/* This file is part of GNUnet (C) 2010, 2011 Christian Grothoff (and other contributing authors) GNUnet is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GNUnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNUnet; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /** * @file transport/plugin_transport_udp.c * @brief Implementation of the UDP transport protocol * @author Christian Grothoff * @author Nathan Evans * @author Matthias Wachs */ #include "platform.h" #include "plugin_transport_udp.h" #include "gnunet_hello_lib.h" #include "gnunet_util_lib.h" #include "gnunet_fragmentation_lib.h" #include "gnunet_nat_lib.h" #include "gnunet_protocols.h" #include "gnunet_resolver_service.h" #include "gnunet_signatures.h" #include "gnunet_constants.h" #include "gnunet_statistics_service.h" #include "gnunet_transport_service.h" #include "gnunet_transport_plugin.h" #include "transport.h" #define LOG(kind,...) GNUNET_log_from (kind, "transport-udp", __VA_ARGS__) /** * Number of messages we can defragment in parallel. We only really * defragment 1 message at a time, but if messages get re-ordered, we * may want to keep knowledge about the previous message to avoid * discarding the current message in favor of a single fragment of a * previous message. 3 should be good since we don't expect massive * message reorderings with UDP. */ #define UDP_MAX_MESSAGES_IN_DEFRAG 3 /** * We keep a defragmentation queue per sender address. How many * sender addresses do we support at the same time? Memory consumption * is roughly a factor of 32k * UDP_MAX_MESSAGES_IN_DEFRAG times this * value. (So 128 corresponds to 12 MB and should suffice for * connecting to roughly 128 peers via UDP). */ #define UDP_MAX_SENDER_ADDRESSES_WITH_DEFRAG 128 /** * Closure for 'append_port'. */ struct PrettyPrinterContext { /** * Function to call with the result. */ GNUNET_TRANSPORT_AddressStringCallback asc; /** * Clsoure for 'asc'. */ void *asc_cls; /** * Port to add after the IP address. */ uint16_t port; }; struct Session { /** * Which peer is this session for? */ struct GNUNET_PeerIdentity target; /** * Address of the other peer */ const struct sockaddr *sock_addr; size_t addrlen; /** * Desired delay for next sending we send to other peer */ struct GNUNET_TIME_Relative flow_delay_for_other_peer; /** * Desired delay for next sending we received from other peer */ struct GNUNET_TIME_Absolute flow_delay_from_other_peer; /** * expected delay for ACKs */ struct GNUNET_TIME_Relative last_expected_delay; struct GNUNET_ATS_Information ats; struct FragmentationContext * frag_ctx; }; struct SessionCompareContext { struct Session *res; const struct GNUNET_HELLO_Address *addr; }; /** * Closure for 'process_inbound_tokenized_messages' */ struct SourceInformation { /** * Sender identity. */ struct GNUNET_PeerIdentity sender; /** * Source address. */ const void *arg; /** * Number of bytes in source address. */ size_t args; struct Session *session; }; /** * Closure for 'find_receive_context'. */ struct FindReceiveContext { /** * Where to store the result. */ struct DefragContext *rc; /** * Address to find. */ const struct sockaddr *addr; /** * Number of bytes in 'addr'. */ socklen_t addr_len; struct Session *session; }; /** * Data structure to track defragmentation contexts based * on the source of the UDP traffic. */ struct DefragContext { /** * Defragmentation context. */ struct GNUNET_DEFRAGMENT_Context *defrag; /** * Source address this receive context is for (allocated at the * end of the struct). */ const struct sockaddr *src_addr; /** * Reference to master plugin struct. */ struct Plugin *plugin; /** * Node in the defrag heap. */ struct GNUNET_CONTAINER_HeapNode *hnode; /** * Length of 'src_addr' */ size_t addr_len; }; /** * Closure for 'process_inbound_tokenized_messages' */ struct FragmentationContext { struct FragmentationContext * next; struct FragmentationContext * prev; struct Plugin * plugin; struct GNUNET_FRAGMENT_Context * frag; struct Session * session; struct GNUNET_TIME_Absolute timeout; /** * Function to call upon completion of the transmission. */ GNUNET_TRANSPORT_TransmitContinuation cont; /** * Closure for 'cont'. */ void *cont_cls; size_t bytes_to_send; }; struct UDPMessageWrapper { struct Session *session; struct UDPMessageWrapper *prev; struct UDPMessageWrapper *next; char *udp; size_t msg_size; struct GNUNET_TIME_Absolute timeout; /** * Function to call upon completion of the transmission. */ GNUNET_TRANSPORT_TransmitContinuation cont; /** * Closure for 'cont'. */ void *cont_cls; struct FragmentationContext *frag_ctx; }; /** * UDP ACK Message-Packet header (after defragmentation). */ struct UDP_ACK_Message { /** * Message header. */ struct GNUNET_MessageHeader header; /** * Desired delay for flow control */ uint32_t delay; /** * What is the identity of the sender */ struct GNUNET_PeerIdentity sender; }; /** * Function called for a quick conversion of the binary address to * a numeric address. Note that the caller must not free the * address and that the next call to this function is allowed * to override the address again. * * @param cls closure * @param addr binary address * @param addrlen length of the address * @return string representing the same address */ const char * udp_address_to_string (void *cls, const void *addr, size_t addrlen) { static char rbuf[INET6_ADDRSTRLEN + 10]; char buf[INET6_ADDRSTRLEN]; const void *sb; struct in_addr a4; struct in6_addr a6; const struct IPv4UdpAddress *t4; const struct IPv6UdpAddress *t6; int af; uint16_t port; if (addrlen == sizeof (struct IPv6UdpAddress)) { t6 = addr; af = AF_INET6; port = ntohs (t6->u6_port); memcpy (&a6, &t6->ipv6_addr, sizeof (a6)); sb = &a6; } else if (addrlen == sizeof (struct IPv4UdpAddress)) { t4 = addr; af = AF_INET; port = ntohs (t4->u4_port); memcpy (&a4, &t4->ipv4_addr, sizeof (a4)); sb = &a4; } else { GNUNET_break_op (0); return NULL; } inet_ntop (af, sb, buf, INET6_ADDRSTRLEN); GNUNET_snprintf (rbuf, sizeof (rbuf), (af == AF_INET6) ? "[%s]:%u" : "%s:%u", buf, port); return rbuf; } /** * Append our port and forward the result. * * @param cls a 'struct PrettyPrinterContext' * @param hostname result from DNS resolver */ static void append_port (void *cls, const char *hostname) { struct PrettyPrinterContext *ppc = cls; char *ret; if (hostname == NULL) { ppc->asc (ppc->asc_cls, NULL); GNUNET_free (ppc); return; } GNUNET_asprintf (&ret, "%s:%d", hostname, ppc->port); ppc->asc (ppc->asc_cls, ret); GNUNET_free (ret); } /** * Convert the transports