/* This file is part of GNUnet. (C) 2001, 2002, 2003, 2004, 2005, 2006, 2009 Christian Grothoff (and other contributing authors) GNUnet is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNUnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNUnet; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. SHA-512 code by Jean-Luc Cooke Copyright (c) Jean-Luc Cooke Copyright (c) Andrew McDonald Copyright (c) 2003 Kyle McMartin */ /** * @file util/crypto_hash.c * @brief SHA-512 GNUNET_CRYPTO_hash related functions * @author Christian Grothoff */ #include "platform.h" #include "gnunet_common.h" #include "gnunet_crypto_lib.h" #include "gnunet_disk_lib.h" #define SHA512_DIGEST_SIZE 64 #define SHA512_HMAC_BLOCK_SIZE 128 struct sha512_ctx { unsigned long long state[8]; unsigned int count[4]; unsigned char buf[128]; }; static unsigned long long Ch (unsigned long long x, unsigned long long y, unsigned long long z) { return z ^ (x & (y ^ z)); } static unsigned long long Maj (unsigned long long x, unsigned long long y, unsigned long long z) { return (x & y) | (z & (x | y)); } static unsigned long long RORu64 (unsigned long long x, unsigned long long y) { return (x >> y) | (x << (64 - y)); } const unsigned long long sha512_K[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, }; #define e0(x) (RORu64(x,28) ^ RORu64(x,34) ^ RORu64(x,39)) #define e1(x) (RORu64(x,14) ^ RORu64(x,18) ^ RORu64(x,41)) #define s0(x) (RORu64(x, 1) ^ RORu64(x, 8) ^ (x >> 7)) #define s1(x) (RORu64(x,19) ^ RORu64(x,61) ^ (x >> 6)) /* H* initial state for SHA-512 */ #define H0 0x6a09e667f3bcc908ULL #define H1 0xbb67ae8584caa73bULL #define H2 0x3c6ef372fe94f82bULL #define H3 0xa54ff53a5f1d36f1ULL #define H4 0x510e527fade682d1ULL #define H5 0x9b05688c2b3e6c1fULL #define H6 0x1f83d9abfb41bd6bULL #define H7 0x5be0cd19137e2179ULL /* H'* initial state for SHA-384 */ #define HP0 0xcbbb9d5dc1059ed8ULL #define HP1 0x629a292a367cd507ULL #define HP2 0x9159015a3070dd17ULL #define HP3 0x152fecd8f70e5939ULL #define HP4 0x67332667ffc00b31ULL #define HP5 0x8eb44a8768581511ULL #define HP6 0xdb0c2e0d64f98fa7ULL #define HP7 0x47b5481dbefa4fa4ULL #define LOAD_OP(t1, I, W, input) \ t1 = input[(8*I) ] & 0xff;\ t1 <<= 8;\ t1 |= input[(8*I)+1] & 0xff;\ t1 <<= 8;\ t1 |= input[(8*I)+2] & 0xff;\ t1 <<= 8;\ t1 |= input[(8*I)+3] & 0xff;\ t1 <<= 8;\ t1 |= input[(8*I)+4] & 0xff;\ t1 <<= 8;\ t1 |= input[(8*I)+5] & 0xff;\ t1 <<= 8;\ t1 |= input[(8*I)+6] & 0xff;\ t1 <<= 8;\ t1 |= input[(8*I)+7] & 0xff;\ W[I] = t1; #define BLEND_OP(I, W) \ W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16]; static void sha512_transform (unsigned long long *state, const unsigned char *input) { unsigned long long a, b, c, d, e, f, g, h, t1, t2; unsigned long long W[80]; unsigned long long t0; int i; /* load the input */ for (i = 0; i < 16; i++) { LOAD_OP (t0, i, W, input); } for (i = 16; i < 80; i++) { BLEND_OP (i, W); } /* load the state into our registers */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; /* now iterate */ for (i = 0; i < 80; i += 8) { t1 = h + e1 (e) + Ch (e, f, g) + sha512_K[i] + W[i]; t2 = e0 (a) + Maj (a, b, c); d += t1; h = t1 + t2; t1 = g + e1 (d) + Ch (d, e, f) + sha512_K[i + 1] + W[i + 1]; t2 = e0 (h) + Maj (h, a, b); c += t1; g = t1 + t2; t1 = f + e1 (c) + Ch (c, d, e) + sha512_K[i + 2] + W[i + 2]; t2 = e0 (g) + Maj (g, h, a); b += t1; f = t1 + t2; t1 = e + e1 (b) + Ch (b, c, d) + sha512_K[i + 3] + W[i + 3]; t2 = e0 (f) + Maj (f, g, h); a += t1; e = t1 + t2; t1 = d + e1 (a) + Ch (a, b, c) + sha512_K[i + 4] + W[i + 4]; t2 = e0 (e) + Maj (e, f, g); h += t1; d = t1 + t2; t1 = c + e1 (h) + Ch (h, a, b) + sha512_K[i + 5] + W[i + 5]; t2 = e0 (d) + Maj (d, e, f); g += t1; c = t1 + t2; t1 = b + e1 (g) + Ch (g, h, a) + sha512_K[i + 6] + W[i + 6]; t2 = e0 (c) + Maj (c, d, e); f += t1; b = t1 + t2; t1 = a + e1 (f) + Ch (f, g, h) + sha512_K[i + 7] + W[i + 7]; t2 = e0 (b) + Maj (b, c, d); e += t1; a = t1 + t2; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } static void sha512_init (struct sha512_ctx *sctx) { sctx->state[0] = H0; sctx->state[1] = H1; sctx->state[2] = H2; sctx->state[3] = H3; sctx->state[4] = H4; sctx->state[5] = H5; sctx->state[6] = H6; sctx->state[7] = H7; sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0; memset (sctx->buf, 0, sizeof (sctx->buf)); } static void sha512_update (struct sha512_ctx *sctx, const unsigned char *data, unsigned int len) { unsigned int i, index, part_len; /* Compute number of bytes mod 128 */ index = (unsigned int) ((sctx->count[0] >> 3) & 0x7F); /* Update number of bits */ if ((sctx->count[0] += (len << 3)) < (len << 3)) { if ((sctx->count[1] += 1) < 1) if ((sctx->count[2] += 1) < 1) sctx->count[3]++; sctx->count[1] += (len >> 29); } part_len = 128 - index; /* Transform as many times as possible. */ if (len >= part_len) { memcpy (&sctx->buf[index], data, part_len); sha512_transform (sctx->state, sctx->buf); for (i = part_len; i + 127 < len; i += 128) sha512_transform (sctx->state, &data[i]); index = 0; } else { i = 0; } /* Buffer remaining input */ memcpy (&sctx->buf[index], &data[i], len - i); } static void sha512_final (struct sha512_ctx *sctx, unsigned char *hash) { static unsigned char padding[128] = { 0x80, }; unsigned int t; unsigned char bits[128]; unsigned int index; unsigned int pad_len; unsigned long long t2; int i, j; /* Save number of bits */ t = sctx->count[0]; bits[15] = t; t >>= 8; bits[14] = t; t >>= 8; bits[13] = t; t >>= 8; bits[12] = t; t = sctx->count[1]; bits[11] = t; t >>= 8; bits[10] = t; t >>= 8; bits[9] = t; t >>= 8; bits[8] = t; t = sctx->count[2]; bits[7] = t; t >>= 8; bits[6] = t; t >>= 8; bits[5] = t; t >>= 8; bits[4] = t; t = sctx->count[3]; bits[3] = t; t >>= 8; bits[2] = t; t >>= 8; bits[1] = t; t >>= 8; bits[0] = t; /* Pad out to 112 mod 128. */ index = (sctx->count[0] >> 3) & 0x7f; pad_len = (index < 112) ? (112 - index) : ((128 + 112) - index); sha512_update (sctx, padding, pad_len); /* Append length (before padding) */ sha512_update (sctx, bits, 16); /* Store state in digest */ for (i = j = 0; i < 8; i++, j += 8) { t2 = sctx->state[i]; hash[j + 7] = (char) t2 & 0xff; t2 >>= 8; hash[j + 6] = (char) t2 & 0xff; t2 >>= 8; hash[j + 5] = (char) t2 & 0xff; t2 >>= 8; hash[j + 4] = (char) t2 & 0xff; t2 >>= 8; hash[j + 3] = (char) t2 & 0xff; t2 >>= 8; hash[j + 2] = (char) t2 & 0xff; t2 >>= 8; hash[j + 1] = (char) t2 & 0xff; t2 >>= 8; hash[j] = (char) t2 & 0xff; } /* Zeroize sensitive information. */ memset (sctx, 0, sizeof (struct sha512_ctx)); } /** * Hash