/* This file is part of GNUnet (C) 2010, 2011 Christian Grothoff (and other contributing authors) GNUnet is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GNUnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNUnet; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /** * @file transport/plugin_transport_udp.c * @brief Implementation of the UDP transport protocol * @author Christian Grothoff * @author Nathan Evans * @author Matthias Wachs */ #include "platform.h" #include "plugin_transport_udp.h" #include "gnunet_hello_lib.h" #include "gnunet_util_lib.h" #include "gnunet_fragmentation_lib.h" #include "gnunet_nat_lib.h" #include "gnunet_protocols.h" #include "gnunet_resolver_service.h" #include "gnunet_signatures.h" #include "gnunet_constants.h" #include "gnunet_statistics_service.h" #include "gnunet_transport_service.h" #include "gnunet_transport_plugin.h" #include "transport.h" #define LOG(kind,...) GNUNET_log_from (kind, "transport-udp", __VA_ARGS__) /** * Number of messages we can defragment in parallel. We only really * defragment 1 message at a time, but if messages get re-ordered, we * may want to keep knowledge about the previous message to avoid * discarding the current message in favor of a single fragment of a * previous message. 3 should be good since we don't expect massive * message reorderings with UDP. */ #define UDP_MAX_MESSAGES_IN_DEFRAG 3 /** * We keep a defragmentation queue per sender address. How many * sender addresses do we support at the same time? Memory consumption * is roughly a factor of 32k * UDP_MAX_MESSAGES_IN_DEFRAG times this * value. (So 128 corresponds to 12 MB and should suffice for * connecting to roughly 128 peers via UDP). */ #define UDP_MAX_SENDER_ADDRESSES_WITH_DEFRAG 128 #define DEBUG_MALLOC GNUNET_NO /** * Closure for 'append_port'. */ struct PrettyPrinterContext { /** * Function to call with the result. */ GNUNET_TRANSPORT_AddressStringCallback asc; /** * Clsoure for 'asc'. */ void *asc_cls; /** * Port to add after the IP address. */ uint16_t port; }; enum UDP_MessageType { UNDEFINED = 0, MSG_FRAGMENTED = 1, MSG_FRAGMENTED_COMPLETE = 2, MSG_UNFRAGMENTED = 3, MSG_ACK = 4, MSG_BEACON = 5 }; struct Session { /** * Which peer is this session for? */ struct GNUNET_PeerIdentity target; struct UDP_FragmentationContext * frag_ctx; /** * Address of the other peer */ const struct sockaddr *sock_addr; /** * Desired delay for next sending we send to other peer */ struct GNUNET_TIME_Relative flow_delay_for_other_peer; /** * Desired delay for next sending we received from other peer */ struct GNUNET_TIME_Absolute flow_delay_from_other_peer; /** * Session timeout task */ GNUNET_SCHEDULER_TaskIdentifier timeout_task; /** * expected delay for ACKs */ struct GNUNET_TIME_Relative last_expected_ack_delay; /** * desired delay between UDP messages */ struct GNUNET_TIME_Relative last_expected_msg_delay; struct GNUNET_ATS_Information ats; size_t addrlen; unsigned int rc; int in_destroy; }; struct SessionCompareContext { struct Session *res; const struct GNUNET_HELLO_Address *addr; }; /** * Closure for 'process_inbound_tokenized_messages' */ struct SourceInformation { /** * Sender identity. */ struct GNUNET_PeerIdentity sender; /** * Source address. */ const void *arg; struct Session *session; /** * Number of bytes in source address. */ size_t args; }; /** * Closure for 'find_receive_context'. */ struct FindReceiveContext { /** * Where to store the result. */ struct DefragContext *rc; /** * Address to find. */ const struct sockaddr *addr; struct Session *session; /** * Number of bytes in 'addr'. */ socklen_t addr_len; }; /** * Data structure to track defragmentation contexts based * on the source of the UDP traffic. */ struct DefragContext { /** * Defragmentation context. */ struct GNUNET_DEFRAGMENT_Context *defrag; /** * Source address this receive context is for (allocated at the * end of the struct). */ const struct sockaddr *src_addr; /** * Reference to master plugin struct. */ struct Plugin *plugin; /** * Node in the defrag heap. */ struct GNUNET_CONTAINER_HeapNode *hnode; /** * Length of 'src_addr' */ size_t addr_len; }; /** * Context to send fragmented messages */ struct UDP_FragmentationContext { /** * Next in linked list */ struct UDP_FragmentationContext * next; /** * Previous in linked list */ struct UDP_FragmentationContext * prev; /** * The plugin */ struct Plugin * plugin; /** * Handle for GNUNET_FRAGMENT context */ struct GNUNET_FRAGMENT_Context * frag; /** * The session this fragmentation context belongs to */ struct Session * session; /** * Function to call upon completion of the transmission. */ GNUNET_TRANSPORT_TransmitContinuation cont; /** * Closure for 'cont'. */ void *cont_cls; /** * Message timeout */ struct GNUNET_TIME_Absolute timeout; /** * Payload size of original unfragmented message */ size_t payload_size; /** * Bytes used to send all fragments on wire including UDP overhead */ size_t on_wire_size; unsigned int fragments_used; }; struct UDP_MessageWrapper { /** * Session this message belongs to */ struct Session *session; /** * DLL of messages * previous element */ struct UDP_MessageWrapper *prev; /** * DLL of messages * previous element */ struct UDP_MessageWrapper *next; /** * Message type * According to UDP_MessageType */ int msg_type; /** * Message with size msg_size including UDP specific overhead */ char *msg_buf; /** * Size of UDP message to send including UDP specific overhead */ size_t msg_size; /** * Payload size of original message */ size_t payload_size; /** * Message timeout */ struct GNUNET_TIME_Absolute timeout; /** * Function to call upon completion of the transmission. */ GNUNET_TRANSPORT_TransmitContinuation cont; /** * Closure for 'cont'. */ void *cont_cls; /** * Fragmentation context * frag_ctx == NULL if transport <= MTU * frag_ctx != NULL if transport > MTU */ struct UDP_FragmentationContext *frag_ctx; }; /** * UDP ACK Message-Packet header (after defragmentation). */ struct UDP_ACK_Message { /** * Message header. */ struct GNUNET_MessageHeader header; /** * Desired delay for flow control */ uint32_t delay; /** * What is the identity of the sender */ struct GNUNET_PeerIdentity sender; }; /** * Encapsulation of all of the state of the plugin. */ struct Plugin * plugin; /** * We have been notified that our readset has something to read. We don't * know which socket needs to be read, so we have to check each one * Then reschedule this function to be called again once more is available. * * @param cls the plugin handle * @param tc the scheduling context (for rescheduling this function again) */ static void udp_plugin_select (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc); /** * We have been notified that our readset has something to read. We don't * know which socket needs to be read, so we have to check each one * Then reschedule this function to be called again once more is available. * * @param cls the plugin handle * @param tc the scheduling context (for rescheduling this function again) */ static void udp_plugin_select_v6 (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc); /** * Start session timeout */ static void start_session_timeout (struct Session *s); /** * Increment session timeout due to activity */ static void reschedule_session_timeout (struct Session *s); /** * Cancel timeout */ static void stop_session_timeout (struct Session *s); #if DEBUG_MALLOC struct Allocator { struct Allocator *prev; struct Allocator *next; unsigned int bytes_alloced; unsigned int max_alloced; unsigned int diff; unsigned int line; struct GNUNET_TIME_Absolute max_alloced_when; struct GNUNET_TIME_Absolute last_alloced_when; }; struct Allocator *aehead; struct Allocator *aetail; struct Allocation { struct Allocation *prev; struct Allocation *next; struct Allocator *alloc; unsigned int bytes_alloced; void *p; unsigned int line; }; struct Allocation *ahead; struct Allocation *atail; static int bytes_alloced; static struct Allocator * find_allocator (int line) { struct Allocator *cur = aehead; while (NULL != cur) { if (line == cur->line) return cur; cur = cur->next; } return cur; } static void print_allocators () { static int start = GNUNET_YES; static struct GNUNET_TIME_Absolute next; static struct GNUNET_TIME_Relative rem; struct Allocator *cur = aehead; if (start) { next = GNUNET_TIME_UNIT_ZERO_ABS; start = GNUNET_NO; } if (0 == (rem = GNUNET_TIME_absolute_get_remaining(next)).rel_value) { fprintf (stderr, "Allocated in `%s' total: %5u bytes\n", __FILE__, bytes_alloced); while (NULL != cur) { char *last_alloc = GNUNET_strdup (GNUNET_STRINGS_absolute_time_to_string(cur->max_alloced_when)); fprintf (stderr, "Allocated from line %4u :%5u bytes (diff %5i bytes, max alloc: %5u @ %s, last alloc %s)\n", cur->line, cur->bytes_alloced, cur->diff, cur->max_alloced, last_alloc, GNUNET_STRINGS_absolute_time_to_string(cur->last_alloced_when)); GNUNET_free (last_alloc); cur->diff = 0; cur = cur->next; } fprintf (stderr, "\n"); next = GNUNET_TIME_absolute_add(GNUNET_TIME_absolute_get(), GNUNET_TIME_UNIT_SECONDS); } } #endif static void MEMDEBUG_add_alloc (void *p, size_t size, int line) { #if DEBUG_MALLOC struct Allocation *alloc = GNUNET_malloc (sizeof (struct Allocation)); struct Allocator *allocator = find_allocator(line); if (NULL == allocator) { allocator = GNUNET_malloc (sizeof (struct Allocator)); allocator->line = line; GNUNET_CONTAINER_DLL_insert (aehead, aetail, allocator); } alloc->alloc = allocator; alloc->p = p; alloc->line = line; alloc->bytes_alloced = size; allocator->bytes_alloced += size; allocator->last_alloced_when = GNUNET_TIME_absolute_get(); if (allocator->bytes_alloced >= allocator->max_alloced) { allocator->max_alloced = allocator->bytes_alloced; allocator->max_alloced_when = allocator->last_alloced_when; } allocator->diff += size; GNUNET_CONTAINER_DLL_insert (ahead, atail, alloc); print_allocators (); bytes_alloced += size; #endif } static void * MEMDEBUG_malloc (size_t size, int line) { void * ret; ret = GNUNET_malloc (size); #if DEBUG_MALLOC if (NULL != ret) MEMDEBUG_add_alloc (ret, size, line); #endif