address to a nice, human-readable * format. * * @param cls closure * @param type name of the transport that generated the address * @param addr one of the addresses of the host, NULL for the last address * the specific address format depends on the transport * @param addrlen length of the address * @param numeric should (IP) addresses be displayed in numeric form? * @param timeout after how long should we give up? * @param asc function to call on each string * @param asc_cls closure for asc */ static void udp_plugin_address_pretty_printer (void *cls, const char *type, const void *addr, size_t addrlen, int numeric, struct GNUNET_TIME_Relative timeout, GNUNET_TRANSPORT_AddressStringCallback asc, void *asc_cls) { struct PrettyPrinterContext *ppc; const void *sb; size_t sbs; struct sockaddr_in a4; struct sockaddr_in6 a6; const struct IPv4UdpAddress *u4; const struct IPv6UdpAddress *u6; uint16_t port; if (addrlen == sizeof (struct IPv6UdpAddress)) { u6 = addr; memset (&a6, 0, sizeof (a6)); a6.sin6_family = AF_INET6; #if HAVE_SOCKADDR_IN_SIN_LEN a6.sin6_len = sizeof (a6); #endif a6.sin6_port = u6->u6_port; memcpy (&a6.sin6_addr, &u6->ipv6_addr, sizeof (struct in6_addr)); port = ntohs (u6->u6_port); sb = &a6; sbs = sizeof (a6); } else if (addrlen == sizeof (struct IPv4UdpAddress)) { u4 = addr; memset (&a4, 0, sizeof (a4)); a4.sin_family = AF_INET; #if HAVE_SOCKADDR_IN_SIN_LEN a4.sin_len = sizeof (a4); #endif a4.sin_port = u4->u4_port; a4.sin_addr.s_addr = u4->ipv4_addr; port = ntohs (u4->u4_port); sb = &a4; sbs = sizeof (a4); } else { /* invalid address */ GNUNET_break_op (0); asc (asc_cls, NULL); return; } ppc = GNUNET_malloc (sizeof (struct PrettyPrinterContext)); ppc->asc = asc; ppc->asc_cls = asc_cls; ppc->port = port; GNUNET_RESOLVER_hostname_get (sb, sbs, !numeric, timeout, &append_port, ppc); } /** * Check if the given port is plausible (must be either our listen * port or our advertised port). If it is neither, we return * GNUNET_SYSERR. * * @param plugin global variables * @param in_port port number to check * @return GNUNET_OK if port is either open_port or adv_port */ static int check_port (struct Plugin *plugin, uint16_t in_port) { if ((in_port == plugin->port) || (in_port == plugin->aport)) return GNUNET_OK; return GNUNET_SYSERR; } /** * Function that will be called to check if a binary address for this * plugin is well-formed and corresponds to an address for THIS peer * (as per our configuration). Naturally, if absolutely necessary, * plugins can be a bit conservative in their answer, but in general * plugins should make sure that the address does not redirect * traffic to a 3rd party that might try to man-in-the-middle our * traffic. * * @param cls closure, should be our handle to the Plugin * @param addr pointer to the address * @param addrlen length of addr * @return GNUNET_OK if this is a plausible address for this peer * and transport, GNUNET_SYSERR if not * */ static int udp_plugin_check_address (void *cls, const void *addr, size_t addrlen) { struct Plugin *plugin = cls; struct IPv4UdpAddress *v4; struct IPv6UdpAddress *v6; if ((addrlen != sizeof (struct IPv4UdpAddress)) && (addrlen != sizeof (struct IPv6UdpAddress))) { GNUNET_break_op (0); return GNUNET_SYSERR; } if (addrlen == sizeof (struct IPv4UdpAddress)) { v4 = (struct IPv4UdpAddress *) addr; if (GNUNET_OK != check_port (plugin, ntohs (v4->u4_port))) return GNUNET_SYSERR; if (GNUNET_OK != GNUNET_NAT_test_address (plugin->nat, &v4->ipv4_addr, sizeof (struct in_addr))) return GNUNET_SYSERR; } else { v6 = (struct IPv6UdpAddress *) addr; if (IN6_IS_ADDR_LINKLOCAL (&v6->ipv6_addr)) { GNUNET_break_op (0); return GNUNET_SYSERR; } if (GNUNET_OK != check_port (plugin, ntohs (v6->u6_port))) return GNUNET_SYSERR; if (GNUNET_OK != GNUNET_NAT_test_address (plugin->nat, &v6->ipv6_addr, sizeof (struct in6_addr))) return GNUNET_SYSERR; } return GNUNET_OK; } /** * Destroy a session, plugin is being unloaded. * * @param cls unused * @param key hash of public key of target peer * @param value a 'struct PeerSession*' to clean up * @return GNUNET_OK (continue to iterate) */ static int disconnect_and_free_it (void *cls, const GNUNET_HashCode * key, void *value) { struct Plugin *plugin = cls; struct Session *s = value; struct UDPMessageWrapper *udpw; struct UDPMessageWrapper *next; #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Session %p to peer `%s' address ended \n", s, GNUNET_i2s (&s->target), GNUNET_a2s (s->sock_addr, s->addrlen)); #endif plugin->env->session_end (plugin->env->cls, &s->target, s); if (s->frag_ctx != NULL) { GNUNET_FRAGMENT_context_destroy(s->frag_ctx->frag); GNUNET_free (s->frag_ctx); s->frag_ctx = NULL; } udpw = plugin->ipv4_queue_head; while (udpw != NULL) { next = udpw->next; if (udpw->session == s) { GNUNET_CONTAINER_DLL_remove(plugin->ipv4_queue_head, plugin->ipv4_queue_tail, udpw); if (udpw->cont != NULL) udpw->cont (udpw->cont_cls, &s->target, GNUNET_SYSERR); GNUNET_free (udpw); } udpw = next; } udpw = plugin->ipv6_queue_head; while (udpw != NULL) { next = udpw->next; if (udpw->session == s) { GNUNET_CONTAINER_DLL_remove(plugin->ipv6_queue_head, plugin->ipv6_queue_tail, udpw); if (udpw->cont != NULL) udpw->cont (udpw->cont_cls, &s->target, GNUNET_SYSERR); GNUNET_free (udpw); } udpw = next; } GNUNET_assert (GNUNET_YES == GNUNET_CONTAINER_multihashmap_remove (plugin->sessions, &s->target.hashPubKey, s)); GNUNET_free (s); return GNUNET_OK; } /** * Disconnect from a remote node. Clean up session if we have one for this peer * * @param cls closure for this call (should be handle to Plugin) * @param target the peeridentity of the peer to disconnect * @return GNUNET_OK on success, GNUNET_SYSERR if the operation failed */ static void udp_disconnect (void *cls, const struct GNUNET_PeerIdentity *target) { struct Plugin *plugin = cls; GNUNET_assert (plugin != NULL); GNUNET_assert (target != NULL); #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Disconnecting from peer `%s'\n", GNUNET_i2s (target)); #endif /* Clean up sessions */ GNUNET_CONTAINER_multihashmap_get_multiple (plugin->sessions, &target->hashPubKey, &disconnect_and_free_it, plugin); } static struct Session * create_session (struct Plugin *plugin, const struct GNUNET_PeerIdentity *target, const void *addr, size_t addrlen, GNUNET_TRANSPORT_TransmitContinuation cont, void *cont_cls) { struct Session *s; const struct IPv4UdpAddress *t4; const struct IPv6UdpAddress *t6; struct sockaddr_in *v4; struct sockaddr_in6 *v6; size_t len; switch (addrlen) { case