/* This file is part of GNUnet. (C) 2009, 2010, 2011 Christian Grothoff (and other contributing authors) GNUnet is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GNUnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNUnet; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /** * @file transport/transport_api.c * @brief library to access the low-level P2P IO service * @author Christian Grothoff * * TODO: * - adjust testcases to use new 'try connect' style (should be easy, breaks API compatibility!) * - adjust core service to use new 'try connect' style (should be MUCH nicer there as well!) * - test test test */ #include "platform.h" #include "gnunet_bandwidth_lib.h" #include "gnunet_client_lib.h" #include "gnunet_constants.h" #include "gnunet_container_lib.h" #include "gnunet_arm_service.h" #include "gnunet_hello_lib.h" #include "gnunet_protocols.h" #include "gnunet_server_lib.h" #include "gnunet_time_lib.h" #include "gnunet_transport_service.h" #include "transport.h" /** * How large to start with for the hashmap of neighbours. */ #define STARTING_NEIGHBOURS_SIZE 16 /** * Handle for a message that should be transmitted to the service. * Used for both control messages and normal messages. */ struct GNUNET_TRANSPORT_TransmitHandle { /** * We keep all requests in a DLL. */ struct GNUNET_TRANSPORT_TransmitHandle *next; /** * We keep all requests in a DLL. */ struct GNUNET_TRANSPORT_TransmitHandle *prev; /** * Neighbour for this handle, NULL for control messages. */ struct Neighbour *neighbour; /** * Function to call when notify_size bytes are available * for transmission. */ GNUNET_CONNECTION_TransmitReadyNotify notify; /** * Closure for notify. */ void *notify_cls; /** * Timeout for this request, 0 for control messages. */ struct GNUNET_TIME_Absolute timeout; /** * Task to trigger request timeout if the request is stalled due to * congestion. */ GNUNET_SCHEDULER_TaskIdentifier timeout_task; /** * How many bytes is our notify callback waiting for? */ size_t notify_size; /** * How important is this message? Not used for control messages. */ uint32_t priority; }; /** * Entry in hash table of all of our current neighbours. */ struct Neighbour { /** * Overall transport handle. */ struct GNUNET_TRANSPORT_Handle *h; /** * Active transmit handle or NULL. */ struct GNUNET_TRANSPORT_TransmitHandle *th; /** * Identity of this neighbour. */ struct GNUNET_PeerIdentity id; /** * Outbound bandwidh tracker. */ struct GNUNET_BANDWIDTH_Tracker out_tracker; /** * Entry in our readyness heap (which is sorted by 'next_ready' * value). NULL if there is no pending transmission request for * this neighbour or if we're waiting for 'is_ready' to become * true AFTER the 'out_tracker' suggested that this peer's quota * has been satisfied (so once 'is_ready' goes to GNUNET_YES, * we should immediately go back into the heap). */ struct GNUNET_CONTAINER_HeapNode *hn; /** * Is this peer currently ready to receive a message? */ int is_ready; }; /** * Linked list of functions to call whenever our HELLO is updated. */ struct GNUNET_TRANSPORT_GetHelloHandle { /** * This is a doubly linked list. */ struct GNUNET_TRANSPORT_GetHelloHandle *next; /** * This is a doubly linked list. */ struct GNUNET_TRANSPORT_GetHelloHandle *prev; /** * Transport handle. */ struct GNUNET_TRANSPORT_Handle *handle; /** * Callback to call once we got our HELLO. */ GNUNET_TRANSPORT_HelloUpdateCallback rec; /** * Closure for rec. */ void *rec_cls; }; /** * Handle for the transport service (includes all of the * state for the transport service). */ struct GNUNET_TRANSPORT_Handle { /** * Closure for the callbacks. */ void *cls; /** * Function to call for received data. */ GNUNET_TRANSPORT_ReceiveCallback rec; /** * function to call on connect events */ GNUNET_TRANSPORT_NotifyConnect nc_cb; /** * function to call on disconnect events */ GNUNET_TRANSPORT_NotifyDisconnect nd_cb; /** * Head of DLL of control messages. */ struct GNUNET_TRANSPORT_TransmitHandle *control_head; /** * Tail of DLL of control messages. */ struct GNUNET_TRANSPORT_TransmitHandle *control_tail; /** * The current HELLO message for this peer. Updated * whenever transports change their addresses. */ struct GNUNET_HELLO_Message *my_hello; /** * My client connection to the transport service. */ struct GNUNET_CLIENT_Connection *client; /** * Handle to our registration with the client for notification. */ struct GNUNET_CLIENT_TransmitHandle *cth; /** * Linked list of pending requests for our HELLO. */ struct GNUNET_TRANSPORT_GetHelloHandle *hwl_head; /** * Linked list of pending requests for our HELLO. */ struct GNUNET_TRANSPORT_GetHelloHandle *hwl_tail; /** * My configuration. */ const struct GNUNET_CONFIGURATION_Handle *cfg; /** * Hash map of the current connected neighbours of this peer. * Maps peer identities to 'struct Neighbour' entries. */ struct GNUNET_CONTAINER_MultiHashMap *neighbours; /** * Heap sorting peers with pending messages by the timestamps that * specify when we could next send a message to the respective peer. * Excludes control messages (which can always go out immediately). * Maps time stamps to 'struct Neighbour' entries. */ struct GNUNET_CONTAINER_Heap *ready_heap; /** * Peer identity as assumed by this process, or all zeros. */ struct GNUNET_PeerIdentity self; /** * ID of the task trying to reconnect to the service. */ GNUNET_SCHEDULER_TaskIdentifier reconnect_task; /** * ID of the task trying to trigger transmission for a peer while * maintaining bandwidth quotas. In use if there are no control * messages and the smallest entry in the 'ready_heap' has a time * stamp in the future. */ GNUNET_SCHEDULER_TaskIdentifier quota_task; /** * Delay until we try to reconnect. */ struct GNUNET_TIME_Relative reconnect_delay; /** * Should we check that 'self' matches what the service thinks? * (if GNUNET_NO, then 'self' is all zeros!). */ int check_self; }; /** * Schedule the task to send one message, either from the control * list or the peer message queues to the service. * * @param h transport service to schedule a transmission for */ static void schedule_transmission (struct GNUNET_TRANSPORT_Handle *h); /** * Function that will schedule the job that will try * to connect us again to the client. * * @param h transport service to reconnect */ static void disconnect_and_schedule_reconnect (struct GNUNET_TRANSPORT_Handle *h); /** * Get the neighbour list entry for the given peer * * @param h our context * @param peer peer to look up * @return NULL if no such peer entry exists */ static struct Neighbour * neighbour_find (struct GNUNET_TRANSPORT_Handle *h, const struct GNUNET_PeerIdentity *peer) { return GNUNET_CONTAINER_multihashmap_get (h->neighbours, &peer->hashPubKey); } /** * Add neighbour to our list * * @return NULL if this API is currently disconnecting from the service */ static struct Neighbour * neighbour_add (struct GNUNET_TRANSPORT_Handle *h, const struct GNUNET_PeerIdentity *pid) { struct Neighbour *n; #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Creating entry for neighbour `%4s'.\n", GNUNET_i2s (pid)); #endif n = GNUNET_malloc (sizeof (struct Neighbour)); n->id = *pid; n->h = h; n->is_ready = GNUNET_YES; GNUNET_BANDWIDTH_tracker_init (&n->out_tracker, GNUNET_CONSTANTS_DEFAULT_BW_IN_OUT, MAX_BANDWIDTH_CARRY_S); GNUNET_assert (GNUNET_OK == GNUNET_CONTAINER_multihashmap_put (h->neighbours, &pid->hashPubKey, n, GNUNET_CONTAINER_MULTIHASHMAPOPTION_UNIQUE_ONLY)); return n; } /** * Iterator over hash map entries, for deleting state of a neighbour. * * @param cls the 'struct GNUNET_TRANSPORT_Handle*' * @param key peer identity * @param value value in the hash map, the neighbour entry to delete * @return GNUNET_YES if we should continue to * iterate, * GNUNET_NO if not. */ static int neighbour_delete (void *cls, const GNUNET_HashCode * key, void *value) { struct GNUNET_TRANSPORT_Handle *handle = cls; struct Neighbour *n = value; if (NULL != handle->nd_cb) handle->nd_cb (handle->cls, &n->id); GNUNET_assert (NULL == n->th); GNUNET_assert (NULL == n->hn); GNUNET_assert (GNUNET_YES == GNUNET_CONTAINER_multihashmap_remove (handle->neighbours, key, n)); GNUNET_free (n); return GNUNET_YES; } /** * Function we use for handling incoming messages. * * @param cls closure (struct GNUNET_TRANSPORT_Handle *) * @param msg message received, NULL on timeout or fatal error */ static void demultiplexer (void *cls, const struct GNUNET_MessageHeader *msg) { struct GNUNET_TRANSPORT_Handle *h = cls; const struct DisconnectInfoMessage *dim; const struct ConnectInfoMessage *cim; const struct InboundMessage *im; const struct GNUNET_MessageHeader *imm; const struct SendOkMessage *okm; struct GNUNET_TRANSPORT_GetHelloHandle *hwl; struct GNUNET_TRANSPORT_GetHelloHandle *next_hwl; struct Neighbour *n; struct GNUNET_PeerIdentity me; uint16_t size; uint32_t ats_count; GNUNET_assert (h->client != NULL); if (msg == NULL) { #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_INFO, "Error receiving from transport service, disconnecting temporarily.