/* This file is part of GNUnet. (C) 2001-2013 Christian Grothoff (and other contributing authors) GNUnet is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GNUnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNUnet; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /** * @file util/time.c * @author Christian Grothoff * @brief functions for handling time and time arithmetic */ #include "platform.h" #include "gnunet_util_lib.h" #define LOG(kind,...) GNUNET_log_from (kind, "util", __VA_ARGS__) /** * Variable used to simulate clock skew. Used for testing, never in production. */ static long long timestamp_offset; /** * Set the timestamp offset for this instance. * * @param offset the offset to skew the locale time by */ void GNUNET_TIME_set_offset (long long offset) { timestamp_offset = offset; } /** * Get the timestamp offset for this instance. * * @return the offset we currently skew the locale time by */ long long GNUNET_TIME_get_offset () { return timestamp_offset; } /** * Get the current time (works just as "time", just that we use the * unit of time that the cron-jobs use (and is 64 bit)). * * @return the current time */ struct GNUNET_TIME_Absolute GNUNET_TIME_absolute_get () { struct GNUNET_TIME_Absolute ret; struct timeval tv; GETTIMEOFDAY (&tv, NULL); ret.abs_value_us = (uint64_t) (((uint64_t) tv.tv_sec * 1000LL * 1000LL) + ((uint64_t) tv.tv_usec)) + timestamp_offset; return ret; } /** * Return relative time of 0ms. */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_get_zero_ () { static struct GNUNET_TIME_Relative zero; return zero; } /** * Return absolute time of 0ms. */ struct GNUNET_TIME_Absolute GNUNET_TIME_absolute_get_zero_ () { static struct GNUNET_TIME_Absolute zero; return zero; } /** * Return relative time of 1us. */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_get_unit_ () { static struct GNUNET_TIME_Relative one = { 1 }; return one; } /** * Return relative time of 1ms. */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_get_millisecond_ () { static struct GNUNET_TIME_Relative one = { 1000 }; return one; } /** * Return relative time of 1s. */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_get_second_ () { static struct GNUNET_TIME_Relative one = { 1000 * 1000LL }; return one; } /** * Return relative time of 1 minute. */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_get_minute_ () { static struct GNUNET_TIME_Relative one = { 60 * 1000 * 1000LL }; return one; } /** * Return relative time of 1 hour. */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_get_hour_ () { static struct GNUNET_TIME_Relative one = { 60 * 60 * 1000 * 1000LL }; return one; } /** * Return "forever". */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_get_forever_ () { static struct GNUNET_TIME_Relative forever = { UINT64_MAX }; return forever; } /** * Return "forever". */ struct GNUNET_TIME_Absolute GNUNET_TIME_absolute_get_forever_ () { static struct GNUNET_TIME_Absolute forever = { UINT64_MAX }; return forever; } /** * Convert relative time to an absolute time in the * future. * * @return timestamp that is "rel" in the future, or FOREVER if rel==FOREVER (or if we would overflow) */ struct GNUNET_TIME_Absolute GNUNET_TIME_relative_to_absolute (struct GNUNET_TIME_Relative rel) { struct GNUNET_TIME_Absolute ret; if (rel.rel_value_us == UINT64_MAX) return GNUNET_TIME_UNIT_FOREVER_ABS; struct GNUNET_TIME_Absolute now = GNUNET_TIME_absolute_get (); if (rel.rel_value_us + now.abs_value_us < rel.rel_value_us) { GNUNET_break (0); /* overflow... */ return GNUNET_TIME_UNIT_FOREVER_ABS; } ret.abs_value_us = rel.rel_value_us + now.abs_value_us; return ret; } /** * Return the minimum of two relative time values. * * @param t1 first timestamp * @param t2 other