sizeof (struct IPv4UdpAddress): if (NULL == plugin->sockv4) { return NULL; } t4 = addr; s = GNUNET_malloc (sizeof (struct Session) + sizeof (struct sockaddr_in)); len = sizeof (struct sockaddr_in); v4 = (struct sockaddr_in *) &s[1]; v4->sin_family = AF_INET; #if HAVE_SOCKADDR_IN_SIN_LEN v4->sin_len = sizeof (struct sockaddr_in); #endif v4->sin_port = t4->u4_port; v4->sin_addr.s_addr = t4->ipv4_addr; s->ats = plugin->env->get_address_type (plugin->env->cls, (const struct sockaddr *) v4, sizeof (struct sockaddr_in)); break; case sizeof (struct IPv6UdpAddress): if (NULL == plugin->sockv6) { return NULL; } t6 = addr; s = GNUNET_malloc (sizeof (struct Session) + sizeof (struct sockaddr_in6)); len = sizeof (struct sockaddr_in6); v6 = (struct sockaddr_in6 *) &s[1]; v6->sin6_family = AF_INET6; #if HAVE_SOCKADDR_IN_SIN_LEN v6->sin6_len = sizeof (struct sockaddr_in6); #endif v6->sin6_port = t6->u6_port; v6->sin6_addr = t6->ipv6_addr; s->ats = plugin->env->get_address_type (plugin->env->cls, (const struct sockaddr *) v6, sizeof (struct sockaddr_in6)); break; default: /* Must have a valid address to send to */ GNUNET_break_op (0); return NULL; } s->addrlen = len; s->target = *target; s->sock_addr = (const struct sockaddr *) &s[1]; s->flow_delay_for_other_peer = GNUNET_TIME_relative_get_zero(); s->flow_delay_from_other_peer = GNUNET_TIME_absolute_get_zero(); s->last_expected_delay = GNUNET_TIME_UNIT_SECONDS; return s; } static int session_cmp_it (void *cls, const GNUNET_HashCode * key, void *value) { struct SessionCompareContext * cctx = cls; const struct GNUNET_HELLO_Address *address = cctx->addr; struct Session *s = value; socklen_t s_addrlen = s->addrlen; #if VERBOSE_UDP GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Comparing address %s <-> %s\n", udp_address_to_string (NULL, (void *) address->address, address->address_length), GNUNET_a2s (s->sock_addr, s->addrlen)); #endif if ((address->address_length == sizeof (struct IPv4UdpAddress)) && (s_addrlen == sizeof (struct sockaddr_in))) { struct IPv4UdpAddress * u4 = NULL; u4 = (struct IPv4UdpAddress *) address->address; const struct sockaddr_in *s4 = (const struct sockaddr_in *) s->sock_addr; if ((0 == memcmp ((const void *) &u4->ipv4_addr,(const void *) &s4->sin_addr, sizeof (struct in_addr))) && (u4->u4_port == s4->sin_port)) { cctx->res = s; return GNUNET_NO; } } if ((address->address_length == sizeof (struct IPv6UdpAddress)) && (s_addrlen == sizeof (struct sockaddr_in6))) { struct IPv6UdpAddress * u6 = NULL; u6 = (struct IPv6UdpAddress *) address->address; const struct sockaddr_in6 *s6 = (const struct sockaddr_in6 *) s->sock_addr; if ((0 == memcmp (&u6->ipv6_addr, &s6->sin6_addr, sizeof (struct in6_addr))) && (u6->u6_port == s6->sin6_port)) { cctx->res = s; return GNUNET_NO; } } return GNUNET_YES; } /** * Creates a new outbound session the transport service will use to send data to the * peer * * @param cls the plugin * @param address the address * @return the session or NULL of max connections exceeded */ static struct Session * udp_plugin_get_session (void *cls, const struct GNUNET_HELLO_Address *address) { struct Session * s = NULL; struct Plugin * plugin = cls; GNUNET_assert (plugin != NULL); GNUNET_assert (address != NULL); if ((address->address == NULL) || ((address->address_length != sizeof (struct IPv4UdpAddress)) && (address->address_length != sizeof (struct IPv6UdpAddress)))) { GNUNET_break (0); return NULL; } /* check if session already exists */ struct SessionCompareContext cctx; cctx.addr = address; cctx.res = NULL; #if VERBOSE_UDP GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Looking for existing session for peer `%s' `%s' \n", GNUNET_i2s (&address->peer), udp_address_to_string(NULL, address->address, address->address_length)); #endif GNUNET_CONTAINER_multihashmap_get_multiple(plugin->sessions, &address->peer.hashPubKey, session_cmp_it, &cctx); if (cctx.res != NULL) { #if VERBOSE_UDP GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Found existing session %p\n", cctx.res); #endif return cctx.res; } /* otherwise create new */ s = create_session (plugin, &address->peer, address->address, address->address_length, NULL, NULL); #if VERBOSE GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Creating new session %p for peer `%s' address `%s'\n", s, GNUNET_i2s(&address->peer), udp_address_to_string(NULL,address->address,address->address_length)); #endif GNUNET_assert (GNUNET_OK == GNUNET_CONTAINER_multihashmap_put (plugin->sessions, &s->target.hashPubKey, s, GNUNET_CONTAINER_MULTIHASHMAPOPTION_MULTIPLE)); return s; } static void enqueue (struct Plugin *plugin, struct UDPMessageWrapper * udpw) { if (udpw->session->addrlen == sizeof (struct sockaddr_in)) GNUNET_CONTAINER_DLL_insert(plugin->ipv4_queue_head, plugin->ipv4_queue_tail, udpw); if (udpw->session->addrlen == sizeof (struct sockaddr_in6)) GNUNET_CONTAINER_DLL_insert(plugin->ipv6_queue_head, plugin->ipv6_queue_tail, udpw); } /** * Function that is called with messages created by the fragmentation * module. In the case of the 'proc' callback of the * GNUNET_FRAGMENT_context_create function, this function must * eventually call 'GNUNET_FRAGMENT_context_transmission_done'. * * @param cls closure, the 'struct FragmentationContext' * @param msg the message that was created */ static void enqueue_fragment (void *cls, const struct GNUNET_MessageHeader *msg) { struct FragmentationContext *frag_ctx = cls; struct Plugin *plugin = frag_ctx->plugin; struct UDPMessageWrapper * udpw; size_t msg_len = ntohs (msg->size); #if VERBOSE_UDP GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Enqueuing fragment with %u bytes %u\n", msg_len , sizeof (struct UDPMessageWrapper)); #endif udpw = GNUNET_malloc (sizeof (struct UDPMessageWrapper) + msg_len); udpw->session = frag_ctx->session; udpw->udp = (char *) &udpw[1]; udpw->msg_size = msg_len; udpw->cont = frag_ctx->cont; udpw->cont_cls = frag_ctx->cont_cls; udpw->timeout = frag_ctx->timeout; udpw->frag_ctx = frag_ctx; memcpy (udpw->udp, msg, msg_len); enqueue (plugin, udpw); } /** * Function that can be used by the transport service to transmit * a message using the plugin. Note that in the case of a * peer disconnecting, the continuation MUST be called * prior to the disconnect notification itself. This function * will be called with this peer's HELLO message to initiate * a fresh connection to another peer. * * @param cls closure * @param s which session must be used * @param msgbuf the message to transmit * @param msgbuf_size