\n"); #endif disconnect_and_schedule_reconnect (h); return; } GNUNET_CLIENT_receive (h->client, &demultiplexer, h, GNUNET_TIME_UNIT_FOREVER_REL); size = ntohs (msg->size); switch (ntohs (msg->type)) { case GNUNET_MESSAGE_TYPE_HELLO: if (GNUNET_OK != GNUNET_HELLO_get_id ((const struct GNUNET_HELLO_Message *) msg, &me)) { GNUNET_break (0); break; } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Receiving (my own) `%s' message, I am `%4s'.\n", "HELLO", GNUNET_i2s (&me)); #endif GNUNET_free_non_null (h->my_hello); h->my_hello = NULL; if (size < sizeof (struct GNUNET_MessageHeader)) { GNUNET_break (0); break; } h->my_hello = GNUNET_malloc (size); memcpy (h->my_hello, msg, size); hwl = h->hwl_head; while (NULL != hwl) { next_hwl = hwl->next; hwl->rec (hwl->rec_cls, (const struct GNUNET_MessageHeader *) h->my_hello); hwl = next_hwl; } break; case GNUNET_MESSAGE_TYPE_TRANSPORT_CONNECT: if (size < sizeof (struct ConnectInfoMessage)) { GNUNET_break (0); break; } cim = (const struct ConnectInfoMessage *) msg; ats_count = ntohl (cim->ats_count); if (size != sizeof (struct ConnectInfoMessage) + ats_count * sizeof (struct GNUNET_TRANSPORT_ATS_Information)) { GNUNET_break (0); break; } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Receiving `%s' message for `%4s'.\n", "CONNECT", GNUNET_i2s (&cim->id)); #endif n = neighbour_find (h, &cim->id); if (n != NULL) { GNUNET_break (0); break; } n = neighbour_add (h, &cim->id); if (h->nc_cb != NULL) h->nc_cb (h->cls, &n->id, &cim->ats, ats_count); break; case GNUNET_MESSAGE_TYPE_TRANSPORT_DISCONNECT: if (size != sizeof (struct DisconnectInfoMessage)) { GNUNET_break (0); break; } dim = (const struct DisconnectInfoMessage *) msg; GNUNET_break (ntohl (dim->reserved) == 0); #if DEBUG_TRANSPORT_API_DISCONNECT GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Receiving `%s' message for `%4s'.\n", "DISCONNECT", GNUNET_i2s (&dim->peer)); #endif n = neighbour_find (h, &dim->peer); if (n == NULL) { GNUNET_break (0); break; } neighbour_delete (h, &dim->peer.hashPubKey, n); break; case GNUNET_MESSAGE_TYPE_TRANSPORT_SEND_OK: if (size != sizeof (struct SendOkMessage)) { GNUNET_break (0); break; } okm = (const struct SendOkMessage *) msg; #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Receiving `%s' message, transmission %s.\n", "SEND_OK", ntohl (okm->success) == GNUNET_OK ? "succeeded" : "failed"); #endif n = neighbour_find (h, &okm->peer); if (n == NULL) break; GNUNET_break (GNUNET_NO == n->is_ready); n->is_ready = GNUNET_YES; if ((n->th != NULL) && (n->hn == NULL)) { GNUNET_assert (GNUNET_SCHEDULER_NO_TASK != n->th->timeout_task); GNUNET_SCHEDULER_cancel (n->th->timeout_task); n->th->timeout_task = GNUNET_SCHEDULER_NO_TASK; /* we've been waiting for this (congestion, not quota, * caused delayed transmission) */ n->hn = GNUNET_CONTAINER_heap_insert (h->ready_heap, n, 0); schedule_transmission (h); } break; case GNUNET_MESSAGE_TYPE_TRANSPORT_RECV: #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Receiving `%s' message.\n", "RECV"); #endif if (size < sizeof (struct InboundMessage) + sizeof (struct GNUNET_MessageHeader)) { GNUNET_break (0); break; } im = (const struct InboundMessage *) msg; GNUNET_break (0 == ntohl (im->reserved)); ats_count = ntohl (im->ats_count); imm = (const struct GNUNET_MessageHeader *) &((&(im->ats))[ats_count + 1]); if (ntohs (imm->size) + sizeof (struct InboundMessage) + ats_count * sizeof (struct GNUNET_TRANSPORT_ATS_Information) != size) { GNUNET_break (0); break; } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Received message of type %u from `%4s'.\n", ntohs (imm->type), GNUNET_i2s (&im->peer)); #endif n = neighbour_find (h, &im->peer); if (n == NULL) { GNUNET_break (0); break; } if (h->rec != NULL) h->rec (h->cls, &im->peer, imm, &im->ats, ats_count); break; default: GNUNET_log (GNUNET_ERROR_TYPE_ERROR, _("Received unexpected message of type %u in %s:%u\n"), ntohs (msg->type), __FILE__, __LINE__); GNUNET_break (0); break; } } /** * A transmission request could not be satisfied because of * network congestion. Notify the initiator and clean up. * * @param cls the 'struct GNUNET_TRANSPORT_TransmitHandle' * @param tc scheduler context */ static void timeout_request_due_to_congestion (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct GNUNET_TRANSPORT_TransmitHandle *th = cls; struct Neighbour *n = th->neighbour; n->th->timeout_task = GNUNET_SCHEDULER_NO_TASK; GNUNET_assert (th == n->th); GNUNET_assert (NULL == n->hn); n->th = NULL; th->notify (th->notify_cls, 0, NULL); GNUNET_free (th); } /** * Transmit