return ret; } static void MEMDEBUG_free (void * alloc, int line) { #if DEBUG_MALLOC struct Allocation *cur; struct Allocator *allocator; cur = ahead; while (NULL != cur) { if (alloc == cur->p) break; cur = cur->next; } if (NULL == cur) { fprintf (stderr, "Unmonitored free from line %4u\n", line); GNUNET_break (0); return; } allocator = cur->alloc; if (NULL == allocator) { GNUNET_break (0); } GNUNET_CONTAINER_DLL_remove (ahead, atail, cur); allocator->bytes_alloced -= cur->bytes_alloced; allocator->diff -= cur->bytes_alloced; GNUNET_assert (allocator->bytes_alloced >= 0); bytes_alloced -= cur->bytes_alloced; GNUNET_assert (bytes_alloced >= 0); GNUNET_free (cur); #endif GNUNET_free (alloc); } static void MEMDEBUG_free_non_null (void * alloc, int line) { if (alloc != NULL) MEMDEBUG_free (alloc, line); } /** * (re)schedule select tasks for this plugin. * * @param plugin plugin to reschedule */ static void schedule_select (struct Plugin *plugin) { struct GNUNET_TIME_Relative min_delay; struct UDP_MessageWrapper *udpw; if (NULL != plugin->sockv4) { /* Find a message ready to send: * Flow delay from other peer is expired or not set (0) */ min_delay = GNUNET_TIME_UNIT_FOREVER_REL; for (udpw = plugin->ipv4_queue_head; NULL != udpw; udpw = udpw->next) min_delay = GNUNET_TIME_relative_min (min_delay, GNUNET_TIME_absolute_get_remaining (udpw->session->flow_delay_from_other_peer)); if (plugin->select_task != GNUNET_SCHEDULER_NO_TASK) GNUNET_SCHEDULER_cancel(plugin->select_task); /* Schedule with: * - write active set if message is ready * - timeout minimum delay */ plugin->select_task = GNUNET_SCHEDULER_add_select (GNUNET_SCHEDULER_PRIORITY_DEFAULT, (0 == min_delay.rel_value) ? GNUNET_TIME_UNIT_FOREVER_REL : min_delay, plugin->rs_v4, (0 == min_delay.rel_value) ? plugin->ws_v4 : NULL, &udp_plugin_select, plugin); } if (NULL != plugin->sockv6) { min_delay = GNUNET_TIME_UNIT_FOREVER_REL; for (udpw = plugin->ipv6_queue_head; NULL != udpw; udpw = udpw->next) min_delay = GNUNET_TIME_relative_min (min_delay, GNUNET_TIME_absolute_get_remaining (udpw->session->flow_delay_from_other_peer)); if (GNUNET_SCHEDULER_NO_TASK != plugin->select_task_v6) GNUNET_SCHEDULER_cancel(plugin->select_task_v6); plugin->select_task_v6 = GNUNET_SCHEDULER_add_select (GNUNET_SCHEDULER_PRIORITY_DEFAULT, (0 == min_delay.rel_value) ? GNUNET_TIME_UNIT_FOREVER_REL : min_delay, plugin->rs_v6, (0 == min_delay.rel_value) ? plugin->ws_v6 : NULL, &udp_plugin_select_v6, plugin); } } /** * Function called for a quick conversion of the binary address to * a numeric address. Note that the caller must not free the * address and that the next call to this function is allowed * to override the address again. * * @param cls closure * @param addr binary address * @param addrlen length of the address * @return string representing the same address */ const char * udp_address_to_string (void *cls, const void *addr, size_t addrlen) { static char rbuf[INET6_ADDRSTRLEN + 10]; char buf[INET6_ADDRSTRLEN]; const void *sb; struct in_addr a4; struct in6_addr a6; const struct IPv4UdpAddress *t4; const struct IPv6UdpAddress *t6; int af; uint16_t port; if (addrlen == sizeof (struct IPv6UdpAddress)) { t6 = addr; af = AF_INET6; port = ntohs (t6->u6_port); memcpy (&a6, &t6->ipv6_addr, sizeof (a6)); sb = &a6; } else if (addrlen == sizeof (struct IPv4UdpAddress)) { t4 = addr; af = AF_INET; port = ntohs (t4->u4_port); memcpy (&a4, &t4->ipv4_addr, sizeof (a4)); sb = &a4; } else { GNUNET_break_op (0); return NULL; } inet_ntop (af, sb, buf, INET6_ADDRSTRLEN); GNUNET_snprintf (rbuf, sizeof (rbuf), (af == AF_INET6) ? "[%s]:%u" : "%s:%u", buf, port); return rbuf; } /** * Function called to convert a string address to * a binary address. * * @param cls closure ('struct Plugin*') * @param addr string address * @param addrlen length of the address * @param buf location to store the buffer * @param added location to store the number of bytes in the buffer. * If the function returns GNUNET_SYSERR, its contents are undefined. * @return GNUNET_OK on success, GNUNET_SYSERR on failure */ static int udp_string_to_address (void *cls, const char *addr, uint16_t addrlen, void **buf, size_t *added) { struct sockaddr_storage socket_address; if ((NULL == addr) || (0 == addrlen)) { GNUNET_break (0); return GNUNET_SYSERR; } if ('\0' != addr[addrlen - 1]) { return GNUNET_SYSERR; } if (strlen (addr) != addrlen - 1) { return GNUNET_SYSERR; } if (GNUNET_OK != GNUNET_STRINGS_to_address_ip (addr, strlen (addr), &socket_address)) { return GNUNET_SYSERR; } switch (socket_address.ss_family) { case AF_INET: { struct IPv4UdpAddress *u4; struct sockaddr_in *in4 = (struct sockaddr_in *) &socket_address; u4 = MEMDEBUG_malloc (sizeof (struct IPv4UdpAddress), __LINE__ ); u4->ipv4_addr = in4->sin_addr.s_addr; u4->u4_port = in4->sin_port; *buf = u4; *added = sizeof (struct IPv4UdpAddress); return GNUNET_OK; } case AF_INET6: { struct IPv6UdpAddress *u6; struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &socket_address; u6 = MEMDEBUG_malloc (sizeof (struct IPv6UdpAddress), __LINE__ ); u6->ipv6_addr = in6->sin6_addr; u6->u6_port = in6->sin6_port; *buf = u6; *added = sizeof (struct IPv6UdpAddress); return GNUNET_OK; } default: GNUNET_break (0); return GNUNET_SYSERR; } } /** * Append our port and forward the result. * * @param cls a 'struct PrettyPrinterContext' * @param hostname result from DNS resolver */ static void append_port (void *cls, const char *hostname) { struct PrettyPrinterContext *ppc = cls; char *ret; if (hostname == NULL) { ppc->asc (ppc->asc_cls, NULL); MEMDEBUG_free (ppc, __LINE__); return; } GNUNET_asprintf (&ret, "%s:%d", hostname, ppc->port); MEMDEBUG_add_alloc (ret, strlen (ret)+ 1, __LINE__); ppc->asc (ppc->asc_cls, ret); MEMDEBUG_free (ret, __LINE__); } /** * Convert the transports address to a nice, human-readable * format. * * @param cls closure * @param type name of the transport that generated the address * @param addr one of the addresses of the host, NULL for the last address * the specific address format depends on the transport * @param addrlen length of the address * @param numeric should (IP) addresses be displayed in numeric form? * @param timeout after how long should we give up? * @param asc function to call on each string * @param asc_cls closure for asc */ static void udp_plugin_address_pretty_printer (void *cls, const char *type, const void *addr, size_t addrlen, int numeric, struct GNUNET_TIME_Relative timeout, GNUNET_TRANSPORT_AddressStringCallback asc, void *asc_cls) { struct PrettyPrinterContext *ppc; const void *sb; size_t sbs; struct sockaddr_in a4; struct sockaddr_in6 a6; const struct IPv4UdpAddress *u4; const struct IPv6UdpAddress *u6; uint16_t port; if (addrlen == sizeof (struct IPv6UdpAddress)) { u6 = addr; memset (&a6, 0, sizeof (a6)); a6.sin6_family = AF_INET6; #if HAVE_SOCKADDR_IN_SIN_LEN a6.sin6_len = sizeof (a6); #endif a6.sin6_port = u6->u6_port; memcpy (&a6.sin6_addr, &u6->ipv6_addr, sizeof (struct in6_addr)); port = ntohs (u6->u6_port); sb = &a6; sbs = sizeof (a6); } else if (addrlen == sizeof (struct IPv4UdpAddress)) { u4 = addr; memset (&a4, 0, sizeof (a4)); a4.sin_family = AF_INET; #if HAVE_SOCKADDR_IN_SIN_LEN a4.sin_len = sizeof (a4); #endif a4.sin_port = u4->u4_port; a4.sin_addr.s_addr = u4->ipv4_addr; port = ntohs (u4->u4_port); sb = &a4; sbs = sizeof (a4); } else if (0 == addrlen) { asc (asc_cls, ""); asc (asc_cls, NULL); return; } else { /* invalid address */ GNUNET_break_op (0); asc (asc_cls, NULL); return; } ppc = MEMDEBUG_malloc (sizeof (struct PrettyPrinterContext), __LINE__ ); ppc->asc = asc; ppc->asc_cls = asc_cls; ppc->port = port; GNUNET_RESOLVER_hostname_get (sb, sbs, !numeric, timeout, &append_port, ppc); } static void call_continuation (struct UDP_MessageWrapper *udpw, int result) { size_t overhead; LOG (GNUNET_ERROR_TYPE_DEBUG, "Calling continuation for %u byte message to `%s' with result %s\n", udpw->payload_size, GNUNET_i2s (&udpw->session->target), (GNUNET_OK == result) ? "OK" : "SYSERR"); if (udpw->msg_size >= udpw->payload_size) overhead = udpw->msg_size - udpw->payload_size; else overhead = udpw->msg_size; switch (result) { case GNUNET_OK: switch (udpw->msg_type) { case MSG_UNFRAGMENTED: if (NULL != udpw->cont) { /* Transport continuation */ udpw->cont (udpw->cont_cls, &udpw->session->target, result, udpw->payload_size, udpw->msg_size); } GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, messages, sent, success", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, bytes payload, sent, success", udpw->payload_size, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, bytes overhead, sent, success", overhead, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes overhead, sent", overhead, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes payload, sent", udpw->payload_size, GNUNET_NO); break; case MSG_FRAGMENTED_COMPLETE: GNUNET_assert (NULL != udpw->frag_ctx); if (udpw->frag_ctx->cont != NULL) udpw->frag_ctx->cont (udpw->frag_ctx->cont_cls, &udpw->session->target, GNUNET_OK, udpw->frag_ctx->payload_size, udpw->frag_ctx->on_wire_size); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, messages, sent, success", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, bytes payload, sent, success", udpw->payload_size, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, bytes overhead, sent, success", overhead, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes overhead, sent", overhead, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes payload, sent", udpw->payload_size, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, messages, pending", -1, GNUNET_NO); break; case MSG_FRAGMENTED: /* Fragmented message: enqueue next fragment */ if (NULL != udpw->cont) udpw->cont (udpw->cont_cls, &udpw->session->target, result, udpw->payload_size, udpw->msg_size); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, fragments, sent, success", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, fragments bytes, sent, success", udpw->msg_size, GNUNET_NO); break; case MSG_ACK: /* No continuation */ GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, ACK msgs, messages, sent, success", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, ACK msgs, bytes overhead, sent, success", overhead, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes overhead, sent", overhead, GNUNET_NO); break; case MSG_BEACON: GNUNET_break (0); break; default: LOG (GNUNET_ERROR_TYPE_ERROR, "ERROR: %u\n", udpw->msg_type); GNUNET_break (0); break; } break; case GNUNET_SYSERR: switch (udpw->msg_type) { case MSG_UNFRAGMENTED: /* Unfragmented message: failed to send */ if (NULL != udpw->cont) udpw->cont (udpw->cont_cls, &udpw->session->target, result, udpw->payload_size, overhead); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, messages, sent, failure", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, bytes payload, sent, failure", udpw->payload_size, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, bytes overhead, sent, failure", overhead, GNUNET_NO); break; case MSG_FRAGMENTED_COMPLETE: GNUNET_assert (NULL != udpw->frag_ctx); if (udpw->frag_ctx->cont != NULL) udpw->frag_ctx->cont (udpw->frag_ctx->cont_cls, &udpw->session->target, GNUNET_SYSERR, udpw->frag_ctx->payload_size, udpw->frag_ctx->on_wire_size); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, messages, sent, failure", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, bytes payload, sent, failure", udpw->payload_size, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, bytes payload, sent, failure", overhead, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, bytes payload, sent, failure", overhead, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, messages, pending", -1, GNUNET_NO); break; case MSG_FRAGMENTED: GNUNET_assert (NULL != udpw->frag_ctx); /* Fragmented message: failed to send */ GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, fragments, sent, failure", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, fragments bytes, sent, failure", udpw->msg_size, GNUNET_NO); break; case MSG_ACK: /* ACK message: failed to send */ GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, ACK msgs, messages, sent, failure", 1, GNUNET_NO); break; case MSG_BEACON: /* Beacon message: failed to send */ GNUNET_break (0); break; default: GNUNET_break (0); break; } break; default: GNUNET_break (0); break; } } /** * Check if the given port is plausible (must be either our listen * port or our advertised port). If it is neither, we return * GNUNET_SYSERR. * * @param plugin global variables * @param in_port port number to check * @return GNUNET_OK if port is either open_port or adv_port */ static int check_port (struct Plugin *plugin, uint16_t in_port) { if ((in_port == plugin->port) || (in_port == plugin->aport)) return GNUNET_OK; return GNUNET_SYSERR; } /** * Function that will be called to check if a binary address for this * plugin is well-formed and corresponds to an address for THIS peer * (as per our configuration). Naturally, if absolutely necessary, * plugins can be a bit conservative in their answer, but in general * plugins should make sure that the address does not redirect * traffic to a 3rd party that might try to man-in-the-middle our * traffic. * * @param cls closure, should be our handle to the Plugin * @param addr pointer to the address * @param addrlen length of addr * @return GNUNET_OK if this is a plausible address for this peer * and transport, GNUNET_SYSERR if not * */ static int udp_plugin_check_address (void *cls, const void *addr, size_t addrlen) { struct Plugin *plugin = cls; struct IPv4UdpAddress *v4; struct IPv6UdpAddress *v6; if ((addrlen != sizeof (struct IPv4UdpAddress)) && (addrlen != sizeof (struct IPv6UdpAddress))) { GNUNET_break_op (0); return GNUNET_SYSERR; } if (addrlen == sizeof (struct IPv4UdpAddress)) { v4 = (struct IPv4UdpAddress *) addr; if (GNUNET_OK != check_port (plugin, ntohs (v4->u4_port))) return GNUNET_SYSERR; if (GNUNET_OK != GNUNET_NAT_test_address (plugin->nat, &v4->ipv4_addr, sizeof (struct in_addr))) return GNUNET_SYSERR; } else { v6 = (struct IPv6UdpAddress *) addr; if (IN6_IS_ADDR_LINKLOCAL (&v6->ipv6_addr)) { GNUNET_break_op (0); return GNUNET_SYSERR; } if (GNUNET_OK != check_port (plugin, ntohs (v6->u6_port))) return GNUNET_SYSERR; if (GNUNET_OK != GNUNET_NAT_test_address (plugin->nat, &v6->ipv6_addr, sizeof (struct in6_addr))) return GNUNET_SYSERR; } return GNUNET_OK; } /** * Task to free resources associated with a session. * * @param s session to free */ static void free_session (struct Session *s) { if (NULL != s->frag_ctx) { GNUNET_FRAGMENT_context_destroy(s->frag_ctx->frag, NULL, NULL); MEMDEBUG_free (s->frag_ctx, __LINE__); s->frag_ctx = NULL; } MEMDEBUG_free (s, __LINE__); } static void dequeue (struct Plugin *plugin, struct UDP_MessageWrapper * udpw) { if (plugin->bytes_in_buffer < udpw->msg_size) GNUNET_break (0); else { GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes in buffers", - (long long) udpw->msg_size, GNUNET_NO); plugin->bytes_in_buffer -= udpw->msg_size; } GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, msgs in buffers", -1, GNUNET_NO); if (udpw->session->addrlen == sizeof (struct sockaddr_in)) GNUNET_CONTAINER_DLL_remove (plugin->ipv4_queue_head, plugin->ipv4_queue_tail, udpw); if (udpw->session->addrlen == sizeof (struct sockaddr_in6)) GNUNET_CONTAINER_DLL_remove (plugin->ipv6_queue_head, plugin->ipv6_queue_tail, udpw); } static void fragmented_message_done (struct UDP_FragmentationContext *fc, int result) { struct UDP_MessageWrapper *udpw; struct UDP_MessageWrapper *tmp; struct UDP_MessageWrapper dummy; struct Session *s = fc->session; LOG (GNUNET_ERROR_TYPE_DEBUG, "%p : Fragmented message removed with result %s\n", fc, (result == GNUNET_SYSERR) ? "FAIL" : "SUCCESS"); /* Call continuation for fragmented message */ memset (&dummy, 0, sizeof (dummy)); dummy.msg_type = MSG_FRAGMENTED_COMPLETE; dummy.msg_size = s->frag_ctx->on_wire_size; dummy.payload_size = s->frag_ctx->payload_size; dummy.frag_ctx = s->frag_ctx; dummy.cont = NULL; dummy.cont_cls = NULL; dummy.session = s; call_continuation (&dummy, result); /* Remove leftover fragments from queue */ if (s->addrlen == sizeof (struct sockaddr_in6)) { udpw = plugin->ipv6_queue_head; while (NULL != udpw) { tmp = udpw->next; if ((udpw->frag_ctx != NULL) && (udpw->frag_ctx == s->frag_ctx)) { dequeue (plugin, udpw); call_continuation (udpw, GNUNET_SYSERR); MEMDEBUG_free (udpw, __LINE__); } udpw = tmp; } } if (s->addrlen == sizeof (struct sockaddr_in)) { udpw = plugin->ipv4_queue_head; while (udpw!= NULL) { tmp = udpw->next; if ((NULL != udpw->frag_ctx) && (udpw->frag_ctx == s->frag_ctx)) { dequeue (plugin, udpw); call_continuation (udpw, GNUNET_SYSERR); MEMDEBUG_free (udpw, __LINE__); } udpw = tmp; } } /* Destroy fragmentation context */ GNUNET_FRAGMENT_context_destroy (fc->frag, &s->last_expected_msg_delay, &s->last_expected_ack_delay); s->frag_ctx = NULL; MEMDEBUG_free (fc , __LINE__); } /** * Functions with this signature are called whenever we need * to close a session due to a disconnect or failure to * establish a connection. * * @param s session to close down */ static void disconnect_session (struct Session *s) { struct UDP_MessageWrapper *udpw; struct UDP_MessageWrapper *next; GNUNET_assert (GNUNET_YES != s->in_destroy); LOG (GNUNET_ERROR_TYPE_DEBUG, "Session %p to peer `%s' address ended \n", s, GNUNET_i2s (&s->target), GNUNET_a2s (s->sock_addr, s->addrlen)); stop_session_timeout (s); if (NULL != s->frag_ctx) { /* Remove fragmented message due to disconnect */ fragmented_message_done (s->frag_ctx, GNUNET_SYSERR); } next = plugin->ipv4_queue_head; while (NULL != (udpw = next)) { next = udpw->next; if (udpw->session == s) { dequeue (plugin, udpw); call_continuation(udpw, GNUNET_SYSERR); MEMDEBUG_free (udpw, __LINE__); } } next = plugin->ipv6_queue_head; while (NULL != (udpw = next)) { next = udpw->next; if (udpw->session == s) { dequeue (plugin, udpw); call_continuation(udpw, GNUNET_SYSERR); MEMDEBUG_free (udpw, __LINE__); } udpw = next; } plugin->env->session_end (plugin->env->cls, &s->target, s); if (NULL != s->frag_ctx) { if (NULL != s->frag_ctx->cont) { s->frag_ctx->cont (s->frag_ctx->cont_cls, &s->target, GNUNET_SYSERR, s->frag_ctx->payload_size, s->frag_ctx->on_wire_size); LOG (GNUNET_ERROR_TYPE_DEBUG, "Calling continuation for fragemented message to `%s' with result SYSERR\n", GNUNET_i2s (&s->target)); } } GNUNET_assert (GNUNET_YES == GNUNET_CONTAINER_multihashmap_remove (plugin->sessions, &s->target.hashPubKey, s)); GNUNET_STATISTICS_set(plugin->env->stats, "# UDP, sessions active", GNUNET_CONTAINER_multihashmap_size(plugin->sessions), GNUNET_NO); if (s->rc > 0) s->in_destroy = GNUNET_YES; else free_session (s); } /** * Destroy a session, plugin is being unloaded. * * @param cls unused * @param key hash of public key of target peer * @param value a 'struct PeerSession*' to clean up * @return GNUNET_OK (continue to iterate) */ static int disconnect_and_free_it (void *cls, const struct GNUNET_HashCode * key, void *value) { disconnect_session(value); return GNUNET_OK; } /** * Disconnect from a remote node. Clean up session if we have one for this peer * * @param cls closure for this call (should be handle to Plugin) * @param target the peeridentity of the peer to disconnect * @return GNUNET_OK on success, GNUNET_SYSERR if the operation failed */ static void udp_disconnect (void *cls, const struct GNUNET_PeerIdentity *target) { struct Plugin *plugin = cls; GNUNET_assert (plugin != NULL); GNUNET_assert (target != NULL); LOG (GNUNET_ERROR_TYPE_DEBUG, "Disconnecting from peer `%s'\n", GNUNET_i2s (target)); /* Clean up sessions */ GNUNET_CONTAINER_multihashmap_get_multiple (plugin->sessions, &target->hashPubKey, &disconnect_and_free_it, plugin); } /** * Session was idle, so disconnect it */ static void session_timeout (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { GNUNET_assert (NULL != cls); struct Session *s = cls; s->timeout_task = GNUNET_SCHEDULER_NO_TASK; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Session %p was idle for %llu ms, disconnecting\n", s, (unsigned long long) GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT.rel_value); /* call session destroy function */ disconnect_session (s); } /** * Start session timeout */ static void start_session_timeout (struct Session *s) { GNUNET_assert (NULL != s); GNUNET_assert (GNUNET_SCHEDULER_NO_TASK == s->timeout_task); s->timeout_task = GNUNET_SCHEDULER_add_delayed (GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT, &session_timeout, s); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Timeout for session %p set to %llu ms\n", s, (unsigned long long) GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT.rel_value); } /** * Increment session timeout due to activity */ static void reschedule_session_timeout (struct Session *s) { GNUNET_assert (NULL != s); GNUNET_assert (GNUNET_SCHEDULER_NO_TASK != s->timeout_task); GNUNET_SCHEDULER_cancel (s->timeout_task); s->timeout_task = GNUNET_SCHEDULER_add_delayed (GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT, &session_timeout, s); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Timeout rescheduled for session %p set to %llu ms\n", s, (unsigned long long) GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT.rel_value); } /** * Cancel timeout */ static void stop_session_timeout (struct Session *s) { GNUNET_assert (NULL != s); if (GNUNET_SCHEDULER_NO_TASK != s->timeout_task) { GNUNET_SCHEDULER_cancel (s->timeout_task); s->timeout_task = GNUNET_SCHEDULER_NO_TASK; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Timeout stopped for session %p canceled\n", s, (unsigned long long) GNUNET_CONSTANTS_IDLE_CONNECTION_TIMEOUT.rel_value); } } static struct Session * create_session (struct Plugin *plugin, const struct GNUNET_PeerIdentity *target, const void *addr, size_t addrlen, GNUNET_TRANSPORT_TransmitContinuation cont, void *cont_cls) { struct Session *s; const struct IPv4UdpAddress *t4; const struct IPv6UdpAddress *t6; struct sockaddr_in *v4; struct sockaddr_in6 *v6; size_t len; switch (addrlen) { case sizeof (struct IPv4UdpAddress): if (NULL == plugin->sockv4) { return NULL; } t4 = addr; s = MEMDEBUG_malloc (sizeof (struct Session) + sizeof (struct sockaddr_in), __LINE__ ); len = sizeof (struct sockaddr_in); v4 = (struct sockaddr_in *) &s[1]; v4->sin_family = AF_INET; #if HAVE_SOCKADDR_IN_SIN_LEN v4->sin_len = sizeof (struct sockaddr_in); #endif v4->sin_port = t4->u4_port; v4->sin_addr.s_addr = t4->ipv4_addr; s->ats = plugin->env->get_address_type (plugin->env->cls, (const struct sockaddr *) v4, sizeof (struct sockaddr_in)); break; case sizeof (struct IPv6UdpAddress): if (NULL == plugin->sockv6) { return NULL; } t6 = addr; s = MEMDEBUG_malloc (sizeof (struct Session) + sizeof (struct sockaddr_in6), __LINE__ ); len = sizeof (struct sockaddr_in6); v6 = (struct sockaddr_in6 *) &s[1]; v6->sin6_family = AF_INET6; #if HAVE_SOCKADDR_IN_SIN_LEN v6->sin6_len = sizeof (struct sockaddr_in6); #endif v6->sin6_port = t6->u6_port; v6->sin6_addr = t6->ipv6_addr; s->ats = plugin->env->get_address_type (plugin->env->cls, (const struct sockaddr *) v6, sizeof (struct sockaddr_in6)); break; default: /* Must have a valid address to send to */ GNUNET_break_op (0); return NULL; } s->addrlen = len; s->target = *target; s->sock_addr = (const struct sockaddr *) &s[1]; s->last_expected_ack_delay = GNUNET_TIME_relative_multiply (GNUNET_TIME_UNIT_MILLISECONDS, 250); s->last_expected_msg_delay = GNUNET_TIME_UNIT_MILLISECONDS; s->flow_delay_from_other_peer = GNUNET_TIME_UNIT_ZERO_ABS; s->flow_delay_for_other_peer = GNUNET_TIME_UNIT_ZERO; start_session_timeout (s); return s; } static int session_cmp_it (void *cls, const struct GNUNET_HashCode * key, void *value) { struct SessionCompareContext * cctx = cls; const struct GNUNET_HELLO_Address *address = cctx->addr; struct Session *s = value; socklen_t s_addrlen = s->addrlen; LOG (GNUNET_ERROR_TYPE_DEBUG, "Comparing address %s <-> %s\n", udp_address_to_string (NULL, (void *) address->address, address->address_length), GNUNET_a2s (s->sock_addr, s->addrlen)); if ((address->address_length == sizeof (struct IPv4UdpAddress)) && (s_addrlen == sizeof (struct sockaddr_in))) { struct IPv4UdpAddress * u4 = NULL; u4 = (struct IPv4UdpAddress *) address->address; const struct sockaddr_in *s4 = (const struct sockaddr_in *) s->sock_addr; if ((0 == memcmp ((const void *) &u4->ipv4_addr,(const void *) &s4->sin_addr, sizeof (struct in_addr))) && (u4->u4_port == s4->sin_port)) { cctx->res = s; return GNUNET_NO; } } if ((address->address_length == sizeof (struct IPv6UdpAddress)) && (s_addrlen == sizeof (struct sockaddr_in6))) { struct IPv6UdpAddress * u6 = NULL; u6 = (struct IPv6UdpAddress *) address->address; const struct sockaddr_in6 *s6 = (const struct sockaddr_in6 *) s->sock_addr; if ((0 == memcmp (&u6->ipv6_addr, &s6->sin6_addr, sizeof (struct in6_addr))) && (u6->u6_port == s6->sin6_port)) { cctx->res = s; return GNUNET_NO; } } return GNUNET_YES; } /** * Creates a new outbound session the transport service will use to send data to the * peer * * @param cls the plugin * @param address the address * @return the session or NULL of max connections exceeded */ static struct Session * udp_plugin_get_session (void *cls, const struct GNUNET_HELLO_Address *address) { struct Session * s = NULL; struct Plugin * plugin = cls; struct IPv6UdpAddress * udp_a6; struct IPv4UdpAddress * udp_a4; GNUNET_assert (plugin != NULL); GNUNET_assert (address != NULL); if ((address->address == NULL) || ((address->address_length != sizeof (struct IPv4UdpAddress)) && (address->address_length != sizeof (struct IPv6UdpAddress)))) { GNUNET_break (0); return NULL; } if (address->address_length == sizeof (struct IPv4UdpAddress)) { if (plugin->sockv4 == NULL) return NULL; udp_a4 = (struct IPv4UdpAddress *) address->address; if (udp_a4->u4_port == 0) return NULL; } if (address->address_length == sizeof (struct IPv6UdpAddress)) { if (plugin->sockv6 == NULL) return NULL; udp_a6 = (struct IPv6UdpAddress *) address->address; if (udp_a6->u6_port == 0) return NULL; } /* check if session already exists */ struct SessionCompareContext cctx; cctx.addr = address; cctx.res = NULL; LOG (GNUNET_ERROR_TYPE_DEBUG, "Looking for existing session for peer `%s' `%s' \n", GNUNET_i2s (&address->peer), udp_address_to_string(NULL, address->address, address->address_length)); GNUNET_CONTAINER_multihashmap_get_multiple(plugin->sessions, &address->peer.hashPubKey, session_cmp_it, &cctx); if (cctx.res != NULL) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Found existing session %p\n", cctx.res); return cctx.res; } /* otherwise create new */ s = create_session (plugin, &address->peer, address->address, address->address_length, NULL, NULL); LOG (GNUNET_ERROR_TYPE_DEBUG, "Creating new session %p for peer `%s' address `%s'\n", s, GNUNET_i2s(&address->peer), udp_address_to_string(NULL,address->address,address->address_length)); GNUNET_assert (GNUNET_OK == GNUNET_CONTAINER_multihashmap_put (plugin->sessions, &s->target.hashPubKey, s, GNUNET_CONTAINER_MULTIHASHMAPOPTION_MULTIPLE)); GNUNET_STATISTICS_set(plugin->env->stats, "# UDP, sessions active", GNUNET_CONTAINER_multihashmap_size(plugin->sessions), GNUNET_NO); return s; } static void enqueue (struct Plugin *plugin, struct UDP_MessageWrapper * udpw) { if (plugin->bytes_in_buffer + udpw->msg_size > INT64_MAX) GNUNET_break (0); else { GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes in buffers", udpw->msg_size, GNUNET_NO); plugin->bytes_in_buffer += udpw->msg_size; } GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, msgs in buffers", 1, GNUNET_NO); if (udpw->session->addrlen == sizeof (struct sockaddr_in)) GNUNET_CONTAINER_DLL_insert (plugin->ipv4_queue_head, plugin->ipv4_queue_tail, udpw); if (udpw->session->addrlen == sizeof (struct sockaddr_in6)) GNUNET_CONTAINER_DLL_insert (plugin->ipv6_queue_head, plugin->ipv6_queue_tail, udpw); } /** * Fragment message was transmitted via UDP, let fragmentation know * to send the next fragment now. * * @param cls the 'struct UDPMessageWrapper' of the fragment * @param target destination peer (ignored) * @param result GNUNET_OK on success (ignored) * @param payload bytes payload sent * @param physical bytes physical sent */ static void send_next_fragment (void *cls, const struct GNUNET_PeerIdentity *target, int result, size_t payload, size_t physical) { struct UDP_MessageWrapper *udpw = cls; GNUNET_FRAGMENT_context_transmission_done (udpw->frag_ctx->frag); } /** * Function that is called with messages created by the fragmentation * module. In the case of the 'proc' callback of the * GNUNET_FRAGMENT_context_create function, this function must * eventually call 'GNUNET_FRAGMENT_context_transmission_done'. * * @param cls closure, the 'struct FragmentationContext' * @param msg the message that was created */ static void enqueue_fragment (void *cls, const struct GNUNET_MessageHeader *msg) { struct UDP_FragmentationContext *frag_ctx = cls; struct Plugin *plugin = frag_ctx->plugin; struct UDP_MessageWrapper * udpw; size_t msg_len = ntohs (msg->size); LOG (GNUNET_ERROR_TYPE_DEBUG, "Enqueuing fragment with %u bytes\n", msg_len); frag_ctx->fragments_used ++; udpw = MEMDEBUG_malloc (sizeof (struct UDP_MessageWrapper) + msg_len, __LINE__ ); udpw->session = frag_ctx->session; udpw->msg_buf = (char *) &udpw[1]; udpw->msg_size = msg_len; udpw->payload_size = msg_len; /*FIXME: minus fragment overhead */ udpw->cont = &send_next_fragment; udpw->cont_cls = udpw; udpw->timeout = frag_ctx->timeout; udpw->frag_ctx = frag_ctx; udpw->msg_type = MSG_FRAGMENTED; memcpy (udpw->msg_buf, msg, msg_len); enqueue (plugin, udpw); schedule_select (plugin); } /** * Function that can be used by the transport service to transmit * a message using the plugin. Note that in the case of a * peer disconnecting, the continuation MUST be called * prior to the disconnect notification itself. This function * will be called with this peer's HELLO message to initiate * a fresh connection to another peer. * * @param cls closure * @param s which session must be used * @param msgbuf the message to transmit * @param msgbuf_size number of bytes in 'msgbuf' * @param