number of bytes in 'msgbuf' * @param priority how important is the message (most plugins will * ignore message priority and just FIFO) * @param to how long to wait at most for the transmission (does not * require plugins to discard the message after the timeout, * just advisory for the desired delay; most plugins will ignore * this as well) * @param cont continuation to call once the message has * been transmitted (or if the transport is ready * for the next transmission call; or if the * peer disconnected...); can be NULL * @param cont_cls closure for cont * @return number of bytes used (on the physical network, with overheads); * -1 on hard errors (i.e. address invalid); 0 is a legal value * and does NOT mean that the message was not transmitted (DV) */ static ssize_t udp_plugin_send (void *cls, struct Session *s, const char *msgbuf, size_t msgbuf_size, unsigned int priority, struct GNUNET_TIME_Relative to, GNUNET_TRANSPORT_TransmitContinuation cont, void *cont_cls) { struct Plugin *plugin = cls; size_t mlen = msgbuf_size + sizeof (struct UDPMessage); struct UDPMessageWrapper * udpw; struct UDPMessage *udp; char mbuf[mlen]; GNUNET_assert (plugin != NULL); GNUNET_assert (s != NULL); if (mlen >= GNUNET_SERVER_MAX_MESSAGE_SIZE) { GNUNET_break (0); return GNUNET_SYSERR; } if (GNUNET_YES != GNUNET_CONTAINER_multihashmap_contains_value(plugin->sessions, &s->target.hashPubKey, s)) { GNUNET_break (0); return GNUNET_SYSERR; } LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP transmits %u-byte message to `%s' using address `%s'\n", msgbuf_size, GNUNET_i2s (&s->target), GNUNET_a2s(s->sock_addr, s->addrlen)); /* Message */ udp = (struct UDPMessage *) mbuf; udp->header.size = htons (mlen); udp->header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_MESSAGE); udp->reserved = htonl (0); udp->sender = *plugin->env->my_identity; if (mlen <= UDP_MTU) { udpw = GNUNET_malloc (sizeof (struct UDPMessageWrapper) + mlen); udpw->session = s; udpw->udp = (char *) &udpw[1]; udpw->msg_size = mlen; udpw->timeout = GNUNET_TIME_absolute_add(GNUNET_TIME_absolute_get(), to); udpw->cont = cont; udpw->cont_cls = cont_cls; udpw->frag_ctx = NULL; memcpy (udpw->udp, udp, sizeof (struct UDPMessage)); memcpy (&udpw->udp[sizeof (struct UDPMessage)], msgbuf, msgbuf_size); enqueue (plugin, udpw); } else { LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP has to fragment message \n"); if (s->frag_ctx != NULL) return GNUNET_SYSERR; memcpy (&udp[1], msgbuf, msgbuf_size); struct FragmentationContext * frag_ctx = GNUNET_malloc(sizeof (struct FragmentationContext)); frag_ctx->plugin = plugin; frag_ctx->session = s; frag_ctx->cont = cont; frag_ctx->cont_cls = cont_cls; frag_ctx->timeout = GNUNET_TIME_absolute_add(GNUNET_TIME_absolute_get(), to); frag_ctx->bytes_to_send = mlen; frag_ctx->frag = GNUNET_FRAGMENT_context_create (plugin->env->stats, UDP_MTU, &plugin->tracker, s->last_expected_delay, &udp->header, &enqueue_fragment, frag_ctx); s->frag_ctx = frag_ctx; } return mlen; } /** * Our external IP address/port mapping has changed. * * @param cls closure, the 'struct LocalAddrList' * @param add_remove GNUNET_YES to mean the new public IP address, GNUNET_NO to mean * the previous (now invalid) one * @param addr either the previous or the new public IP address * @param addrlen actual lenght of the address */ static void udp_nat_port_map_callback (void *cls, int add_remove, const struct sockaddr *addr, socklen_t addrlen) { struct Plugin *plugin = cls; struct IPv4UdpAddress u4; struct IPv6UdpAddress u6; void *arg; size_t args; /* convert 'addr' to our internal format */ switch (addr->sa_family) { case AF_INET: GNUNET_assert (addrlen == sizeof (struct sockaddr_in)); u4.ipv4_addr = ((struct sockaddr_in *) addr)->sin_addr.s_addr; u4.u4_port = ((struct sockaddr_in *) addr)->sin_port; arg = &u4; args = sizeof (u4); break; case AF_INET6: GNUNET_assert (addrlen == sizeof (struct sockaddr_in6)); memcpy (&u6.ipv6_addr, &((struct sockaddr_in6 *) addr)->sin6_addr, sizeof (struct in6_addr)); u6.u6_port = ((struct sockaddr_in6 *) addr)->sin6_port; arg = &u6; args = sizeof (u6); break; default: GNUNET_break (0); return; } /* modify our published address list */ plugin->env->notify_address (plugin->env->cls, add_remove, arg, args); } /** * Message tokenizer has broken up an incomming message. Pass it on * to the service. * * @param cls the 'struct Plugin' * @param client the 'struct SourceInformation' * @param hdr the actual message */ static void process_inbound_tokenized_messages (void *cls, void *client, const struct GNUNET_MessageHeader *hdr) { struct Plugin *plugin = cls; struct SourceInformation *si = client; struct GNUNET_ATS_Information ats[2]; struct GNUNET_TIME_Relative delay; GNUNET_assert (si->session != NULL); /* setup ATS */ ats[0].type = htonl (GNUNET_ATS_QUALITY_NET_DISTANCE); ats[0].value = htonl (1); ats[1] = si->session->ats; GNUNET_break (ntohl(ats[1].value) != GNUNET_ATS_NET_UNSPECIFIED); delay = plugin->env->receive (plugin->env->cls, &si->sender, hdr, (const struct GNUNET_ATS_Information *) &ats, 2, NULL, si->arg, si->args); si->session->flow_delay_for_other_peer = delay; } /** * We've received a UDP Message. Process it (pass contents to main service). * * @param plugin plugin context * @param msg the message * @param sender_addr sender address * @param sender_addr_len number of bytes in sender_addr */ static void process_udp_message (struct Plugin *plugin, const struct UDPMessage *msg, const struct sockaddr *sender_addr, socklen_t sender_addr_len) { struct SourceInformation si; struct Session * s = NULL; struct IPv4UdpAddress u4; struct IPv6UdpAddress u6; const void *arg; size_t args; if (0 != ntohl (msg->reserved)) { GNUNET_break_op (0); return; } if (ntohs (msg->header.size) < sizeof (struct GNUNET_MessageHeader) + sizeof (struct UDPMessage)) { GNUNET_break_op (0); return; } /* convert address */ switch (sender_addr->sa_family) { case AF_INET: GNUNET_assert (sender_addr_len == sizeof (struct sockaddr_in)); u4.ipv4_addr = ((struct sockaddr_in *) sender_addr)->sin_addr.s_addr; u4.u4_port = ((struct sockaddr_in *) sender_addr)->sin_port; arg = &u4; args = sizeof (u4); break; case AF_INET6: GNUNET_assert (sender_addr_len == sizeof (struct sockaddr_in6)); u6.ipv6_addr = ((struct sockaddr_in6 *) sender_addr)->sin6_addr; u6.u6_port = ((struct sockaddr_in6 *) sender_addr)->sin6_port; arg = &u6; args = sizeof (u6); break; default: GNUNET_break (0); return; } #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Received