message(s) to service. * * @param cls handle to transport * @param size number of bytes available in buf * @param buf where to copy the message * @return number of bytes copied to buf */ static size_t transport_notify_ready (void *cls, size_t size, void *buf) { struct GNUNET_TRANSPORT_Handle *h = cls; struct GNUNET_TRANSPORT_TransmitHandle *th; struct Neighbour *n; char *cbuf; struct OutboundMessage obm; size_t ret; size_t nret; size_t mret; GNUNET_assert (NULL != h->client); h->cth = NULL; if (NULL == buf) { /* transmission failed */ disconnect_and_schedule_reconnect (h); return 0; } cbuf = buf; ret = 0; /* first send control messages */ while ((NULL != (th = h->control_head)) && (th->notify_size <= size)) { GNUNET_CONTAINER_DLL_remove (h->control_head, h->control_tail, th); nret = th->notify (th->notify_cls, size, &cbuf[ret]); #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Added %u bytes of control message at %u\n", nret, ret); #endif GNUNET_free (th); ret += nret; size -= nret; } /* then, if possible and no control messages pending, send data messages */ while ((NULL == h->control_head) && (NULL != (n = GNUNET_CONTAINER_heap_peek (h->ready_heap)))) { if (GNUNET_YES != n->is_ready) { /* peer not ready, wait for notification! */ GNUNET_assert (n == GNUNET_CONTAINER_heap_remove_root (h->ready_heap)); n->hn = NULL; GNUNET_assert (GNUNET_SCHEDULER_NO_TASK == n->th->timeout_task); n->th->timeout_task = GNUNET_SCHEDULER_add_delayed (GNUNET_TIME_absolute_get_remaining (n->th->timeout), &timeout_request_due_to_congestion, n->th); continue; } th = n->th; if (th->notify_size + sizeof (struct OutboundMessage) > size) break; /* does not fit */ if (GNUNET_BANDWIDTH_tracker_get_delay (&n->out_tracker, th->notify_size).rel_value > 0) break; /* too early */ GNUNET_assert (n == GNUNET_CONTAINER_heap_remove_root (h->ready_heap)); n->hn = NULL; n->th = NULL; n->is_ready = GNUNET_NO; GNUNET_assert (size >= sizeof (struct OutboundMessage)); mret = th->notify (th->notify_cls, size - sizeof (struct OutboundMessage), &cbuf[ret + sizeof (struct OutboundMessage)]); GNUNET_assert (mret <= size - sizeof (struct OutboundMessage)); if (mret != 0) { GNUNET_assert (mret + sizeof (struct OutboundMessage) < GNUNET_SERVER_MAX_MESSAGE_SIZE); obm.header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_SEND); obm.header.size = htons (mret + sizeof (struct OutboundMessage)); obm.priority = htonl (th->priority); obm.timeout = GNUNET_TIME_relative_hton (GNUNET_TIME_absolute_get_remaining (th->timeout)); obm.peer = n->id; memcpy (&cbuf[ret], &obm, sizeof (struct OutboundMessage)); ret += (mret + sizeof (struct OutboundMessage)); size -= (mret + sizeof (struct OutboundMessage)); GNUNET_BANDWIDTH_tracker_consume (&n->out_tracker, mret); } GNUNET_free (th); } /* if there are more pending messages, try to schedule those */ schedule_transmission (h); #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transmitting %u bytes to transport service\n", ret); #endif return ret; } /** * Schedule the task to send one message, either from the control * list or the peer message queues to the service. * * @param cls transport service to schedule a transmission for * @param tc scheduler context */ static void schedule_transmission_task (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct GNUNET_TRANSPORT_Handle *h = cls; size_t size; struct GNUNET_TRANSPORT_TransmitHandle *th; struct Neighbour *n; h->quota_task = GNUNET_SCHEDULER_NO_TASK; GNUNET_assert (NULL != h->client); /* destroy all requests that have timed out */ while ((NULL != (n = GNUNET_CONTAINER_heap_peek (h->ready_heap))) && (GNUNET_TIME_absolute_get_remaining (n->th->timeout).rel_value == 0)) { /* notify client that the request could not be satisfied within * the given time constraints */ th = n->th; n->th = NULL; GNUNET_assert (n == GNUNET_CONTAINER_heap_remove_root (h->ready_heap)); n->hn = NULL; #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Signalling timeout for transmission to peer %s due to congestion\n", GNUNET_i2s (&n->id)); #endif GNUNET_assert (0 == th->notify (th->notify_cls, 0, NULL)); GNUNET_free (th); } if (NULL != h->cth) return; if (NULL != h->control_head) { size = h->control_head->notify_size; } else { n = GNUNET_CONTAINER_heap_peek (h->ready_heap); if (NULL == n) return; /* no pending messages */ size = n->th->notify_size + sizeof (struct OutboundMessage); } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Calling notify_transmit_ready\n"); #endif h->cth = GNUNET_CLIENT_notify_transmit_ready (h->client, size, GNUNET_TIME_UNIT_FOREVER_REL, GNUNET_NO, &transport_notify_ready, h); GNUNET_assert (NULL != h->cth); } /** * Schedule the task to send one message, either from the control * list or the peer message queues to the service. * * @param h transport service to schedule a transmission for */ static void schedule_transmission (struct GNUNET_TRANSPORT_Handle *h) { struct GNUNET_TIME_Relative delay; struct Neighbour *n; GNUNET_assert (NULL != h->client); if (h->quota_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (h->quota_task); h->quota_task = GNUNET_SCHEDULER_NO_TASK; } if (NULL != h->control_head) delay = GNUNET_TIME_UNIT_ZERO; else if (NULL != (n = GNUNET_CONTAINER_heap_peek (h->ready_heap))) delay = GNUNET_BANDWIDTH_tracker_get_delay (&n->out_tracker, n->th->notify_size); else return; /* no work to be done */ #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Scheduling next transmission to service in %llu ms\n", (unsigned long long) delay.rel_value); #endif h->quota_task = GNUNET_SCHEDULER_add_delayed (delay, &schedule_transmission_task, h); } /** * Queue control request for transmission to the transport * service. * * @param h handle to the transport service * @param size number of bytes to be transmitted * @param notify function to call to get the content * @param notify_cls closure for notify */ static void schedule_control_transmit (struct GNUNET_TRANSPORT_Handle *h, size_t size, GNUNET_CONNECTION_TransmitReadyNotify notify, void *notify_cls) { struct GNUNET_TRANSPORT_TransmitHandle *th; #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Control transmit of %u bytes requested\n", size); #endif th = GNUNET_malloc (sizeof (struct GNUNET_TRANSPORT_TransmitHandle)); th->notify = notify; th->notify_cls = notify_cls; th->notify_size = size; GNUNET_CONTAINER_DLL_insert_tail (h->control_head, h->control_tail, th); schedule_transmission (h); } /** * Transmit START message to service. * * @param cls unused * @param size number of bytes available in buf * @param buf where to copy the message * @return number of bytes copied to buf */ static size_t send_start (void *cls, size_t size, void *buf) { struct GNUNET_TRANSPORT_Handle *h = cls; struct StartMessage s; if (buf == NULL) { /* Can only be shutdown, just give up */ #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Shutdown while trying to transmit `%s' request.\n", "START"); #endif return 0; } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transmitting `%s' request.\n", "START"); #endif GNUNET_assert (size >= sizeof (struct StartMessage)); s.header.size = htons (sizeof (struct StartMessage)); s.header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_START); s.do_check = htonl (h->check_self); s.self = h->self; memcpy (buf, &s, sizeof (struct StartMessage)); GNUNET_CLIENT_receive (h->client, &demultiplexer, h, GNUNET_TIME_UNIT_FOREVER_REL); return sizeof (struct StartMessage); } /** * Try again to connect to transport service. * * @param cls the handle to the transport service * @param tc scheduler context */ static void reconnect (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct GNUNET_TRANSPORT_Handle *h = cls; h->reconnect_task = GNUNET_SCHEDULER_NO_TASK; if ((tc->reason & GNUNET_SCHEDULER_REASON_SHUTDOWN) != 0) { /* shutdown, just give up */ return; } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Connecting to transport service.\n"); #endif GNUNET_assert (h->client == NULL); GNUNET_assert (h->control_head == NULL); GNUNET_assert (h->control_tail == NULL); h->client = GNUNET_CLIENT_connect ("transport", h->cfg); GNUNET_assert (h->client != NULL); schedule_control_transmit (h, sizeof (struct StartMessage), &send_start, h); } /** * Function that will schedule the job that will try * to connect us again to the client. * * @param h transport service to reconnect */ static void disconnect_and_schedule_reconnect (struct GNUNET_TRANSPORT_Handle *h) { struct GNUNET_TRANSPORT_TransmitHandle *th; GNUNET_assert (h->reconnect_task == GNUNET_SCHEDULER_NO_TASK); /* Forget about all neighbours that we used to be connected to */ GNUNET_CONTAINER_multihashmap_iterate (h->neighbours, &neighbour_delete, h); if (NULL != h->cth) { GNUNET_CLIENT_notify_transmit_ready_cancel (h->cth); h->cth = NULL; } if (NULL != h->client) { GNUNET_CLIENT_disconnect (h->client, GNUNET_YES); h->client = NULL; } if (h->quota_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (h->quota_task); h->quota_task = GNUNET_SCHEDULER_NO_TASK; } while ((NULL != (th = h->control_head))) { GNUNET_CONTAINER_DLL_remove (h->control_head, h->control_tail, th); th->notify (th->notify_cls, 0, NULL); GNUNET_free (th); } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Scheduling task to reconnect to transport service in %llu ms.