin->sockv4 != NULL) { int yes = 1; if (GNUNET_NETWORK_socket_setsockopt (plugin->sockv4, SOL_SOCKET, SO_BROADCAST, &yes, sizeof (int)) != GNUNET_OK) { LOG (GNUNET_ERROR_TYPE_WARNING, _ ("Failed to set IPv4 broadcast option for broadcast socket on port %d\n"), ntohs (serverAddrv4.sin_port)); } else { GNUNET_OS_network_interfaces_list (iface_proc, plugin); plugin->send_ipv4_broadcast_task = GNUNET_SCHEDULER_add_now (&udp_ipv4_broadcast_send, plugin); plugin->broadcast_ipv4_mst = GNUNET_SERVER_mst_create (broadcast_ipv4_mst_cb, plugin); LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv4 Broadcasting running\n"); plugin->broadcast_ipv4 = GNUNET_YES; } } plugin->broadcast_ipv6 = GNUNET_NO; if (plugin->sockv6 != NULL) { memset (&plugin->ipv6_multicast_address, 0, sizeof (struct sockaddr_in6)); GNUNET_assert (1 == inet_pton (AF_INET6, "FF05::13B", &plugin->ipv6_multicast_address.sin6_addr)); plugin->ipv6_multicast_address.sin6_family = AF_INET6; plugin->ipv6_multicast_address.sin6_port = htons (plugin->port); plugin->broadcast_ipv6_mst = GNUNET_SERVER_mst_create (broadcast_ipv6_mst_cb, plugin); /* Create IPv6 multicast request */ struct ipv6_mreq multicastRequest; multicastRequest.ipv6mr_multiaddr = plugin->ipv6_multicast_address.sin6_addr; /* TODO: 0 selects the "best" interface, tweak to use all interfaces * * http://tools.ietf.org/html/rfc2553#section-5.2: * * IPV6_JOIN_GROUP * * Join a multicast group on a specified local interface. If the * interface index is specified as 0, the kernel chooses the local * interface. For example, some kernels look up the multicast * group in the normal IPv6 routing table and using the resulting * interface. * */ multicastRequest.ipv6mr_interface = 0; /* Join the multicast group */ if (GNUNET_NETWORK_socket_setsockopt (plugin->sockv6, IPPROTO_IPV6, IPV6_JOIN_GROUP, (char *) &multicastRequest, sizeof (multicastRequest)) != GNUNET_OK) { LOG (GNUNET_ERROR_TYPE_WARNING, "Failed to join IPv6 multicast group: IPv6 broadcasting not running\n"); } else { #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv6 broadcasting running\n"); #endif plugin->send_ipv6_broadcast_task = GNUNET_SCHEDULER_add_now (&udp_ipv6_broadcast_send, plugin); plugin->broadcast_ipv6 = GNUNET_YES; } } } if (sockets_created == 0) GNUNET_log (GNUNET_ERROR_TYPE_WARNING, _("Failed to open UDP sockets\n")); plugin->nat = GNUNET_NAT_register (env->cfg, GNUNET_NO, port, sockets_created, (const struct sockaddr **) addrs, addrlens, &udp_nat_port_map_callback, NULL, plugin); return api; } /** * Shutdown the plugin. * * @param cls our 'struct GNUNET_TRANSPORT_PluginFunctions' * @return NULL */ void * libgnunet_plugin_transport_udp_done (void *cls) { struct GNUNET_TRANSPORT_PluginFunctions *api = cls; struct Plugin *plugin = api->cls; struct ReceiveContext *rc; /* FIXME: clean up heap and hashmap */ GNUNET_CONTAINER_multihashmap_iterate (plugin->sessions, &destroy_session, NULL); GNUNET_CONTAINER_multihashmap_destroy (plugin->sessions); plugin->sessions = NULL; GNUNET_CONTAINER_multihashmap_iterate (plugin->inbound_sessions, &destroy_inbound_session, NULL); GNUNET_CONTAINER_multihashmap_destroy (plugin->inbound_sessions); plugin->inbound_sessions = NULL; while (NULL != (rc = GNUNET_CONTAINER_heap_remove_root (plugin->defrags))) { GNUNET_DEFRAGMENT_context_destroy (rc->defrag); GNUNET_free (rc); } GNUNET_CONTAINER_heap_destroy (plugin->defrags); if (plugin->select_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (plugin->select_task); plugin->select_task = GNUNET_SCHEDULER_NO_TASK; } if (plugin->broadcast_ipv4) { if (plugin->send_ipv4_broadcast_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (plugin->send_ipv4_broadcast_task); plugin->send_ipv4_broadcast_task = GNUNET_SCHEDULER_NO_TASK; } if (plugin->broadcast_ipv4_mst != NULL) GNUNET_SERVER_mst_destroy (plugin->broadcast_ipv4_mst); while (plugin->ipv4_broadcast_head != NULL) { struct BroadcastAddress *p = plugin->ipv4_broadcast_head; GNUNET_CONTAINER_DLL_remove (plugin->ipv4_broadcast_head, plugin->ipv4_broadcast_tail, p); GNUNET_free (p->addr); GNUNET_free (p); } } if (plugin->broadcast_ipv6) { /* Create IPv6 multicast request */ struct ipv6_mreq multicastRequest; multicastRequest.ipv6mr_multiaddr = plugin->ipv6_multicast_address.sin6_addr; multicastRequest.ipv6mr_interface = 0; /* Join the multicast address */ if (GNUNET_NETWORK_socket_setsockopt (plugin->sockv6, IPPROTO_IPV6, IPV6_LEAVE_GROUP, (char *) &multicastRequest, sizeof (multicastRequest)) != GNUNET_OK) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_ERROR, setsockopt); } else { #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv6 Broadcasting stopped\n"); #endif } if (plugin->send_ipv6_broadcast_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (plugin->send_ipv6_broadcast_task); plugin->send_ipv6_broadcast_task = GNUNET_SCHEDULER_NO_TASK; } if (plugin->broadcast_ipv6_mst != NULL) GNUNET_SERVER_mst_destroy (plugin->broadcast_ipv6_mst); } if (plugin->sockv4 != NULL) { GNUNET_break (GNUNET_OK == GNUNET_NETWORK_socket_close (plugin->sockv4)); plugin->sockv4 = NULL; } if (plugin->sockv6 != NULL) { GNUNET_break (GNUNET_OK == GNUNET_NETWORK_socket_close (plugin->sockv6)); plugin->sockv6 = NULL; } GNUNET_SERVER_mst_destroy (plugin->mst); GNUNET_NETWORK_fdset_destroy (plugin->rs); GNUNET_NAT_unregister (plugin->nat); plugin->nat = NULL; GNUNET_free (plugin); GNUNET_free (api); return NULL; } /* end of plugin_transport_udp.c */