message with %u bytes from peer `%s' at `%s'\n", (unsigned int) ntohs (msg->header.size), GNUNET_i2s (&msg->sender), GNUNET_a2s (sender_addr, sender_addr_len)); #endif struct GNUNET_HELLO_Address * address = GNUNET_HELLO_address_allocate(&msg->sender, "udp", arg, args); s = udp_plugin_get_session(plugin, address); GNUNET_free (address); /* iterate over all embedded messages */ si.session = s; si.sender = msg->sender; si.arg = arg; si.args = args; GNUNET_SERVER_mst_receive (plugin->mst, &si, (const char *) &msg[1], ntohs (msg->header.size) - sizeof (struct UDPMessage), GNUNET_YES, GNUNET_NO); } /** * Scan the heap for a receive context with the given address. * * @param cls the 'struct FindReceiveContext' * @param node internal node of the heap * @param element value stored at the node (a 'struct ReceiveContext') * @param cost cost associated with the node * @return GNUNET_YES if we should continue to iterate, * GNUNET_NO if not. */ static int find_receive_context (void *cls, struct GNUNET_CONTAINER_HeapNode *node, void *element, GNUNET_CONTAINER_HeapCostType cost) { struct FindReceiveContext *frc = cls; struct DefragContext *e = element; if ((frc->addr_len == e->addr_len) && (0 == memcmp (frc->addr, e->src_addr, frc->addr_len))) { frc->rc = e; return GNUNET_NO; } return GNUNET_YES; } /** * Process a defragmented message. * * @param cls the 'struct ReceiveContext' * @param msg the message */ static void fragment_msg_proc (void *cls, const struct GNUNET_MessageHeader *msg) { struct DefragContext *rc = cls; if (ntohs (msg->type) != GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_MESSAGE) { GNUNET_break (0); return; } if (ntohs (msg->size) < sizeof (struct UDPMessage)) { GNUNET_break (0); return; } process_udp_message (rc->plugin, (const struct UDPMessage *) msg, rc->src_addr, rc->addr_len); } struct LookupContext { const struct sockaddr * addr; size_t addrlen; struct Session *res; }; static int lookup_session_by_addr_it (void *cls, const GNUNET_HashCode * key, void *value) { struct LookupContext *l_ctx = cls; struct Session * s = value; if ((s->addrlen == l_ctx->addrlen) && (0 == memcmp (s->sock_addr, l_ctx->addr, s->addrlen))) { l_ctx->res = s; return GNUNET_NO; } return GNUNET_YES; } /** * Transmit an acknowledgement. * * @param cls the 'struct ReceiveContext' * @param id message ID (unused) * @param msg ack to transmit */ static void ack_proc (void *cls, uint32_t id, const struct GNUNET_MessageHeader *msg) { struct DefragContext *rc = cls; size_t msize = sizeof (struct UDP_ACK_Message) + ntohs (msg->size); struct UDP_ACK_Message *udp_ack; uint32_t delay = 0; struct UDPMessageWrapper *udpw; struct Session *s; struct LookupContext l_ctx; l_ctx.addr = rc->src_addr; l_ctx.addrlen = rc->addr_len; l_ctx.res = NULL; GNUNET_CONTAINER_multihashmap_iterate (rc->plugin->sessions, &lookup_session_by_addr_it, &l_ctx); s = l_ctx.res; GNUNET_assert (s != NULL); if (s->flow_delay_for_other_peer.rel_value <= UINT32_MAX) delay = s->flow_delay_for_other_peer.rel_value; #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Sending ACK to `%s' including delay of %u ms\n", GNUNET_a2s (rc->src_addr, (rc->src_addr->sa_family == AF_INET) ? sizeof (struct sockaddr_in) : sizeof (struct sockaddr_in6)), delay); #endif udpw = GNUNET_malloc (sizeof (struct UDPMessageWrapper) + msize); udpw->cont = NULL; udpw->cont_cls = NULL; udpw->frag_ctx = NULL; udpw->msg_size = msize; udpw->session = s; udpw->timeout = GNUNET_TIME_absolute_get_forever(); udpw->udp = (char *)&udpw[1]; udp_ack = (struct UDP_ACK_Message *) udpw->udp; udp_ack->header.size = htons ((uint16_t) msize); udp_ack->header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_ACK); udp_ack->delay = htonl (delay); udp_ack->sender = *rc->plugin->env->my_identity; memcpy (&udp_ack[1], msg, ntohs (msg->size)); enqueue (rc->plugin, udpw); } static void read_process_msg (struct Plugin *plugin, const struct GNUNET_MessageHeader *msg, char *addr, socklen_t fromlen) { if (ntohs (msg->size) < sizeof (struct UDPMessage)) { GNUNET_break_op (0); return; } process_udp_message (plugin, (const struct UDPMessage *) msg, (const struct sockaddr *) addr, fromlen); return; } static void read_process_ack (struct Plugin *plugin, const struct GNUNET_MessageHeader *msg, char *addr, socklen_t fromlen) { const struct GNUNET_MessageHeader *ack; const struct UDP_ACK_Message *udp_ack; struct LookupContext l_ctx; struct Session *s = NULL; struct GNUNET_TIME_Relative flow_delay; if (ntohs (msg->size) < sizeof (struct UDP_ACK_Message) + sizeof (struct GNUNET_MessageHeader)) { GNUNET_break_op (0); return; } udp_ack = (const struct UDP_ACK_Message *) msg; l_ctx.addr = (const struct sockaddr *) addr; l_ctx.addrlen = fromlen; l_ctx.res = NULL; GNUNET_CONTAINER_multihashmap_iterate (plugin->sessions, &lookup_session_by_addr_it, &l_ctx); s = l_ctx.res; if ((s == NULL) || (s->frag_ctx == NULL)) return; flow_delay.rel_value = (uint64_t) ntohl (udp_ack->delay); LOG (GNUNET_ERROR_TYPE_DEBUG, "We received a sending delay of %llu\n", flow_delay.rel_value); s->flow_delay_from_other_peer = GNUNET_TIME_relative_to_absolute (flow_delay); ack = (const struct GNUNET_MessageHeader *) &udp_ack[1]; if (ntohs (ack->size) != ntohs (msg->size) - sizeof (struct UDP_ACK_Message)) { GNUNET_break_op (0); return; } if (GNUNET_OK != GNUNET_FRAGMENT_process_ack (s->frag_ctx->frag, ack)) { #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP processes %u-byte acknowledgement from `%s' at `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_i2s (&udp_ack->sender), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); #endif return; } #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "FULL MESSAGE ACKed\n", (unsigned int) ntohs (msg->size), GNUNET_i2s (&udp_ack->sender), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); #endif s->last_expected_delay = GNUNET_FRAGMENT_context_destroy (s->frag_ctx->frag); struct UDPMessageWrapper * udpw = NULL; if (s->addrlen == sizeof (struct sockaddr_in6)) { udpw = plugin->ipv6_queue_head; while (udpw!= NULL) { if ((udpw->frag_ctx != NULL) && (udpw->frag_ctx == s->frag_ctx)) { GNUNET_CONTAINER_DLL_remove(plugin->ipv6_queue_head, plugin->ipv6_queue_tail, udpw); GNUNET_free (udpw); } udpw = udpw->next; } } if (s->addrlen == sizeof (struct sockaddr_in)) { udpw = plugin->ipv4_queue_head; while (udpw!