\n", h->reconnect_delay.rel_value); #endif h->reconnect_task = GNUNET_SCHEDULER_add_delayed (h->reconnect_delay, &reconnect, h); if (h->reconnect_delay.rel_value == 0) { h->reconnect_delay = GNUNET_TIME_UNIT_MILLISECONDS; } else { h->reconnect_delay = GNUNET_TIME_relative_multiply (h->reconnect_delay, 2); h->reconnect_delay = GNUNET_TIME_relative_min (GNUNET_TIME_UNIT_SECONDS, h->reconnect_delay); } } /** * Closure for 'send_set_quota'. */ struct SetQuotaContext { /** * Identity of the peer impacted by the quota change. */ struct GNUNET_PeerIdentity target; /** * Quota to transmit. */ struct GNUNET_BANDWIDTH_Value32NBO quota_in; }; /** * Send SET_QUOTA message to the service. * * @param cls the 'struct SetQuotaContext' * @param size number of bytes available in buf * @param buf where to copy the message * @return number of bytes copied to buf */ static size_t send_set_quota (void *cls, size_t size, void *buf) { struct SetQuotaContext *sqc = cls; struct QuotaSetMessage msg; if (buf == NULL) { GNUNET_free (sqc); return 0; } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transmitting `%s' request with respect to `%4s'.\n", "SET_QUOTA", GNUNET_i2s (&sqc->target)); #endif GNUNET_assert (size >= sizeof (struct QuotaSetMessage)); msg.header.size = htons (sizeof (struct QuotaSetMessage)); msg.header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_SET_QUOTA); msg.quota = sqc->quota_in; msg.peer = sqc->target; memcpy (buf, &msg, sizeof (msg)); GNUNET_free (sqc); return sizeof (struct QuotaSetMessage); } /** * Set the share of incoming bandwidth for the given * peer to the specified amount. * * @param handle connection to transport service * @param target who's bandwidth quota is being changed * @param quota_in incoming bandwidth quota in bytes per ms * @param quota_out outgoing bandwidth quota in bytes per ms */ void GNUNET_TRANSPORT_set_quota (struct GNUNET_TRANSPORT_Handle *handle, const struct GNUNET_PeerIdentity *target, struct GNUNET_BANDWIDTH_Value32NBO quota_in, struct GNUNET_BANDWIDTH_Value32NBO quota_out) { struct Neighbour *n; struct SetQuotaContext *sqc; n = neighbour_find (handle, target); if (NULL == n) { GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Quota changed to %u for peer `%s', but I have no such neighbour!\n", (unsigned int) ntohl (quota_out.value__), GNUNET_i2s (target)); return; } GNUNET_assert (NULL != handle->client); #if DEBUG_TRANSPORT_API if (ntohl (quota_out.value__) != n->out_tracker.available_bytes_per_s__) GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Quota changed from %u to %u for peer `%s'\n", (unsigned int) n->out_tracker.available_bytes_per_s__, (unsigned int) ntohl (quota_out.value__), GNUNET_i2s (target)); else GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Quota remains at %u for peer `%s'\n", (unsigned int) n->out_tracker.available_bytes_per_s__, GNUNET_i2s (target)); #endif GNUNET_BANDWIDTH_tracker_update_quota (&n->out_tracker, quota_out); sqc = GNUNET_malloc (sizeof (struct SetQuotaContext)); sqc->target = *target; sqc->quota_in = quota_in; schedule_control_transmit (handle, sizeof (struct QuotaSetMessage), &send_set_quota, sqc); } /** * Send REQUEST_CONNECT message to the service. * * @param cls the 'struct GNUNET_PeerIdentity' * @param size number of bytes available in buf * @param buf where to copy the message * @return number of bytes copied to buf */ static size_t send_try_connect (void *cls, size_t size, void *buf) { struct GNUNET_PeerIdentity *pid = cls; struct TransportRequestConnectMessage msg; if (buf == NULL) { GNUNET_free (pid); return 0; } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transmitting `%s' request with respect to `%4s'.