block of given size. * * @param block the data to GNUNET_CRYPTO_hash, length is given as a second argument * @param size the length of the data to GNUNET_CRYPTO_hash * @param ret pointer to where to write the hashcode */ void GNUNET_CRYPTO_hash (const void *block, size_t size, GNUNET_HashCode * ret) { struct sha512_ctx ctx; sha512_init (&ctx); sha512_update (&ctx, block, size); sha512_final (&ctx, (unsigned char *) ret); } /** * Context used when hashing a file. */ struct FileHashContext { /** * Function to call upon completion. */ GNUNET_CRYPTO_HashCompletedCallback callback; /** * Closure for callback. */ void *callback_cls; /** * IO buffer. */ unsigned char *buffer; /** * Name of the file we are hashing. */ char *filename; /** * Cummulated hash. */ struct sha512_ctx hctx; /** * Blocksize. */ size_t bsize; /** * Size of the file. */ uint64_t fsize; /** * Current offset. */ uint64_t offset; /** * File descriptor. */ struct GNUNET_DISK_FileHandle *fh; }; /** * Report result of hash computation to callback * and free associated resources. */ static void file_hash_finish (struct FileHashContext *fhc, const GNUNET_HashCode * res) { fhc->callback (fhc->callback_cls, res); GNUNET_free (fhc->filename); if (!GNUNET_DISK_handle_invalid (fhc->fh)) GNUNET_break (GNUNET_OK == GNUNET_DISK_file_close (fhc->fh)); GNUNET_free (fhc); /* also frees fhc->buffer */ } /** * File hashing task. * * @param cls closure * @param tc context */ static void file_hash_task (void *cls, const struct GNUNET_SCHEDULER_TaskContext *tc) { struct FileHashContext *fhc = cls; GNUNET_HashCode res; size_t delta; GNUNET_assert (fhc->offset < fhc->fsize); delta = fhc->bsize; if (fhc->fsize - fhc->offset < delta) delta = fhc->fsize - fhc->offset; if (delta != GNUNET_DISK_file_read (fhc->fh, fhc->buffer, delta)) { GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING, "read", fhc->filename); file_hash_finish (fhc, NULL); return; } sha512_update (&fhc->hctx, fhc->buffer, delta); fhc->offset += delta; if (fhc->offset == fhc->fsize) { sha512_final (&fhc->hctx, (unsigned char *) &res); file_hash_finish (fhc, &res); return; } GNUNET_SCHEDULER_add_after (tc->sched, GNUNET_SCHEDULER_NO_TASK, &file_hash_task, fhc); } /** * Compute the hash of an entire file. * * @param sched scheduler to use * @param priority scheduling priority to use * @param filename name of file to hash * @param blocksize number of bytes to process in one task * @param callback function to call upon completion * @param callback_cls closure for callback */ void GNUNET_CRYPTO_hash_file (struct GNUNET_SCHEDULER_Handle *sched, enum GNUNET_SCHEDULER_Priority priority, const char *filename, size_t blocksize, GNUNET_CRYPTO_HashCompletedCallback callback, void *callback_cls) { struct FileHashContext *fhc; GNUNET_assert (blocksize > 0); fhc = GNUNET_malloc (sizeof (struct FileHashContext) + blocksize); fhc->callback = callback; fhc->callback_cls = callback_cls; fhc->buffer = (unsigned char *) &fhc[1]; fhc->filename = GNUNET_strdup (filename); fhc->fh = NULL; sha512_init (&fhc->hctx); fhc->bsize = blocksize; if (GNUNET_OK != GNUNET_DISK_file_size (filename, &fhc->fsize, GNUNET_NO)) { file_hash_finish (fhc, NULL); return; } fhc->fh = GNUNET_DISK_file_open (filename, GNUNET_DISK_OPEN_READ, GNUNET_DISK_PERM_NONE); if (!fhc->fh) { file_hash_finish (fhc, NULL); return; } GNUNET_SCHEDULER_add_with_priority (sched, priority, &file_hash_task, fhc); } /* ***************** binary-ASCII encoding *************** */ /** * 32 characters for encoding (GNUNET_CRYPTO_hash => 32 characters) */ static char *encTable__ = "0123456789ABCDEFGHIJKLMNOPQRSTUV"; static unsigned int getValue__ (unsigned char a) { if ((a >= '0') && (a <= '9')) return a - '0'; if ((a >= 'A') && (a <= 'V')) return (a - 'A' + 10); return -1; } /** * Convert GNUNET_CRYPTO_hash to ASCII encoding. The ASCII encoding is rather * GNUnet specific. It was chosen such that it only uses characters * in [0-9A-V], can be produced without complex arithmetics and uses a * small number of characters. The GNUnet encoding uses 102 * characters plus a null terminator. * * @param block the hash code * @param result where to store the encoding (struct GNUNET_CRYPTO_HashAsciiEncoded can be * safely cast to char*, a '\\0' termination is set). */ void GNUNET_CRYPTO_hash_to_enc (const GNUNET_HashCode * block, struct GNUNET_CRYPTO_HashAsciiEncoded *result) { unsigned int wpos; unsigned int rpos; unsigned int bits; unsigned int vbit; GNUNET_assert (block != NULL); GNUNET_assert (result != NULL); vbit = 0; wpos = 0; rpos = 0; bits = 0; while ((rpos < sizeof (GNUNET_HashCode)) || (vbit > 0)) { if ((rpos < sizeof (GNUNET_HashCode)) && (vbit < 5)) { bits = (bits << 8) | ((unsigned char *) block)[rpos++]; /* eat 8 more bits */ vbit += 8; } if (vbit < 5) { bits <<= (5 - vbit); /* zero-padding */ GNUNET_assert (vbit == 2); /* padding by 3: 512+3 mod 5 == 0 */ vbit = 5; } GNUNET_assert (wpos < sizeof (struct GNUNET_CRYPTO_HashAsciiEncoded) - 1); result->encoding[wpos++] = encTable__[(bits >> (vbit - 5)) & 31]; vbit -= 5; } GNUNET_assert (wpos == sizeof (struct GNUNET_CRYPTO_HashAsciiEncoded) - 1); GNUNET_assert (vbit == 0); result->encoding[wpos] = '\0'; } /** * Convert ASCII encoding back to GNUNET_CRYPTO_hash * * @param enc the encoding * @param result where to store the GNUNET_CRYPTO_hash code * @return GNUNET_OK on success, GNUNET_SYSERR if result has the wrong encoding */ int GNUNET_CRYPTO_hash_from_string (const char *enc, GNUNET_HashCode * result) { unsigned int rpos; unsigned int wpos; unsigned int bits; unsigned int vbit; if (strlen (enc) != sizeof (struct GNUNET_CRYPTO_HashAsciiEncoded) - 1) return GNUNET_SYSERR; vbit = 2; /* padding! */ wpos = sizeof (GNUNET_HashCode); rpos = sizeof (struct GNUNET_CRYPTO_HashAsciiEncoded) - 1; bits = getValue__ (enc[--rpos]) >> 3; while (wpos > 0) { GNUNET_assert (rpos > 0); bits = (getValue__ (enc[--rpos]) << vbit) | bits; vbit += 5; if (vbit >= 8) { ((unsigned char *) result)[--wpos] = (unsigned char) bits; bits >>= 8; vbit -= 8; } } GNUNET_assert (rpos == 0); GNUNET_assert (vbit == 0); return GNUNET_OK; } /** * Compute the distance between 2 hashcodes. The computation must be * fast, not involve bits[0] or bits[4] (they're used elsewhere), and be * somewhat consistent. And of course, the result should be a positive * number. * * @returns a positive number which is a measure for * hashcode proximity. */ unsigned int GNUNET_CRYPTO_hash_distance_u32 (const GNUNET_HashCode * a, const GNUNET_HashCode * b) { unsigned int x1 = (a->bits[1] - b->bits[1]) >> 16; unsigned int x2 = (b->bits[1] - a->bits[1]) >> 16; return (x1 * x2); } void GNUNET_CRYPTO_hash_create_random (enum GNUNET_CRYPTO_Quality mode, GNUNET_HashCode * result) { int i; for (i = (sizeof (GNUNET_HashCode) / sizeof (uint32_t)) - 1; i >= 0; i--) result->bits[i] = GNUNET_CRYPTO_random_u32 (mode, (uint32_t) - 1); } void GNUNET_CRYPTO_hash_difference (const GNUNET_HashCode * a, const GNUNET_HashCode * b, GNUNET_HashCode * result) { int i; for (i = (sizeof (GNUNET_HashCode) / sizeof (unsigned int)) - 1; i >= 0; i--) result->bits[i] = b->bits[i] - a->bits[i]; } void GNUNET_CRYPTO_hash_sum (const GNUNET_HashCode * a, const GNUNET_HashCode * delta, GNUNET_HashCode * result) { int i; for (i = (sizeof (GNUNET_HashCode) / sizeof (unsigned int)) - 1; i >= 0; i--) result->bits[i] = delta->bits[i] + a->bits[i]; } void GNUNET_CRYPTO_hash_xor (const GNUNET_HashCode * a, const GNUNET_HashCode * b, GNUNET_HashCode * result) { int i; for (i = (sizeof (GNUNET_HashCode) / sizeof (unsigned int)) - 1; i >= 0; i--) result->bits[i] = a->bits[i] ^ b->bits[i]; } /** * Convert a hashcode into a key. */ void GNUNET_CRYPTO_hash_to_aes_key (const GNUNET_HashCode * hc, struct GNUNET_CRYPTO_AesSessionKey *skey, struct GNUNET_CRYPTO_AesInitializationVector *iv) { GNUNET_assert (sizeof (GNUNET_HashCode) >= GNUNET_CRYPTO_AES_KEY_LENGTH + sizeof (struct GNUNET_CRYPTO_AesInitializationVector)); memcpy (skey, hc, GNUNET_CRYPTO_AES_KEY_LENGTH); skey->crc32 = htonl (GNUNET_CRYPTO_crc32_n (skey, GNUNET_CRYPTO_AES_KEY_LENGTH)); memcpy (iv, &((char *) hc)[GNUNET_CRYPTO_AES_KEY_LENGTH], sizeof (struct GNUNET_CRYPTO_AesInitializationVector)); } /** * Obtain a bit from a hashcode. * @param code the GNUNET_CRYPTO_hash to index bit-wise * @param bit index into the hashcode, [0...511] * @return Bit \a bit from hashcode \a code, -1 for invalid index */ int GNUNET_CRYPTO_hash_get_bit (const GNUNET_HashCode * code, unsigned int bit) { GNUNET_assert (bit < 8 * sizeof (GNUNET_HashCode)); return (((unsigned char *) code)[bit >> 3] & (1 << (bit & 7))) > 0; } /** * Compare function for HashCodes, producing a total ordering * of all hashcodes. * @return 1 if h1 > h2, -1 if h1 < h2 and 0 if h1 == h2. */ int GNUNET_CRYPTO_hash_cmp (const GNUNET_HashCode * h1, const GNUNET_HashCode * h2) { unsigned int *i1; unsigned int *i2; int i; i1 = (unsigned int *) h1; i2 = (unsigned int *) h2; for (i = (sizeof (GNUNET_HashCode) / sizeof (unsigned int)) - 1; i >= 0; i--) { if (i1[i] > i2[i]) return 1; if (i1[i] < i2[i]) return -1; } return 0; } /** * Find out which of the two GNUNET_CRYPTO_hash codes is closer to target * in the XOR metric (Kademlia). * @return -1 if h1 is closer, 1 if h2 is closer and 0 if h1==h2. */ int GNUNET_CRYPTO_hash_xorcmp (const GNUNET_HashCode * h1, const GNUNET_HashCode * h2, const GNUNET_HashCode * target) { int i; unsigned int d1; unsigned int d2; for (i = sizeof (GNUNET_HashCode) / sizeof (unsigned int) - 1; i >= 0; i--) { d1 = ((unsigned int *) h1)[i] ^ ((unsigned int *) target)[i]; d2 = ((unsigned int *) h2)[i] ^ ((unsigned int *) target)[i]; if (d1 > d2) return 1; else if (d1 < d2) return -1; } return 0; } /* end of crypto_hash.c */