= NULL) { if ((udpw->frag_ctx != NULL) && (udpw->frag_ctx == s->frag_ctx)) { GNUNET_CONTAINER_DLL_remove(plugin->ipv4_queue_head, plugin->ipv4_queue_tail, udpw); GNUNET_free (udpw); } udpw = udpw->next; } } if (s->frag_ctx->cont != NULL) s->frag_ctx->cont (s->frag_ctx->cont_cls, &udp_ack->sender, GNUNET_OK); GNUNET_free (s->frag_ctx); s->frag_ctx = NULL; return; } static void read_process_fragment (struct Plugin *plugin, const struct GNUNET_MessageHeader *msg, char *addr, socklen_t fromlen) { struct DefragContext *d_ctx; struct GNUNET_TIME_Absolute now; struct FindReceiveContext frc; frc.rc = NULL; frc.addr = (const struct sockaddr *) addr; frc.addr_len = fromlen; #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP processes %u-byte fragment from `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); #endif /* Lookup existing receive context for this address */ GNUNET_CONTAINER_heap_iterate (plugin->defrag_ctxs, &find_receive_context, &frc); now = GNUNET_TIME_absolute_get (); d_ctx = frc.rc; if (d_ctx == NULL) { /* Create a new defragmentation context */ d_ctx = GNUNET_malloc (sizeof (struct DefragContext) + fromlen); memcpy (&d_ctx[1], addr, fromlen); d_ctx->src_addr = (const struct sockaddr *) &d_ctx[1]; d_ctx->addr_len = fromlen; d_ctx->plugin = plugin; d_ctx->defrag = GNUNET_DEFRAGMENT_context_create (plugin->env->stats, UDP_MTU, UDP_MAX_MESSAGES_IN_DEFRAG, d_ctx, &fragment_msg_proc, &ack_proc); d_ctx->hnode = GNUNET_CONTAINER_heap_insert (plugin->defrag_ctxs, d_ctx, (GNUNET_CONTAINER_HeapCostType) now.abs_value); #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Created new defragmentation context for %u-byte fragment from `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); #endif } else { #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Found existing defragmentation context for %u-byte fragment from `%s'\n", (unsigned int) ntohs (msg->size), GNUNET_a2s ((const struct sockaddr *) addr, fromlen)); #endif } if (GNUNET_OK == GNUNET_DEFRAGMENT_process_fragment (d_ctx->defrag, msg)) { /* keep this 'rc' from expiring */ GNUNET_CONTAINER_heap_update_cost (plugin->defrag_ctxs, d_ctx->hnode, (GNUNET_CONTAINER_HeapCostType) now.abs_value); } if (GNUNET_CONTAINER_heap_get_size (plugin->defrag_ctxs) > UDP_MAX_SENDER_ADDRESSES_WITH_DEFRAG) { /* remove 'rc' that was inactive the longest */ d_ctx = GNUNET_CONTAINER_heap_remove_root (plugin->defrag_ctxs); GNUNET_assert (NULL != d_ctx); GNUNET_DEFRAGMENT_context_destroy (d_ctx->defrag); GNUNET_free (d_ctx); } } /** * Read and process a message from the given socket. * * @param plugin the overall plugin * @param rsock socket to read from */ static void udp_select_read (struct Plugin *plugin, struct GNUNET_NETWORK_Handle *rsock) { socklen_t fromlen; char addr[32]; char buf[65536]; ssize_t size; const struct GNUNET_MessageHeader *msg; fromlen = sizeof (addr); memset (&addr, 0, sizeof (addr)); size = GNUNET_NETWORK_socket_recvfrom (rsock, buf, sizeof (buf), (struct sockaddr *) &addr, &fromlen); if (size < sizeof (struct GNUNET_MessageHeader)) { GNUNET_break_op (0); return; } msg = (const struct GNUNET_MessageHeader *) buf; LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP received %u-byte message from `%s' type %i\n", (unsigned int) size, GNUNET_a2s ((const struct sockaddr *) addr, fromlen), ntohs (msg->type)); if (size != ntohs (msg->size)) { GNUNET_break_op (0); return; } switch (ntohs (msg->type)) { case GNUNET_MESSAGE_TYPE_TRANSPORT_BROADCAST_BEACON: udp_broadcast_receive (plugin, &buf, size, addr, fromlen); return; case GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_MESSAGE: read_process_msg (plugin, msg, addr, fromlen); return; case GNUNET_MESSAGE_TYPE_TRANSPORT_UDP_ACK: read_process_ack (plugin, msg, addr, fromlen);; return; case GNUNET_MESSAGE_TYPE_FRAGMENT: read_process_fragment (plugin, msg, addr, fromlen); return; default: GNUNET_break_op (0); return; } } size_t udp_select_send (struct Plugin *plugin, struct GNUNET_NETWORK_Handle *sock) { ssize_t sent; size_t slen; struct GNUNET_TIME_Absolute max; struct GNUNET_TIME_Absolute ; struct UDPMessageWrapper *udpw = NULL; if (sock == plugin->sockv4) { udpw = plugin->ipv4_queue_head; } else if (sock == plugin->sockv6) { udpw = plugin->ipv6_queue_head; } else GNUNET_break (0); const struct sockaddr * sa = udpw->session->sock_addr; slen = udpw->session->addrlen; max = GNUNET_TIME_absolute_max(udpw->timeout, GNUNET_TIME_absolute_get()); while (udpw != NULL) { if (max.abs_value != udpw->timeout.abs_value) { /* Message timed out */ if (udpw->cont != NULL) udpw->cont (udpw->cont_cls, &udpw->session->target, GNUNET_SYSERR); if (udpw->frag_ctx != NULL) { #if DEBUG_UDP GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Fragmented message for peer `%s' with size %u timed out\n", GNUNET_i2s(&udpw->session->target), udpw->frag_ctx->bytes_to_send); #endif udpw->session->last_expected_delay = GNUNET_FRAGMENT_context_destroy(udpw->frag_ctx->frag); GNUNET_free (udpw->frag_ctx); udpw->session->frag_ctx = NULL; } else { #if DEBUG_UDP GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Message for peer `%s' with size %u timed out\n", GNUNET_i2s(&udpw->session->target), udpw->msg_size); #endif } if (sock == plugin->sockv4) GNUNET_CONTAINER_DLL_remove(plugin->ipv4_queue_head, plugin->ipv4_queue_tail, udpw); else if (sock == plugin->sockv6) GNUNET_CONTAINER_DLL_remove(plugin->ipv6_queue_head, plugin->ipv6_queue_tail, udpw); GNUNET_free (udpw); udpw = plugin->ipv4_queue_head; } else { struct GNUNET_TIME_Relative delta = GNUNET_TIME_absolute_get_remaining (udpw->session->flow_delay_from_other_peer); if (delta.rel_value == 0) { /* this message is not delayed */ GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Message for peer `%s' (%u bytes) is not delayed \n", GNUNET_i2s(&udpw->session->target), udpw->msg_size); break; } else { /* this message is delayed, try next */ GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Message for peer `%s' (%u bytes) is delayed for %llu \n", GNUNET_i2s(&udpw->session->target), udpw->msg_size, delta); udpw = udpw->next; } } } if (udpw == NULL) { /* No message left */ return 0; } sent = GNUNET_NETWORK_socket_sendto (sock, udpw->udp, udpw->msg_size, sa, slen); if (GNUNET_SYSERR == sent) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_ERROR, "sendto"); LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP transmitted %u-byte message to %s (%d: %s)\n", (unsigned int) (udpw->msg_size), GNUNET_a2s (sa, slen), (int) sent, (sent < 0) ? STRERROR (errno) : "ok"); if (udpw->cont != NULL) udpw->cont (udpw->cont_cls, &udpw->session->target, GNUNET_SYSERR); } LOG (GNUNET_ERROR_TYPE_DEBUG, "UDP transmitted %u-byte message to %s (%d: %s)\n", (unsigned int) (udpw->msg_size), GNUNET_a2s (sa, slen), (int) sent, (sent < 0) ? STRERROR (errno) : "ok"); /* This was just a message fragment */ if (udpw->frag_ctx != NULL) { GNUNET_FRAGMENT_context_transmission_done (udpw->frag_ctx->frag); } /* This was a complete message*/ else { if (udpw->cont != NULL) udpw->cont (udpw->cont_cls, &udpw->session->target, GNUNET_OK); } if (sock == plugin->sockv4) GNUNET_CONTAINER_DLL_remove(plugin->ipv4_queue_head, plugin->ipv4_queue_tail, udpw); else if (sock == plugin->sockv6) GNUNET_CONTAINER_DLL_remove(plugin->ipv6_queue_head, plugin->ipv6_queue_tail, udpw); GNUNET_free (udpw); udpw = NULL; return sent; } /** * We have been notified that our readset has something to read. We don't * know which socket needs to be read, so we have to check each one * Then reschedule this function to be called again once more is available. * * @param cls the plugin handle * @param tc the scheduling context (for rescheduling this function again) */ static void udp_plugin_select (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct Plugin *plugin = cls; plugin->select_task = GNUNET_SCHEDULER_NO_TASK; if ((tc->reason & GNUNET_SCHEDULER_REASON_SHUTDOWN) != 0) return; if ((tc->reason & GNUNET_SCHEDULER_REASON_READ_READY) != 0) { if ((NULL != plugin->sockv4) && (GNUNET_NETWORK_fdset_isset (tc->read_ready, plugin->sockv4))) udp_select_read (plugin, plugin->sockv4); if ((NULL != plugin->sockv6) && (GNUNET_NETWORK_fdset_isset (tc->read_ready, plugin->sockv6))) udp_select_read (plugin, plugin->sockv6); } if ((tc->reason & GNUNET_SCHEDULER_REASON_WRITE_READY) != 0) { if ((NULL != plugin->sockv4) && (plugin->ipv4_queue_head != NULL) && (GNUNET_NETWORK_fdset_isset (tc->write_ready, plugin->sockv4))) { udp_select_send (plugin, plugin->sockv4); } if ((NULL != plugin->sockv6) && (plugin->ipv6_queue_head != NULL) && (GNUNET_NETWORK_fdset_isset (tc->write_ready, plugin->sockv6))) { udp_select_send (plugin, plugin->sockv6); } } plugin->select_task = GNUNET_SCHEDULER_add_select (GNUNET_SCHEDULER_PRIORITY_DEFAULT, GNUNET_SCHEDULER_NO_TASK, GNUNET_TIME_UNIT_FOREVER_REL, plugin->rs, plugin->ws, &udp_plugin_select, plugin); } static int setup_sockets (struct Plugin *plugin, struct sockaddr_in6 *serverAddrv6, struct sockaddr_in *serverAddrv4) { int tries; int sockets_created = 0; struct sockaddr *serverAddr; struct sockaddr *addrs[2]; socklen_t addrlens[2]; socklen_t addrlen; /* Create IPv6 socket */ if (plugin->enable_ipv6 == GNUNET_YES) { plugin->sockv6 = GNUNET_NETWORK_socket_create (PF_INET6, SOCK_DGRAM, 0); if (NULL == plugin->sockv6) { GNUNET_log (GNUNET_ERROR_TYPE_WARNING, "Disabling IPv6 since it is not supported on this system!\n"); plugin->enable_ipv6 = GNUNET_NO; } else { #if HAVE_SOCKADDR_IN_SIN_LEN serverAddrv6->sin6_len = sizeof (serverAddrv6); #endif serverAddrv6->sin6_family = AF_INET6; serverAddrv6->sin6_addr = in6addr_any; serverAddrv6->sin6_port = htons (plugin->port); addrlen = sizeof (struct sockaddr_in6); serverAddr = (struct sockaddr *) serverAddrv6; #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding to IPv6 port %d\n", ntohs (serverAddrv6->sin6_port)); #endif tries = 0; while (GNUNET_NETWORK_socket_bind (plugin->sockv6, serverAddr, addrlen) != GNUNET_OK) { serverAddrv6->sin6_port = htons (GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_STRONG, 33537) + 32000); /* Find a good, non-root port */ #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv6 Binding failed, trying new port %d\n", ntohs (serverAddrv6->sin6_port)); #endif tries++; if (tries > 10) { GNUNET_NETWORK_socket_close (plugin->sockv6); plugin->sockv6 = NULL; break; } } if (plugin->sockv6 != NULL) { #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv6 socket created on port %d\n", ntohs (serverAddrv6->sin6_port)); #endif addrs[sockets_created] = (struct sockaddr *) serverAddrv6; addrlens[sockets_created] = sizeof (struct sockaddr_in6); sockets_created++; } } } /* Create IPv4 socket */ plugin->sockv4 = GNUNET_NETWORK_socket_create (PF_INET, SOCK_DGRAM, 0); if (NULL == plugin->sockv4) { GNUNET_log_strerror (GNUNET_ERROR_TYPE_WARNING, "socket"); } else { #if HAVE_SOCKADDR_IN_SIN_LEN serverAddrv4->sin_len = sizeof (serverAddrv4); #endif serverAddrv4->sin_family = AF_INET; serverAddrv4->sin_addr.s_addr = INADDR_ANY; serverAddrv4->sin_port = htons (plugin->port); addrlen = sizeof (struct sockaddr_in); serverAddr = (struct sockaddr *) serverAddrv4; #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding to IPv4 port %d\n", ntohs (serverAddrv4->sin_port)); #endif tries = 0; while (GNUNET_NETWORK_socket_bind (plugin->sockv4, serverAddr, addrlen) != GNUNET_OK) { serverAddrv4->sin_port = htons (GNUNET_CRYPTO_random_u32 (GNUNET_CRYPTO_QUALITY_STRONG, 33537) + 32000); /* Find a good, non-root port */ #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "IPv4 Binding failed, trying new port %d\n", ntohs (serverAddrv4->sin_port)); #endif tries++; if (tries > 10) { GNUNET_NETWORK_socket_close (plugin->sockv4); plugin->sockv4 = NULL; break; } } if (plugin->sockv4 != NULL) { addrs[sockets_created] = (struct sockaddr *) serverAddrv4; addrlens[sockets_created] = sizeof (struct sockaddr_in); sockets_created++; } } /* Create file descriptors */ plugin->rs = GNUNET_NETWORK_fdset_create (); plugin->ws = GNUNET_NETWORK_fdset_create (); GNUNET_NETWORK_fdset_zero (plugin->rs); GNUNET_NETWORK_fdset_zero (plugin->ws); if (NULL != plugin->sockv4) { GNUNET_NETWORK_fdset_set (plugin->rs, plugin->sockv4); GNUNET_NETWORK_fdset_set (plugin->ws, plugin->sockv4); } if (NULL != plugin->sockv6) { GNUNET_NETWORK_fdset_set (plugin->rs, plugin->sockv6); GNUNET_NETWORK_fdset_set (plugin->ws, plugin->sockv6); } if (sockets_created == 0) GNUNET_log (GNUNET_ERROR_TYPE_WARNING, _("Failed to open UDP sockets\n")); plugin->select_task = GNUNET_SCHEDULER_add_select (GNUNET_SCHEDULER_PRIORITY_DEFAULT, GNUNET_SCHEDULER_NO_TASK, GNUNET_TIME_UNIT_FOREVER_REL, plugin->rs, plugin->ws, &udp_plugin_select, plugin); plugin->nat = GNUNET_NAT_register (plugin->env->cfg, GNUNET_NO, plugin->port, sockets_created, (const struct sockaddr **) addrs, addrlens, &udp_nat_port_map_callback, NULL, plugin); return sockets_created; } /** * The exported method. Makes the core api available via a global and * returns the udp transport API. * * @param cls our 'struct GNUNET_TRANSPORT_PluginEnvironment' * @return our 'struct GNUNET_TRANSPORT_PluginFunctions' */ void * libgnunet_plugin_transport_udp_init (void *cls) { struct GNUNET_TRANSPORT_PluginEnvironment *env = cls; struct GNUNET_TRANSPORT_PluginFunctions *api; struct Plugin *plugin; unsigned long long port; unsigned long long aport; unsigned long long broadcast; unsigned long long udp_max_bps; unsigned long long enable_v6; char * bind4_address; char * bind6_address; struct GNUNET_TIME_Relative interval; struct sockaddr_in serverAddrv4; struct sockaddr_in6 serverAddrv6; int res; /* Get port number */ if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (env->cfg, "transport-udp", "PORT", &port)) port = 2086; if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (env->cfg, "transport-udp", "ADVERTISED_PORT", &aport)) aport = port; if (port > 65535) { LOG (GNUNET_ERROR_TYPE_WARNING, _("Given `%s' option is out of range: %llu > %u\n"), "PORT", port, 65535); return NULL; } /* Protocols */ if ((GNUNET_YES == GNUNET_CONFIGURATION_get_value_yesno (env->cfg, "nat", "DISABLEV6"))) { enable_v6 = GNUNET_NO; } else enable_v6 = GNUNET_YES; /* Addresses */ memset (&serverAddrv6, 0, sizeof (serverAddrv6)); memset (&serverAddrv4, 0, sizeof (serverAddrv4)); if (GNUNET_YES == GNUNET_CONFIGURATION_get_value_string (env->cfg, "transport-udp", "BINDTO", &bind4_address)) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding udp plugin to specific address: `%s'\n", bind4_address); if (1 != inet_pton (AF_INET, bind4_address, &serverAddrv4.sin_addr)) { GNUNET_free (bind4_address); return NULL; } } if (GNUNET_YES == GNUNET_CONFIGURATION_get_value_string (env->cfg, "transport-udp", "BINDTO6", &bind6_address)) { LOG (GNUNET_ERROR_TYPE_DEBUG, "Binding udp plugin to specific address: `%s'\n", bind6_address); if (1 != inet_pton (AF_INET6, bind6_address, &serverAddrv6.sin6_addr)) { LOG (GNUNET_ERROR_TYPE_ERROR, _("Invalid IPv6 address: `%s'\n"), bind6_address); GNUNET_free_non_null (bind4_address); GNUNET_free (bind6_address); return NULL; } } /* Enable neighbour discovery */ broadcast = GNUNET_CONFIGURATION_get_value_yesno (env->cfg, "transport-udp", "BROADCAST"); if (broadcast == GNUNET_SYSERR) broadcast = GNUNET_NO; if (GNUNET_SYSERR == GNUNET_CONFIGURATION_get_value_time (env->cfg, "transport-udp", "BROADCAST_INTERVAL", &interval)) { interval = GNUNET_TIME_relative_multiply (GNUNET_TIME_UNIT_SECONDS, 10); } /* Maximum datarate */ if (GNUNET_OK != GNUNET_CONFIGURATION_get_value_number (env->cfg, "transport-udp", "MAX_BPS", &udp_max_bps)) { udp_max_bps = 1024 * 1024 * 50; /* 50 MB/s == infinity for practical purposes */ } plugin = GNUNET_malloc (sizeof (struct Plugin)); api = GNUNET_malloc (sizeof (struct GNUNET_TRANSPORT_PluginFunctions)); GNUNET_BANDWIDTH_tracker_init (&plugin->tracker, GNUNET_BANDWIDTH_value_init ((uint32_t)udp_max_bps), 30); plugin->sessions = GNUNET_CONTAINER_multihashmap_create (10); plugin->defrag_ctxs = GNUNET_CONTAINER_heap_create (GNUNET_CONTAINER_HEAP_ORDER_MIN); plugin->mst = GNUNET_SERVER_mst_create (&process_inbound_tokenized_messages, plugin); plugin->port = port; plugin->aport = aport; plugin->broadcast_interval = interval; plugin->enable_ipv6 = enable_v6; plugin->env = env; api->cls = plugin; api->send = NULL; api->disconnect = &udp_disconnect; api->address_pretty_printer = &udp_plugin_address_pretty_printer; api->address_to_string = &udp_address_to_string; api->check_address = &udp_plugin_check_address; api->get_session = &udp_plugin_get_session; api->send = &udp_plugin_send; LOG (GNUNET_ERROR_TYPE_DEBUG, "Setting up sockets\n"); res = setup_sockets (plugin, &serverAddrv6, &serverAddrv4); if ((res == 0) || ((plugin->sockv4 == NULL) && (plugin->sockv6 == NULL))) { LOG (GNUNET_ERROR_TYPE_ERROR, "Failed to create network sockets, plugin failed\n"); GNUNET_free (plugin); GNUNET_free (api); return NULL; } LOG (GNUNET_ERROR_TYPE_DEBUG, "Starting broadcasting\n"); if (broadcast == GNUNET_YES) setup_broadcast (plugin, &serverAddrv6, &serverAddrv4); GNUNET_free_non_null (bind4_address); GNUNET_free_non_null (bind6_address); return api; } int heap_cleanup_iterator (void *cls, struct GNUNET_CONTAINER_HeapNode * node, void *element, GNUNET_CONTAINER_HeapCostType cost) { struct DefragContext * d_ctx = element; GNUNET_CONTAINER_heap_remove_node (node); GNUNET_DEFRAGMENT_context_destroy(d_ctx->defrag); GNUNET_free (d_ctx); return GNUNET_YES; } /** * The exported method. Makes the core api available via a global and * returns the udp transport API. * * @param cls our 'struct GNUNET_TRANSPORT_PluginEnvironment' * @return our 'struct GNUNET_TRANSPORT_PluginFunctions' */ void * libgnunet_plugin_transport_udp_done (void *cls) { struct GNUNET_TRANSPORT_PluginFunctions *api = cls; struct Plugin *plugin = api->cls; stop_broadcast (plugin); if (plugin->select_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (plugin->select_task); plugin->select_task = GNUNET_SCHEDULER_NO_TASK; } /* Closing sockets */ if (plugin->sockv4 != NULL) { GNUNET_break (GNUNET_OK == GNUNET_NETWORK_socket_close (plugin->sockv4)); plugin->sockv4 = NULL; } if (plugin->sockv6 != NULL) { GNUNET_break (GNUNET_OK == GNUNET_NETWORK_socket_close (plugin->sockv6)); plugin->sockv6 = NULL; } GNUNET_NETWORK_fdset_destroy (plugin->rs); GNUNET_NETWORK_fdset_destroy (plugin->ws); GNUNET_NAT_unregister (plugin->nat); if (plugin->defrag_ctxs != NULL) { GNUNET_CONTAINER_heap_iterate(plugin->defrag_ctxs, heap_cleanup_iterator, NULL); GNUNET_CONTAINER_heap_destroy(plugin->defrag_ctxs); plugin->defrag_ctxs = NULL; } if (plugin->mst != NULL) { GNUNET_SERVER_mst_destroy(plugin->mst); plugin->mst = NULL; } /* Clean up leftover messages */ struct UDPMessageWrapper * updw; udpw = plugin->ipv4_queue_head; while (udpw != NULL) { struct UDPMessageWrapper *tmp = udpw->next; GNUNET_CONTAINER_DLL_remove(plugin->ipv4_queue_head, plugin->ipv4_queue_tail, udpw); if (udpw->cont != NULL) udpw->cont (udpw->cont_cls, &udpw->session->target, GNUNET_SYSERR); GNUNET_free (udpw); udpw = tmp; } udpw = plugin->ipv6_queue_head; while (udpw != NULL) { struct UDPMessageWrapper *tmp = udpw->next; GNUNET_CONTAINER_DLL_remove(plugin->ipv6_queue_head, plugin->ipv6_queue_tail, udpw); if (udpw->cont != NULL) udpw->cont (udpw->cont_cls, &udpw->session->target, GNUNET_SYSERR); GNUNET_free (udpw); udpw = tmp; } /* Clean up sessions */ #if DEBUG_UDP LOG (GNUNET_ERROR_TYPE_DEBUG, "Cleaning up sessions\n"); #endif GNUNET_CONTAINER_multihashmap_iterate (plugin->sessions, &disconnect_and_free_it, plugin); GNUNET_CONTAINER_multihashmap_destroy (plugin->sessions); plugin->nat = NULL; GNUNET_free (plugin); GNUNET_free (api); return NULL; } /* end of plugin_transport_udp.c */