\n", "REQUEST_CONNECT", GNUNET_i2s (pid)); #endif GNUNET_assert (size >= sizeof (struct TransportRequestConnectMessage)); msg.header.size = htons (sizeof (struct TransportRequestConnectMessage)); msg.header.type = htons (GNUNET_MESSAGE_TYPE_TRANSPORT_REQUEST_CONNECT); msg.reserved = htonl (0); msg.peer = *pid; memcpy (buf, &msg, sizeof (msg)); GNUNET_free (pid); return sizeof (struct TransportRequestConnectMessage); } /** * Ask the transport service to establish a connection to * the given peer. * * @param handle connection to transport service * @param target who we should try to connect to */ void GNUNET_TRANSPORT_try_connect (struct GNUNET_TRANSPORT_Handle *handle, const struct GNUNET_PeerIdentity *target) { struct GNUNET_PeerIdentity *pid; if (NULL == handle->client) return; pid = GNUNET_malloc (sizeof (struct GNUNET_PeerIdentity)); *pid = *target; schedule_control_transmit (handle, sizeof (struct TransportRequestConnectMessage), &send_try_connect, pid); } /** * Send HELLO message to the service. * * @param cls the HELLO message to send * @param size number of bytes available in buf * @param buf where to copy the message * @return number of bytes copied to buf */ static size_t send_hello (void *cls, size_t size, void *buf) { struct GNUNET_MessageHeader *msg = cls; uint16_t ssize; if (buf == NULL) { #if DEBUG_TRANSPORT_TIMEOUT GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Timeout while trying to transmit `%s' request.\n", "HELLO"); #endif GNUNET_free (msg); return 0; } #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transmitting `%s' request.\n", "HELLO"); #endif ssize = ntohs (msg->size); GNUNET_assert (size >= ssize); memcpy (buf, msg, ssize); GNUNET_free (msg); return ssize; } /** * Offer the transport service the HELLO of another peer. Note that * the transport service may just ignore this message if the HELLO is * malformed or useless due to our local configuration. * * @param handle connection to transport service * @param hello the hello message * @param cont continuation to call when HELLO has been sent * @param cls closure for continuation * */ void GNUNET_TRANSPORT_offer_hello (struct GNUNET_TRANSPORT_Handle *handle, const struct GNUNET_MessageHeader *hello, GNUNET_SCHEDULER_Task cont, void *cls) { uint16_t size; struct GNUNET_PeerIdentity peer; struct GNUNET_MessageHeader *msg; if (NULL == handle->client) return; GNUNET_break (ntohs (hello->type) == GNUNET_MESSAGE_TYPE_HELLO); size = ntohs (hello->size); GNUNET_break (size >= sizeof (struct GNUNET_MessageHeader)); if (GNUNET_OK != GNUNET_HELLO_get_id ((const struct GNUNET_HELLO_Message *) hello, &peer)) { GNUNET_break (0); return; } msg = GNUNET_malloc (size); memcpy (msg, hello, size); #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Offering `%s' message of `%4s' to transport for validation.\n", "HELLO", GNUNET_i2s (&peer)); #endif schedule_control_transmit (handle, size, &send_hello, msg); } /** * Obtain the HELLO message for this peer. * * @param handle connection to transport service * @param rec function to call with the HELLO, sender will be our peer * identity; message and sender will be NULL on timeout * (handshake with transport service pending/failed). * cost estimate will be 0. * @param rec_cls closure for rec * @return handle to cancel the operation */ struct GNUNET_TRANSPORT_GetHelloHandle * GNUNET_TRANSPORT_get_hello (struct GNUNET_TRANSPORT_Handle *handle, GNUNET_TRANSPORT_HelloUpdateCallback rec, void *rec_cls) { struct GNUNET_TRANSPORT_GetHelloHandle *hwl; hwl = GNUNET_malloc (sizeof (struct GNUNET_TRANSPORT_GetHelloHandle)); hwl->rec = rec; hwl->rec_cls = rec_cls; hwl->handle = handle; GNUNET_CONTAINER_DLL_insert (handle->hwl_head, handle->hwl_tail, hwl); if (handle->my_hello != NULL) rec (rec_cls, (const struct GNUNET_MessageHeader *) handle->my_hello); return hwl; } /** * Stop receiving updates about changes to our HELLO message. * * @param ghh handle to cancel */ void GNUNET_TRANSPORT_get_hello_cancel (struct GNUNET_TRANSPORT_GetHelloHandle *ghh) { struct GNUNET_TRANSPORT_Handle *handle = ghh->handle; GNUNET_CONTAINER_DLL_remove (handle->hwl_head, handle->hwl_tail, ghh); GNUNET_free (ghh); } /** * Connect to the transport service. Note that the connection may * complete (or fail) asynchronously. * * @param cfg configuration to use * @param self our own identity (API should check that it matches * the identity found by transport), or NULL (no check) * @param cls closure for the callbacks * @param rec receive function to call * @param nc function to call on connect events * @param nd function to call on disconnect events */ struct GNUNET_TRANSPORT_Handle * GNUNET_TRANSPORT_connect (const struct GNUNET_CONFIGURATION_Handle *cfg, const struct GNUNET_PeerIdentity *self, void *cls, GNUNET_TRANSPORT_ReceiveCallback rec, GNUNET_TRANSPORT_NotifyConnect nc, GNUNET_TRANSPORT_NotifyDisconnect nd) { struct GNUNET_TRANSPORT_Handle *ret; ret = GNUNET_malloc (sizeof (struct GNUNET_TRANSPORT_Handle)); if (self != NULL) { ret->self = *self; ret->check_self = GNUNET_YES; } ret->cfg = cfg; ret->cls = cls; ret->rec = rec; ret->nc_cb = nc; ret->nd_cb = nd; ret->reconnect_delay = GNUNET_TIME_UNIT_ZERO; ret->neighbours = GNUNET_CONTAINER_multihashmap_create (STARTING_NEIGHBOURS_SIZE); ret->ready_heap = GNUNET_CONTAINER_heap_create (GNUNET_CONTAINER_HEAP_ORDER_MIN); ret->reconnect_task = GNUNET_SCHEDULER_add_now (&reconnect, ret); return ret; } /** * Disconnect from the transport service. * * @param handle handle to the service as returned from GNUNET_TRANSPORT_connect */ void GNUNET_TRANSPORT_disconnect (struct GNUNET_TRANSPORT_Handle *handle) { #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transport disconnect called!