priority how important is the message (most plugins will * ignore message priority and just FIFO) * @param to how long to wait at most for the transmission (does not * require plugins to discard the message after the timeout, * just advisory for the desired delay; most plugins will ignore * this as well) * @param cont continuation to call once the message has * been transmitted (or if the transport is ready * for the next transmission call; or if the * peer disconnected...); can be NULL * @param cont_cls closure for cont * @return number of bytes used (on the physical network, with overheads); * -1 on hard errors (i.e. address invalid); 0 is a legal value * and does NOT mean that the message was not transmitted (DV) */ static ssize_t udp_plugin_send (void *cls, struct Session *s, const char *msgbuf, size_t msgbuf_size, unsigned int priority, struct GNUNET_TIME_Relative to, GNUNET_TRANSPORT_TransmitContinuation cont, void *cont_cls) { struct Plugin *plugin = cls; size_t udpmlen = msgbuf_size + sizeof (struct UDPMessage); struct UDP_FragmentationContext * frag_ctx; struct UDP_MessageWrapper * udpw; struct UDPMessage *udp; char mbuf[udpmlen]; GNUNET_assert (plugin != NULL); GNUNET_assert (s != NULL); if ((s->addrlen == sizeof (struct sockaddr_in6)) && (plugin->sockv6 == NULL)) return GNUNET_SYSERR; if ((s->addrlen == sizeof (struct sockaddr_in)) && (plugin->sockv4 == NULL)) return GNUNET_SYSERR; if (udpmlen >= GNUNET_SERVER_MAX_MESSAGE_SIZE) { GNUNET_break (0); return GNUNET_SYSERR; } if (GNUNET_YES != GNUNET_CONTAINER_multihashmap_contains_value(plugin->sessions, &s->target.hashPubKey, s)) { GNUNET_break (0); return GNUNET_SYSERR; } LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP transmits %u-byte message to `%s' using address `%s'\n", udpmlen, GNUNET_i2s (&s->target), GNUNET_a2s(s->sock_addr, s->addrlen)); /* Message */ udp = (struct UDPMessage *) mbuf; udp->header.size = htons (udpmlen); udp->header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_MESSAGE); udp->reserved = htonl (0); udp->sender = *plugin->env->my_identity; reschedule_session_timeout(s); if (udpmlen <= UDP_MTU) { /* unfragmented message */ udpw = MEMDEBUG_malloc (sizeof (struct UDP_MessageWrapper) + udpmlen, __LINE__ ); udpw->session = s; udpw->msg_buf = (char *) &udpw[1]; udpw->msg_size = udpmlen; /* message size with UDP overhead */ udpw->payload_size = msgbuf_size; /* message size without UDP overhead */ udpw->timeout = GNUNET_TIME_absolute_add(GNUNET_TIME_absolute_get(), to); udpw->cont = cont; udpw->cont_cls = cont_cls; udpw->frag_ctx = NULL; udpw->msg_type = MSG_UNFRAGMENTED; memcpy (udpw->msg_buf, udp, sizeof (struct UDPMessage)); memcpy (&udpw->msg_buf[sizeof (struct UDPMessage)], msgbuf, msgbuf_size); enqueue (plugin, udpw); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, messages, attempt", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, bytes payload, attempt", udpw->payload_size, GNUNET_NO); } else { /* fragmented message */ if (s->frag_ctx != NULL) return GNUNET_SYSERR; memcpy (&udp[1], msgbuf, msgbuf_size); frag_ctx = MEMDEBUG_malloc (sizeof (struct UDP_FragmentationContext), __LINE__ ); frag_ctx->plugin = plugin; frag_ctx->session = s; frag_ctx->cont = cont; frag_ctx->cont_cls = cont_cls; frag_ctx->timeout = GNUNET_TIME_absolute_add(GNUNET_TIME_absolute_get(), to); frag_ctx->payload_size = msgbuf_size; /* unfragmented message size without UDP overhead */ frag_ctx->on_wire_size = 0; /* bytes with UDP and fragmentation overhead */ frag_ctx->frag = GNUNET_FRAGMENT_context_create (plugin->env->stats, UDP_MTU, &plugin->tracker, s->last_expected_msg_delay, s->last_expected_ack_delay, &udp->header, &enqueue_fragment, frag_ctx); s->frag_ctx = frag_ctx; GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, messages, pending", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, messages, attempt", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, bytes payload, attempt", frag_ctx->payload_size, GNUNET_NO); } schedule_select (plugin); return udpmlen; } /** * Our external IP address/port mapping has changed. * * @param cls closure, the 'struct LocalAddrList' * @param add_remove GNUNET_YES to mean the new public IP address, GNUNET_NO to mean * the previous (now invalid) one * @param addr either the previous or the new public IP address * @param addrlen actual lenght of the address */ static void udp_nat_port_map_callback (void *cls, int add_remove, const struct sockaddr *addr, socklen_t addrlen) { struct Plugin *plugin = cls; struct IPv4UdpAddress u4; struct IPv6UdpAddress u6; void *arg; size_t args; LOG (GNUNET_ERROR_TYPE_INFO, "NAT notification to %s address `%s'\n", (GNUNET_YES == add_remove) ? "add" : "remove", GNUNET_a2s (addr, addrlen)); /* convert 'addr' to our internal format */ switch (addr->sa_family) { case AF_INET: GNUNET_assert (addrlen == sizeof (struct sockaddr_in)); u4.ipv4_addr = ((struct sockaddr_in *) addr)->sin_addr.s_addr; u4.u4_port = ((struct sockaddr_in *) addr)->sin_port; arg = &u4; args = sizeof (u4); break; case AF_INET6: GNUNET_assert (addrlen == sizeof (struct sockaddr_in6)); memcpy (&u6.ipv6_addr, &((struct sockaddr_in6 *) addr)->sin6_addr, sizeof (struct in6_addr)); u6.u6_port = ((struct sockaddr_in6 *) addr)->sin6_port; arg = &u6; args = sizeof (u6); break; default: GNUNET_break (0); return; } /* modify our published address list */ plugin->env->notify_address (plugin->env->cls, add_remove, arg, args, "udp"); } /** * Message tokenizer has broken up an incomming message. Pass it on * to the service. * * @param cls the 'struct Plugin' * @param client the 'struct SourceInformation' * @param hdr the actual message */ static int process_inbound_tokenized_messages (void *cls, void *client, const struct GNUNET_MessageHeader *hdr) { struct Plugin *plugin = cls; struct SourceInformation *si = client; struct GNUNET_TIME_Relative delay; GNUNET_assert (si->session != NULL); if (GNUNET_YES == si->session->in_destroy) return GNUNET_OK; /* setup ATS */ GNUNET_break (ntohl(si->session->ats.value) != GNUNET_ATS_NET_UNSPECIFIED); delay = plugin->env->receive (plugin->env->cls, &si->sender, hdr, si->session, si->arg, si->args); plugin->env->update_address_metrics (plugin->env->cls, &si->sender, si->arg, si->args, si->session, &si->session->ats, 1); si->session->flow_delay_for_other_peer = delay; reschedule_session_timeout(si->session); return GNUNET_OK; } /** * We've received a UDP Message. Process it (pass contents to main service). * * @param plugin plugin context * @param msg the message * @param sender_addr sender address * @param sender_addr_len number of bytes in sender_addr */ static void process_udp_message (struct Plugin *plugin, const struct UDPMessage *msg, const struct sockaddr *sender_addr, socklen_t sender_addr_len) { struct SourceInformation si; struct Session * s; struct IPv4UdpAddress u4; struct IPv6UdpAddress u6; const void *arg; size_t args; if (0 != ntohl (msg->reserved)) { GNUNET_break_op (0); return; } if (ntohs (msg->header.size) < sizeof (struct GNUNET_MessageHeader) + sizeof (struct UDPMessage)) { GNUNET_break_op (0); return; } /* convert address */ switch (sender_addr->sa_family) { case AF_INET: GNUNET_assert (sender_addr_len == sizeof (struct sockaddr_in)); u4.ipv4_addr = ((struct sockaddr_in *) sender_addr)->sin_addr.s_addr; u4.u4_port = ((struct sockaddr_in *) sender_addr)->sin_port; arg = &u4; args = sizeof (u4); break; case AF_INET6: GNUNET_assert (sender_addr_len == sizeof (struct sockaddr_in6)); u6.ipv6_addr = ((struct sockaddr_in6 *) sender_addr)->sin6_addr; u6.u6_port = ((struct sockaddr_in6 *) sender_addr)->sin6_port; arg = &u6; args = sizeof (u6); break; default: GNUNET_break (0); return; } LOG (GNUNET_ERROR_TYPE_DEBUG, "Received message with %u bytes from peer `%s' at `%s'\n", (unsigned int) ntohs (msg->header.size), GNUNET_i2s (&msg->sender), GNUNET_a2s (sender_addr, sender_addr_len)); struct GNUNET_HELLO_Address * address = GNUNET_HELLO_address_allocate(&msg->sender, "udp", arg, args); MEMDEBUG_add_alloc (address, GNUNET_HELLO_address_get_size(address), __LINE__); s = udp_plugin_get_session(plugin, address); MEMDEBUG_free (address, __LINE__); /* iterate over all embedded messages */ si.session = s; si.sender = msg->sender; si.arg = arg; si.args = args; s->rc++; GNUNET_SERVER_mst_receive (plugin->mst, &si, (const char *) &msg[1], ntohs (msg->header.size) - sizeof (struct UDPMessage), GNUNET_YES, GNUNET_NO); s->rc--; if ( (0 == s->rc) && (GNUNET_YES == s->in_destroy)) free_session (s); } /** * Scan the heap for a receive context with the given address. * * @param cls the 'struct FindReceiveContext' * @param node internal node of the heap * @param element value stored at the node (a 'struct ReceiveContext') * @param cost cost associated with the node * @return GNUNET_YES if we should continue to iterate, * GNUNET_NO if not. */ static int find_receive_context (void *cls, struct GNUNET_CONTAINER_HeapNode *node, void *element, GNUNET_CONTAINER_HeapCostType cost) { struct FindReceiveContext *frc = cls; struct DefragContext *e = element; if ((frc->addr_len == e->addr_len) && (0 == memcmp (frc->addr, e->src_addr, frc->addr_len))) { frc->rc = e; return GNUNET_NO; } return GNUNET_YES; } /** * Process a defragmented message. * * @param cls the 'struct ReceiveContext' * @param msg the message */ static void fragment_msg_proc (void *cls, const struct GNUNET_MessageHeader *msg) { struct DefragContext *rc = cls; if (ntohs (msg->type) != GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_MESSAGE) { GNUNET_break (0); return; } if (ntohs (msg->size) < sizeof (struct UDPMessage)) { GNUNET_break (0); return; } process_udp_message (rc->plugin, (const struct UDPMessage *) msg, rc->src_addr, rc->addr_len); } struct LookupContext { const struct sockaddr * addr; struct Session *res; size_t addrlen; }; static int lookup_session_by_addr_it (void *cls, const struct GNUNET_HashCode * key, void *value) { struct LookupContext *l_ctx = cls; struct Session * s = value; if ((s->addrlen == l_ctx->addrlen) && (0 == memcmp (s->sock_addr, l_ctx->addr, s->addrlen))) { l_ctx->res = s; return GNUNET_NO; } return GNUNET_YES; } /** * Transmit an acknowledgement. * * @param cls the 'struct ReceiveContext' * @param id message ID (unused) * @param msg ack to transmit */ static void ack_proc (void *cls, uint32_t id, const struct GNUNET_MessageHeader *msg) { struct DefragContext *rc = cls; size_t msize = sizeof (struct UDP_ACK_Message) + ntohs (msg->size); struct UDP_ACK_Message *udp_ack; uint32_t delay = 0; struct UDP_MessageWrapper *udpw; struct Session *s; struct LookupContext l_ctx; l_ctx.addr = rc->src_addr; l_ctx.addrlen = rc->addr_len; l_ctx.res = NULL; GNUNET_CONTAINER_multihashmap_iterate (rc->plugin->sessions, &lookup_session_by_addr_it, &l_ctx); s = l_ctx.res; if (NULL == s) return; if (s->flow_delay_for_other_peer.rel_value <= UINT32_MAX) delay = s->flow_delay_for_other_peer.rel_value; LOG (GNUNET_ERROR_TYPE_DEBUG, "Sending ACK to `%s' including delay of %u ms\n", GNUNET_a2s (rc->src_addr, (rc->src_addr->sa_family == AF_INET) ? sizeof (struct sockaddr_in) : sizeof (struct sockaddr_in6)), delay); udpw = MEMDEBUG_malloc (sizeof (struct UDP_MessageWrapper) + msize, __LINE__ ); udpw->msg_size = msize; udpw->payload_size = 0; udpw->session = s; udpw->timeout = GNUNET_TIME_UNIT_FOREVER_ABS; udpw->msg_buf = (char *)&udpw[1]; udpw->msg_type = MSG_ACK; udp_ack = (struct UDP_ACK_Message *) udpw->msg_buf; udp_ack->header.size = htons ((uint16_t) msize); udp_ack->header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_ACK); udp_ack->delay = htonl (delay); udp_ack->sender = *rc->plugin->env->my_identity; memcpy (&udp_ack[1], msg, ntohs (msg->size)); enqueue (rc->plugin, udpw); } static void read_process_msg (struct Plugin *plugin, const struct GNUNET_MessageHeader *msg, const char *addr, socklen_t fromlen) { if (ntohs (msg->size) < sizeof (struct UDPMessage)) { GNUNET_break_op (0); return; } process_udp_message (plugin, (const struct UDPMessage *) msg, (const struct sockaddr *) addr, fromlen); } static void read_process_ack (struct Plugin *plugin, const struct GNUNET_MessageHeader *msg, char *addr, socklen_t fromlen) { const struct GNUNET_MessageHeader *ack; const struct UDP_ACK_Message *udp_ack; struct LookupContext l_ctx; struct Session *s; struct GNUNET_TIME_Relative flow_delay; if (ntohs (msg->size) < sizeof (struct UDP_ACK_Message) + sizeof (struct GNUNET_MessageHeader)) { GNUNET_break_op (0); return; } udp_ack = (const struct UDP_ACK_Message *) msg; l_ctx.addr = (const struct sockaddr *) addr; l_ctx.addrlen = fromlen; l_ctx.res = NULL; GNUNET_CONTAINER_multihashmap_iterate (plugin->sessions, &lookup_session_by_addr_it, &l_ctx); s = l_ctx.res; if ((NULL == s) || (NULL == s->frag_ctx)) { return; } flow_delay.rel_value = (uint64_t) ntohl (udp_ack->delay); LOG (GNUNET_ERROR_TYPE_DEBUG, "We received a sending delay of %llu\n", flow_delay.rel_value); s->flow_delay_from_other_peer = GNUNET_TIME_relative_to_absolute (flow_delay); ack = (const struct GNUNET_MessageHeader *) &udp_ack[1]; if (ntohs (ack->size) != ntohs (msg->size) - sizeof (struct UDP_ACK_Message)) { GNUNET_break_op (0); return; } if (0 != memcmp (&l_ctx.res->target, &udp_ack->sender, sizeof (struct GNUNET_PeerIdentity))) GNUNET_break (0); if (GNUNET_OK != GNUNET_FRAGMENT_process_ack (s->frag_ctx->frag, ack)) { LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP processes %u-byte acknowledgement from `%s' at `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_i2s (&udp_ack->sender), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); /* Expect more ACKs to arrive */ return; } LOG (GNUNET_ERROR_TYPE_DEBUG, "Message full ACK'ed\n", (unsigned int) ntohs (msg->size), GNUNET_i2s (&udp_ack->sender), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); /* Remove fragmented message after successful sending */ fragmented_message_done (s->frag_ctx, GNUNET_OK); } static void read_process_fragment (struct Plugin *plugin, const struct GNUNET_MessageHeader *msg, char *addr, socklen_t fromlen) { struct DefragContext *d_ctx; struct GNUNET_TIME_Absolute now; struct FindReceiveContext frc; frc.rc = NULL; frc.addr = (const struct sockaddr *) addr; frc.addr_len = fromlen; LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP processes %u-byte fragment from `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); /* Lookup existing receive context for this address */ GNUNET_CONTAINER_heap_iterate (plugin->defrag_ctxs, &find_receive_context, &frc); now = GNUNET_TIME_absolute_get (); d_ctx = frc.rc; if (d_ctx == NULL) { /* Create a new defragmentation context */ d_ctx = MEMDEBUG_malloc (sizeof (struct DefragContext) + fromlen, __LINE__ ); memcpy (&d_ctx[1], addr, fromlen); d_ctx->src_addr = (const struct sockaddr *) &d_ctx[1]; d_ctx->addr_len = fromlen; d_ctx->plugin = plugin; d_ctx->defrag = GNUNET_DEFRAGMENT_context_create (plugin->env->stats, UDP_MTU, UDP_MAX_MESSAGES_IN_DEFRAG, d_ctx, &fragment_msg_proc, &ack_proc); d_ctx->hnode = GNUNET_CONTAINER_heap_insert (plugin->defrag_ctxs, d_ctx, (GNUNET_CONTAINER_HeapCostType) now.abs_value); LOG (GNUNET_ERROR_TYPE_DEBUG, "Created new defragmentation context for %u-byte fragment from `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); } else { LOG (GNUNET_ERROR_TYPE_DEBUG, "Found existing defragmentation context for %u-byte fragment from `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); } if (GNUNET_OK == GNUNET_DEFRAGMENT_process_fragment (d_ctx->defrag, msg)) { /* keep this 'rc' from expiring */ GNUNET_CONTAINER_heap_update_cost (plugin->defrag_ctxs, d_ctx->hnode, (GNUNET_CONTAINER_HeapCostType) now.abs_value); } if (GNUNET_CONTAINER_heap_get_size (plugin->defrag_ctxs) > UDP_MAX_SENDER_ADDRESSES_WITH_DEFRAG) { /* remove 'rc' that was inactive the longest */ d_ctx = GNUNET_CONTAINER_heap_remove_root (plugin->defrag_ctxs); GNUNET_assert (NULL != d_ctx); GNUNET_DEFRAGMENT_context_destroy (d_ctx->defrag); MEMDEBUG_free (d_ctx, __LINE__); } } /** * Read and process a message from the given socket. * * @param plugin the overall plugin * @param rsock socket to read from */ static void udp_select_read (struct Plugin *plugin, struct GNUNET_NETWORK_Handle *rsock) { socklen_t fromlen; char addr[32]; char buf[65536] GNUNET_ALIGN; ssize_t size; const struct GNUNET_MessageHeader *msg; fromlen = sizeof (addr); memset (&addr, 0, sizeof (addr)); size = GNUNET_NETWORK_socket_recvfrom (rsock, buf, sizeof (buf), (struct sockaddr *) &addr, &fromlen); #if MINGW /* On SOCK_DGRAM UDP sockets recvfrom might fail with a * WSAECONNRESET error to indicate that previous sendto() (yes, sendto!) * on this socket has failed. * Quote from MSDN: * WSAECONNRESET - The virtual circuit was reset by the remote side * executing a hard or abortive close. The application should close * the socket; it is no longer usable. On a UDP-datagram socket this * error indicates a previous send operation resulted in an ICMP Port * Unreachable message. */ if ( (-1 == size) && (ECONNRESET == errno) ) return; #endif if (-1 == size) { LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP failed to receive data: %s\n", STRERROR (errno)); /* Connection failure or something. Not a protocol violation. */ return; } if (size < sizeof (struct GNUNET_MessageHeader)) { LOG (GNUNET_ERROR_TYPE_WARNING, "UDP got %u bytes, which is not enough for a GNUnet message header\n", (unsigned int) size); /* _MAY_ be a connection failure (got partial message) */ /* But it _MAY_ also be that the other side uses non-GNUnet protocol. */ GNUNET_break_op (0); return; } msg = (const struct GNUNET_MessageHeader *) buf; LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP received %u-byte message from `%s' type %i\n", (unsigned int) size, GNUNET_a2s ((const struct sockaddr *) addr, fromlen), ntohs (msg->type)); if (size != ntohs (msg->size)) { GNUNET_break_op (0); return; } GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes, received", size, GNUNET_NO); switch (ntohs (msg->type)) { case GNUNET_MESSAGE_TYPE_TRANSPORT_BROADCAST_BEACON: udp_broadcast_receive (plugin, &buf, size, addr, fromlen); return; case GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_MESSAGE: read_process_msg (plugin, msg, addr, fromlen); return; case GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_ACK: read_process_ack (plugin, msg, addr, fromlen); return; case GNUNET_MESSAGE_TYPE_FRAGMENT: read_process_fragment (plugin, msg, addr, fromlen); return; default: GNUNET_break_op (0); return; } } static struct UDP_MessageWrapper * remove_timeout_messages_and_select (struct UDP_MessageWrapper *head, struct GNUNET_NETWORK_Handle *sock) { struct UDP_MessageWrapper *udpw = NULL; struct GNUNET_TIME_Relative remaining; udpw = head; while (udpw != NULL) { /* Find messages with timeout */ remaining = GNUNET_TIME_absolute_get_remaining (udpw->timeout); if (GNUNET_TIME_UNIT_ZERO.rel_value == remaining.rel_value) { /* Message timed out */ switch (udpw->msg_type) { case MSG_UNFRAGMENTED: GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes, sent, timeout", udpw->msg_size, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, messages, sent, timeout", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, messages, sent, timeout", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, unfragmented msgs, bytes, sent, timeout", udpw->payload_size, GNUNET_NO); /* Not fragmented message */ LOG (GNUNET_ERROR_TYPE_DEBUG, "Message for peer `%s' with size %u timed out\n", GNUNET_i2s(&udpw->session->target), udpw->payload_size); call_continuation (udpw, GNUNET_SYSERR); /* Remove message */ dequeue (plugin, udpw); MEMDEBUG_free (udpw, __LINE__); break; case MSG_FRAGMENTED: /* Fragmented message */ GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes, sent, timeout", udpw->frag_ctx->on_wire_size, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, messages, sent, timeout", 1, GNUNET_NO); call_continuation (udpw, GNUNET_SYSERR); LOG (GNUNET_ERROR_TYPE_DEBUG, "Fragment for message for peer `%s' with size %u timed out\n", GNUNET_i2s(&udpw->session->target), udpw->frag_ctx->payload_size); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, messages, sent, timeout", 1, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, fragmented msgs, bytes, sent, timeout", udpw->frag_ctx->payload_size, GNUNET_NO); /* Remove fragmented message due to timeout */ fragmented_message_done (udpw->frag_ctx, GNUNET_SYSERR); break; case MSG_ACK: GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes, sent, timeout", udpw->msg_size, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, messages, sent, timeout", 1, GNUNET_NO); LOG (GNUNET_ERROR_TYPE_DEBUG, "ACK Message for peer `%s' with size %u timed out\n", GNUNET_i2s(&udpw->session->target), udpw->payload_size); call_continuation (udpw, GNUNET_SYSERR); dequeue (plugin, udpw); MEMDEBUG_free (udpw, __LINE__); break; default: break; } if (sock == plugin->sockv4) udpw = plugin->ipv4_queue_head; else if (sock == plugin->sockv6) udpw = plugin->ipv6_queue_head; else { GNUNET_break (0); /* should never happen */ udpw = NULL; } GNUNET_STATISTICS_update (plugin->env->stats, "# messages dismissed due to timeout", 1, GNUNET_NO); } else { /* Message did not time out, check flow delay */ remaining = GNUNET_TIME_absolute_get_remaining (udpw->session->flow_delay_from_other_peer); if (GNUNET_TIME_UNIT_ZERO.rel_value == remaining.rel_value) { /* this message is not delayed */ LOG (GNUNET_ERROR_TYPE_DEBUG, "Message for peer `%s' (%u bytes) is not delayed \n", GNUNET_i2s(&udpw->session->target), udpw->payload_size); break; /* Found message to send, break */ } else { /* Message is delayed, try next */ LOG (GNUNET_ERROR_TYPE_DEBUG, "Message for peer `%s' (%u bytes) is delayed for %llu \n", GNUNET_i2s(&udpw->session->target), udpw->payload_size, remaining.rel_value); udpw = udpw->next; } } } return udpw; } static void analyze_send_error (struct Plugin *plugin, const struct sockaddr * sa, socklen_t slen, int error) { static int network_down_error; struct GNUNET_ATS_Information type; type = plugin->env->get_address_type (plugin->env->cls,sa, slen); if (((GNUNET_ATS_NET_LAN == ntohl(type.value)) || (GNUNET_ATS_NET_WAN == ntohl(type.value))) && ((ENETUNREACH == errno) || (ENETDOWN == errno))) { if ((network_down_error == GNUNET_NO) && (slen == sizeof (struct sockaddr_in))) { /* IPv4: "Network unreachable" or "Network down" * * This indicates we do not have connectivity */ LOG (GNUNET_ERROR_TYPE_WARNING | GNUNET_ERROR_TYPE_BULK, _("UDP could not transmit message to `%s': " "Network seems down, please check your network configuration\n"), GNUNET_a2s (sa, slen)); } if ((network_down_error == GNUNET_NO) && (slen == sizeof (struct sockaddr_in6))) { /* IPv6: "Network unreachable" or "Network down" * * This indicates that this system is IPv6 enabled, but does not * have a valid global IPv6 address assigned or we do not have * connectivity */ LOG (GNUNET_ERROR_TYPE_WARNING | GNUNET_ERROR_TYPE_BULK, _("UDP could not transmit message to `%s': " "Please check your network configuration and disable IPv6 if your " "connection does not have a global IPv6 address\n"), GNUNET_a2s (sa, slen)); } } else { LOG (GNUNET_ERROR_TYPE_WARNING, "UDP could not transmit message to `%s': `%s'\n", GNUNET_a2s (sa, slen), STRERROR (error)); } } static size_t udp_select_send (struct Plugin *plugin, struct GNUNET_NETWORK_Handle *sock) { const struct sockaddr * sa; ssize_t sent; socklen_t slen; struct UDP_MessageWrapper *udpw = NULL; /* Find message to send */ udpw = remove_timeout_messages_and_select ((sock == plugin->sockv4) ? plugin->ipv4_queue_head : plugin->ipv6_queue_head, sock); if (NULL == udpw) return 0; /* No message to send */ sa = udpw->session->sock_addr; slen = udpw->session->addrlen; sent = GNUNET_NETWORK_socket_sendto (sock, udpw->msg_buf, udpw->msg_size, sa, slen); if (GNUNET_SYSERR == sent) { /* Failure */ analyze_send_error (plugin, sa, slen, errno); call_continuation(udpw, GNUNET_SYSERR); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes, sent, failure", sent, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, messages, sent, failure", 1, GNUNET_NO); } else { /* Success */ LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP transmitted %u-byte message to `%s' `%s' (%d: %s)\n", (unsigned int) (udpw->msg_size), GNUNET_i2s(&udpw->session->target) ,GNUNET_a2s (sa, slen), (int) sent, (sent < 0) ? STRERROR (errno) : "ok"); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, bytes, sent, success", sent, GNUNET_NO); GNUNET_STATISTICS_update (plugin->env->stats, "# UDP, total, messages, sent, success", 1, GNUNET_NO); if (NULL != udpw->frag_ctx) udpw->frag_ctx->on_wire_size += udpw->msg_size; call_continuation (udpw, GNUNET_OK); } dequeue (plugin, udpw); MEMDEBUG_free (udpw, __LINE__); udpw = NULL; return sent; } /** * We have been notified that our readset has something to read. We don't * know which socket needs to be read, so we have to check each one * Then reschedule this function to be called again once more is available. * * @param cls the plugin handle * @param tc the scheduling context (for rescheduling this function again) */ static void udp_plugin_select (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct Plugin *plugin = cls; plugin->select_task = GNUNET_SCHEDULER_NO_TASK; if (0 != (tc->reason & GNUNET_SCHEDULER_REASON_SHUTDOWN)) return; if ( (0 != (tc->reason & GNUNET_SCHEDULER_REASON_READ_READY)) && (NULL != plugin->sockv4) && (GNUNET_NETWORK_fdset_isset (tc->read_ready, plugin->sockv4)) ) udp_select_read (plugin, plugin->sockv4); if ( (0 != (tc->reason & GNUNET_SCHEDULER_REASON_WRITE_READY)) && (NULL != plugin->sockv4) && (NULL != plugin->ipv4_queue_head) && (GNUNET_NETWORK_fdset_isset (tc->write_ready, plugin->sockv4)) ) udp_select_send (plugin, plugin->sockv4); schedule_select (plugin); } /** * We have been notified that our readset has something to read. We don't * know which socket needs to be read, so we have to check each one * Then reschedule this function to be called again once more is available. * * @param cls the plugin handle * @param tc the scheduling context (for rescheduling this function again) */ static void udp_plugin_select_v6 (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct Plugin *plugin = cls; plugin->select_task_v6 = GNUNET_SCHEDULER_NO_TASK; if (0 != (tc->reason & GNUNET_SCHEDULER_REASON_SHUTDOWN)) return; if ( ((tc->reason & GNUNET_SCHEDULER_REASON_READ_READY) != 0) && (NULL != plugin->sockv6) && (GNUNET_NETWORK_fdset_isset (tc->read_ready, plugin->sockv6)) ) udp_select_read (plugin, plugin->sockv6); if ( (0 != (tc->reason & GNUNET_SCHEDULER_REASON_WRITE_READY)) && (NULL != plugin->sockv6) && (plugin->ipv6_queue_head != NULL) && (GNUNET_NETWORK_fdset_isset (tc->write_ready, plugin->sockv6)) ) udp_select_send (plugin, plugin->sockv6); schedule_select (plugin); } static int setup_sockets (struct Plugin *plugin, struct sockaddr_in6 *bind_v6, struct sockaddr_in *bind_v4) { int tries; int sockets_created = 0; struct sockaddr_in6 serverAddrv6; struct sockaddr_in serverAddrv4; struct sockaddr *serverAddr; struct sockaddr *addrs[2]; socklen_t addrlens[2]; socklen_t addrlen; /* Create IPv6 socket */ if (plugin->enable_ipv6 == GNUNET_YES) { plugin->sockv6 = GNUNET_NETWORK_socket_create (PF_INET6, SOCK_DGRAM, 0); if (NULL == plugin->sockv6) { LOG (GNUNET_ERROR_TYPE_WARNING, "Disabling IPv6 since it is not supported on this system!\n"); plugin->enable_ipv6 = GNUNET_NO; } else { memset (&serverAddrv6, '\0', sizeof (struct sockaddr_in6)); #if HAVE_SOCKADDR_IN_SIN_LEN serverAddrv6.sin6_len = sizeof (struct sockaddr_in6); #endif serverAddrv6.sin6_family = AF_INET6; if (NULL != bind_v6) serverAddrv6.sin6_addr = bind_v6->sin6_addr; else serverAddrv6.sin6_addr = in6addr_any; if (0 == plugin->port) /* autodetect */ serverAddrv6.sin6_port = htons (GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_STRONG, 33537) + 32000); else serverAddrv6.sin6_port = htons (plugin->port); addrlen = sizeof (struct sockaddr_in6); serverAddr = (struct sockaddr *) &serverAddrv6; tries = 0; while (tries < 10) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding to IPv6 `%s'\n", GNUNET_a2s (serverAddr, addrlen)); /* binding */ if (GNUNET_OK == GNUNET_NETWORK_socket_bind (plugin->sockv6, serverAddr, addrlen)) break; if (0 != plugin->port) { tries = 10; /* fail */ break; /* bind failed on specific port */ } /* autodetect */ serverAddrv6.sin6_port = htons (GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_STRONG, 33537) + 32000); tries ++; } if (tries >= 10) { GNUNET_NETWORK_socket_close (plugin->sockv6); plugin->sockv6 = NULL; } if (plugin->sockv6 != NULL) { LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv6 socket created on port %s\n", GNUNET_a2s (serverAddr, addrlen)); addrs[sockets_created] = (struct sockaddr *) &serverAddrv6; addrlens[sockets_created] = sizeof (struct sockaddr_in6); sockets_created++; } else { LOG (GNUNET_ERROR_TYPE_ERROR, "Failed to create IPv6 socket created on %s\n", GNUNET_a2s (serverAddr, addrlen)); } } } /* Create IPv4 socket */ plugin->sockv4 = GNUNET_NETWORK_socket_create (PF_INET, SOCK_DGRAM, 0); if (NULL == plugin->sockv4) { LOG (GNUNET_ERROR_TYPE_WARNING, "Failed to create IPv4 socket!