\n"); #endif /* this disconnects all neighbours... */ if (handle->reconnect_task == GNUNET_SCHEDULER_NO_TASK) disconnect_and_schedule_reconnect (handle); /* and now we stop trying to connect again... */ if (handle->reconnect_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (handle->reconnect_task); handle->reconnect_task = GNUNET_SCHEDULER_NO_TASK; } GNUNET_CONTAINER_multihashmap_destroy (handle->neighbours); handle->neighbours = NULL; if (handle->quota_task != GNUNET_SCHEDULER_NO_TASK) { GNUNET_SCHEDULER_cancel (handle->quota_task); handle->quota_task = GNUNET_SCHEDULER_NO_TASK; } GNUNET_free_non_null (handle->my_hello); handle->my_hello = NULL; GNUNET_assert (handle->hwl_head == NULL); GNUNET_assert (handle->hwl_tail == NULL); GNUNET_CONTAINER_heap_destroy (handle->ready_heap); handle->ready_heap = NULL; GNUNET_free (handle); } /** * Check if we could queue a message of the given size for * transmission. The transport service will take both its * internal buffers and bandwidth limits imposed by the * other peer into consideration when answering this query. * * @param handle connection to transport service * @param target who should receive the message * @param size how big is the message we want to transmit? * @param priority how important is the message? * @param timeout after how long should we give up (and call * notify with buf NULL and size 0)? * @param notify function to call when we are ready to * send such a message * @param notify_cls closure for notify * @return NULL if someone else is already waiting to be notified * non-NULL if the notify callback was queued (can be used to cancel * using GNUNET_TRANSPORT_notify_transmit_ready_cancel) */ struct GNUNET_TRANSPORT_TransmitHandle * GNUNET_TRANSPORT_notify_transmit_ready (struct GNUNET_TRANSPORT_Handle *handle, const struct GNUNET_PeerIdentity *target, size_t size, uint32_t priority, struct GNUNET_TIME_Relative timeout, GNUNET_CONNECTION_TransmitReadyNotify notify, void *notify_cls) { struct Neighbour *n; struct GNUNET_TRANSPORT_TransmitHandle *th; struct GNUNET_TIME_Relative delay; n = neighbour_find (handle, target); if (NULL == n) { /* use GNUNET_TRANSPORT_try_connect first, only use this function * once a connection has been established */ GNUNET_assert (0); return NULL; } if (NULL != n->th) { /* attempt to send two messages at the same time to the same peer */ GNUNET_assert (0); return NULL; } GNUNET_assert (NULL == n->hn); th = GNUNET_malloc (sizeof (struct GNUNET_TRANSPORT_TransmitHandle)); th->neighbour = n; th->notify = notify; th->notify_cls = notify_cls; th->timeout = GNUNET_TIME_relative_to_absolute (timeout); th->notify_size = size; th->priority = priority; n->th = th; /* calculate when our transmission should be ready */ delay = GNUNET_BANDWIDTH_tracker_get_delay (&n->out_tracker, size); if (delay.rel_value > timeout.rel_value) delay.rel_value = 0; /* notify immediately (with failure) */ #if DEBUG_TRANSPORT_API GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Bandwidth tracker allows next transmission to peer %s in %llu ms\n", GNUNET_i2s (target), (unsigned long long) delay.rel_value); #endif n->hn = GNUNET_CONTAINER_heap_insert (handle->ready_heap, n, delay.rel_value); schedule_transmission (handle); return th; } /** * Cancel the specified transmission-ready notification. * * @param th handle returned from GNUNET_TRANSPORT_notify_transmit_ready */ void GNUNET_TRANSPORT_notify_transmit_ready_cancel (struct GNUNET_TRANSPORT_TransmitHandle *th) { struct Neighbour *n; GNUNET_assert (NULL == th->next); GNUNET_assert (NULL == th->prev); n = th->neighbour; GNUNET_assert (th == n->th); n->th = NULL; if (n->hn != NULL) { GNUNET_CONTAINER_heap_remove_node (n->hn); n->hn = NULL; } else { GNUNET_assert (GNUNET_SCHEDULER_NO_TASK != th->timeout_task); GNUNET_SCHEDULER_cancel (th->timeout_task); th->timeout_task = GNUNET_SCHEDULER_NO_TASK; } GNUNET_free (th); } /* end of transport_api.c */