\n"); return sockets_created; } else { memset (&serverAddrv4, '\0', sizeof (struct sockaddr_in)); #if HAVE_SOCKADDR_IN_SIN_LEN serverAddrv4.sin_len = sizeof (struct sockaddr_in); #endif serverAddrv4.sin_family = AF_INET; if (NULL != bind_v4) serverAddrv4.sin_addr = bind_v4->sin_addr; else serverAddrv4.sin_addr.s_addr = INADDR_ANY; if (0 == plugin->port) /* autodetect */ serverAddrv4.sin_port = htons (GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_STRONG, 33537) + 32000); else serverAddrv4.sin_port = htons (plugin->port); addrlen = sizeof (struct sockaddr_in); serverAddr = (struct sockaddr *) &serverAddrv4; tries = 0; while (tries < 10) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding to IPv4 `%s'\n", GNUNET_a2s (serverAddr, addrlen)); /* binding */ if (GNUNET_OK == GNUNET_NETWORK_socket_bind (plugin->sockv4, serverAddr, addrlen)) break; if (0 != plugin->port) { tries = 10; /* fail */ break; /* bind failed on specific port */ } /* autodetect */ serverAddrv4.sin_port = htons (GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_STRONG, 33537) + 32000); tries ++; } if (tries >= 10) { GNUNET_NETWORK_socket_close (plugin->sockv4); plugin->sockv4 = NULL; } if (plugin->sockv4 != NULL) { LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv4 socket created on port %s\n", GNUNET_a2s (serverAddr, addrlen)); addrs[sockets_created] = (struct sockaddr *) &serverAddrv4; addrlens[sockets_created] = sizeof (struct sockaddr_in); sockets_created++; } else { LOG (GNUNET_ERROR_TYPE_ERROR, "Failed to create IPv4 socket created on %s\n", GNUNET_a2s (serverAddr, addrlen)); } } /* Create file descriptors */ plugin->rs_v4 = GNUNET_NETWORK_fdset_create (); plugin->ws_v4 = GNUNET_NETWORK_fdset_create (); GNUNET_NETWORK_fdset_zero (plugin->rs_v4); GNUNET_NETWORK_fdset_zero (plugin->ws_v4); if (NULL != plugin->sockv4) { GNUNET_NETWORK_fdset_set (plugin->rs_v4, plugin->sockv4); GNUNET_NETWORK_fdset_set (plugin->ws_v4, plugin->sockv4); } if (0 == sockets_created) LOG (GNUNET_ERROR_TYPE_WARNING, _("Failed to open UDP sockets\n")); if (plugin->enable_ipv6 == GNUNET_YES) { plugin->rs_v6 = GNUNET_NETWORK_fdset_create (); plugin->ws_v6 = GNUNET_NETWORK_fdset_create (); GNUNET_NETWORK_fdset_zero (plugin->rs_v6); GNUNET_NETWORK_fdset_zero (plugin->ws_v6); if (NULL != plugin->sockv6) { GNUNET_NETWORK_fdset_set (plugin->rs_v6, plugin->sockv6); GNUNET_NETWORK_fdset_set (plugin->ws_v6, plugin->sockv6); } } schedule_select (plugin); plugin->nat = GNUNET_NAT_register (plugin->env->cfg, GNUNET_NO, plugin->port, sockets_created, (const struct sockaddr **) addrs, addrlens, &udp_nat_port_map_callback, NULL, plugin); return sockets_created; } /** * The exported method. Makes the core api available via a global and * returns the udp transport API. * * @param cls our 'struct GNUNET_TRANSPORT_PluginEnvironment' * @return our 'struct GNUNET_TRANSPORT_PluginFunctions' */ void * libgnunet_plugin_transport_udp_init (void *cls) { struct GNUNET_TRANSPORT_PluginEnvironment *env = cls; struct GNUNET_TRANSPORT_PluginFunctions *api; struct Plugin *p; unsigned long long port; unsigned long long aport; unsigned long long broadcast; unsigned long long udp_max_bps; unsigned long long enable_v6; char * bind4_address; char * bind6_address; char * fancy_interval; struct GNUNET_TIME_Relative interval; struct sockaddr_in serverAddrv4; struct sockaddr_in6 serverAddrv6; int res; int have_bind4; int have_bind6; if (NULL == env->receive) { /* run in 'stub' mode (i.e. as part of gnunet-peerinfo), don't fully initialze the plugin or the API */ api = MEMDEBUG_malloc (sizeof (struct GNUNET_TRANSPORT_PluginFunctions), __LINE__ ); api->cls = NULL; api->address_pretty_printer = &udp_plugin_address_pretty_printer; api->address_to_string = &udp_address_to_string; api->string_to_address = &udp_string_to_address; return api; } GNUNET_assert( NULL != env->stats); /* Get port number: port == 0 : autodetect a port, * > 0 : use this port, * not given : 2086 default */ if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (env->cfg, "transport-udp", "PORT", &port)) port = 2086; if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (env->cfg, "transport-udp", "ADVERTISED_PORT", &aport)) aport = port; if (port > 65535) { LOG (GNUNET_ERROR_TYPE_WARNING, _("Given `%s' option is out of range: %llu > %u\n"), "PORT", port, 65535); return NULL; } /* Protocols */ if ((GNUNET_YES == GNUNET_CONFIGURATION_get_value_yesno (env->cfg, "nat", "DISABLEV6"))) { enable_v6 = GNUNET_NO; } else enable_v6 = GNUNET_YES; /* Addresses */ have_bind4 = GNUNET_NO; memset (&serverAddrv4, 0, sizeof (serverAddrv4)); if (GNUNET_YES == GNUNET_CONFIGURATION_get_value_string (env->cfg, "transport-udp", "BINDTO", &bind4_address)) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding udp plugin to specific address: `%s'\n", bind4_address); if (1 != inet_pton (AF_INET, bind4_address, &serverAddrv4.sin_addr)) { MEMDEBUG_free (bind4_address, __LINE__); return NULL; } have_bind4 = GNUNET_YES; } have_bind6 = GNUNET_NO; memset (&serverAddrv6, 0, sizeof (serverAddrv6)); if (GNUNET_YES == GNUNET_CONFIGURATION_get_value_string (env->cfg, "transport-udp", "BINDTO6", &bind6_address)) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding udp plugin to specific address: `%s'\n", bind6_address); if (1 != inet_pton (AF_INET6, bind6_address, &serverAddrv6.sin6_addr)) { LOG (GNUNET_ERROR_TYPE_ERROR, _("Invalid IPv6 address: `%s'\n"), bind6_address); MEMDEBUG_free_non_null (bind4_address, __LINE__); MEMDEBUG_free (bind6_address, __LINE__); return NULL; } have_bind6 = GNUNET_YES; } /* Enable neighbour discovery */ broadcast = GNUNET_CONFIGURATION_get_value_yesno (env->cfg, "transport-udp", "BROADCAST"); if (broadcast == GNUNET_SYSERR) broadcast = GNUNET_NO; if (GNUNET_SYSERR == GNUNET_CONFIGURATION_get_value_string (env->cfg, "transport-udp", "BROADCAST_INTERVAL", &fancy_interval)) { interval = GNUNET_TIME_relative_multiply (GNUNET_TIME_UNIT_SECONDS, 10); } else { MEMDEBUG_add_alloc (fancy_interval, strlen (fancy_interval)+ 1, __LINE__); if (GNUNET_SYSERR == GNUNET_STRINGS_fancy_time_to_relative(fancy_interval, &interval)) { interval = GNUNET_TIME_relative_multiply (GNUNET_TIME_UNIT_SECONDS, 30); } MEMDEBUG_free (fancy_interval, __LINE__); } /* Maximum datarate */ if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (env->cfg, "transport-udp", "MAX_BPS", &udp_max_bps)) { udp_max_bps = 1024 * 1024 * 50; /* 50 MB/s == infinity for practical purposes */ } p = MEMDEBUG_malloc (sizeof (struct Plugin), __LINE__ ); api = MEMDEBUG_malloc (sizeof (struct GNUNET_TRANSPORT_PluginFunctions), __LINE__ ); GNUNET_BANDWIDTH_tracker_init (&p->tracker, GNUNET_BANDWIDTH_value_init ((uint32_t)udp_max_bps), 30); p->sessions = GNUNET_CONTAINER_multihashmap_create (10, GNUNET_NO); p->defrag_ctxs = GNUNET_CONTAINER_heap_create (GNUNET_CONTAINER_HEAP_ORDER_MIN); p->mst = GNUNET_SERVER_mst_create (&process_inbound_tokenized_messages, p); p->port = port; p->aport = aport; p->broadcast_interval = interval; p->enable_ipv6 = enable_v6; p->env = env; plugin = p; api->cls = p; api->send = NULL; api->disconnect = &udp_disconnect; api->address_pretty_printer = &udp_plugin_address_pretty_printer; api->address_to_string = &udp_address_to_string; api->string_to_address = &udp_string_to_address; api->check_address = &udp_plugin_check_address; api->get_session = &udp_plugin_get_session; api->send = &udp_plugin_send; LOG (GNUNET_ERROR_TYPE_DEBUG, "Setting up sockets\n"); res = setup_sockets (p, (GNUNET_YES == have_bind6) ? &serverAddrv6 : NULL, (GNUNET_YES == have_bind4) ? &serverAddrv4 : NULL); if ((res == 0) || ((p->sockv4 == NULL) && (p->sockv6 == NULL))) { LOG (GNUNET_ERROR_TYPE_ERROR, "Failed to create network sockets, plugin failed\n"); MEMDEBUG_free (p, __LINE__); MEMDEBUG_free (api, __LINE__); return NULL; } if (broadcast == GNUNET_YES) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Starting broadcasting\n"); setup_broadcast (p, &serverAddrv6, &serverAddrv4); } MEMDEBUG_free_non_null (bind4_address, __LINE__); MEMDEBUG_free_non_null (bind6_address, __LINE__); return api; } static int heap_cleanup_iterator (void *cls, struct GNUNET_CONTAINER_HeapNode * node, void *element, GNUNET_CONTAINER_HeapCostType cost) { struct DefragContext * d_ctx = element; GNUNET_CONTAINER_heap_remove_node (node); GNUNET_DEFRAGMENT_context_destroy(d_ctx->defrag); MEMDEBUG_free (d_ctx, __LINE__); return GNUNET_YES; } /** * The exported method. Makes the core api available via a global and * returns the udp transport API. * * @param cls our 'struct GNUNET_TRANSPORT_PluginEnvironment' * @return NULL */ void * libgnunet_plugin_transport_udp_done (void *cls) { struct GNUNET_TRANSPORT_PluginFunctions *api = cls; struct Plugin *plugin = api->cls; if (NULL == plugin) { MEMDEBUG_free (api, __LINE__); return NULL; } stop_broadcast (plugin); if (plugin->select_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (plugin->select_task); plugin->select_task = GNUNET_SCHEDULER_NO_TASK; } if (plugin->select_task_v6 != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (plugin->select_task_v6); plugin->select_task_v6 = GNUNET_SCHEDULER_NO_TASK; } /* Closing sockets */ if (plugin->sockv4 != NULL) { GNUNET_break (GNUNET_OK == GNUNET_NETWORK_socket_close (plugin->sockv4)); plugin->sockv4 = NULL; } GNUNET_NETWORK_fdset_destroy (plugin->rs_v4); GNUNET_NETWORK_fdset_destroy (plugin->ws_v4); if (plugin->sockv6 != NULL) { GNUNET_break (GNUNET_OK == GNUNET_NETWORK_socket_close (plugin->sockv6)); plugin->sockv6 = NULL; GNUNET_NETWORK_fdset_destroy (plugin->rs_v6); GNUNET_NETWORK_fdset_destroy (plugin->ws_v6); } GNUNET_NAT_unregister (plugin->nat); if (plugin->defrag_ctxs != NULL) { GNUNET_CONTAINER_heap_iterate(plugin->defrag_ctxs, heap_cleanup_iterator, NULL); GNUNET_CONTAINER_heap_destroy(plugin->defrag_ctxs); plugin->defrag_ctxs = NULL; } if (plugin->mst != NULL) { GNUNET_SERVER_mst_destroy(plugin->mst); plugin->mst = NULL; } /* Clean up leftover messages */ struct UDP_MessageWrapper * udpw; udpw = plugin->ipv4_queue_head; while (udpw != NULL) { struct UDP_MessageWrapper *tmp = udpw->next; dequeue (plugin, udpw); call_continuation(udpw, GNUNET_SYSERR); MEMDEBUG_free (udpw, __LINE__); udpw = tmp; } udpw = plugin->ipv6_queue_head; while (udpw != NULL) { struct UDP_MessageWrapper *tmp = udpw->next; dequeue (plugin, udpw); call_continuation(udpw, GNUNET_SYSERR); MEMDEBUG_free (udpw, __LINE__); udpw = tmp; } /* Clean up sessions */ LOG (GNUNET_ERROR_TYPE_DEBUG, "Cleaning up sessions\n"); GNUNET_CONTAINER_multihashmap_iterate (plugin->sessions, &disconnect_and_free_it, plugin); GNUNET_CONTAINER_multihashmap_destroy (plugin->sessions); plugin->nat = NULL; MEMDEBUG_free (plugin, __LINE__); MEMDEBUG_free (api, __LINE__); #if DEBUG_MALLOC struct Allocation *allocation; while (NULL != ahead) { allocation = ahead; GNUNET_CONTAINER_DLL_remove (ahead, atail, allocation); GNUNET_free (allocation); } struct Allocator *allocator; while (NULL != aehead) { allocator = aehead; GNUNET_CONTAINER_DLL_remove (aehead, aetail, allocator); GNUNET_free (allocator); } #endif return NULL; } /* end of plugin_transport_udp.c */