timestamp * @return timestamp that is smaller */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_min (struct GNUNET_TIME_Relative t1, struct GNUNET_TIME_Relative t2) { return (t1.rel_value_us < t2.rel_value_us) ? t1 : t2; } /** * Return the maximum of two relative time values. * * @param t1 first timestamp * @param t2 other timestamp * @return timestamp that is larger */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_max (struct GNUNET_TIME_Relative t1, struct GNUNET_TIME_Relative t2) { return (t1.rel_value_us > t2.rel_value_us) ? t1 : t2; } /** * Return the minimum of two relative time values. * * @param t1 first timestamp * @param t2 other timestamp * @return timestamp that is smaller */ struct GNUNET_TIME_Absolute GNUNET_TIME_absolute_min (struct GNUNET_TIME_Absolute t1, struct GNUNET_TIME_Absolute t2) { return (t1.abs_value_us < t2.abs_value_us) ? t1 : t2; } /** * Return the maximum of two relative time values. * * @param t1 first timestamp * @param t2 other timestamp * @return timestamp that is bigger */ struct GNUNET_TIME_Absolute GNUNET_TIME_absolute_max (struct GNUNET_TIME_Absolute t1, struct GNUNET_TIME_Absolute t2) { return (t1.abs_value_us > t2.abs_value_us) ? t1 : t2; } /** * Given a timestamp in the future, how much time * remains until then? * * @return future - now, or 0 if now >= future, or FOREVER if future==FOREVER. */ struct GNUNET_TIME_Relative GNUNET_TIME_absolute_get_remaining (struct GNUNET_TIME_Absolute future) { struct GNUNET_TIME_Relative ret; if (future.abs_value_us == UINT64_MAX) return GNUNET_TIME_UNIT_FOREVER_REL; struct GNUNET_TIME_Absolute now = GNUNET_TIME_absolute_get (); if (now.abs_value_us > future.abs_value_us) return GNUNET_TIME_UNIT_ZERO; ret.rel_value_us = future.abs_value_us - now.abs_value_us; return ret; } /** * Compute the time difference between the given start and end times. * Use this function instead of actual subtraction to ensure that * "FOREVER" and overflows are handled correctly. * * @return 0 if start >= end; FOREVER if end==FOREVER; otherwise end - start */ struct GNUNET_TIME_Relative GNUNET_TIME_absolute_get_difference (struct GNUNET_TIME_Absolute start, struct GNUNET_TIME_Absolute end) { struct GNUNET_TIME_Relative ret; if (end.abs_value_us == UINT64_MAX) return GNUNET_TIME_UNIT_FOREVER_REL; if (end.abs_value_us < start.abs_value_us) return GNUNET_TIME_UNIT_ZERO; ret.rel_value_us = end.abs_value_us - start.abs_value_us; return ret; } /** * Get the duration of an operation as the * difference of the current time and the given start time "whence". * * @return aborts if whence==FOREVER, 0 if whence > now, otherwise now-whence. */ struct GNUNET_TIME_Relative GNUNET_TIME_absolute_get_duration (struct GNUNET_TIME_Absolute whence) { struct GNUNET_TIME_Absolute now; struct GNUNET_TIME_Relative ret; now = GNUNET_TIME_absolute_get (); GNUNET_assert (whence.abs_value_us != UINT64_MAX); if (whence.abs_value_us > now.abs_value_us) return GNUNET_TIME_UNIT_ZERO; ret.rel_value_us = now.abs_value_us - whence.abs_value_us; return ret; } /** * Add a given relative duration to the * given start time. * * @return FOREVER if either argument is FOREVER or on overflow; start+duration otherwise */ struct GNUNET_TIME_Absolute GNUNET_TIME_absolute_add (struct GNUNET_TIME_Absolute start, struct GNUNET_TIME_Relative duration) { struct GNUNET_TIME_Absolute ret; if ((start.abs_value_us == UINT64_MAX) || (duration.rel_value_us == UINT64_MAX)) return GNUNET_TIME_UNIT_FOREVER_ABS; if (start.abs_value_us + duration.rel_value_us < start.abs_value_us) { GNUNET_break (0); return GNUNET_TIME_UNIT_FOREVER_ABS; } ret.abs_value_us = start.abs_value_us + duration.rel_value_us; return ret; } /** * Subtract a given relative duration from the * given start time. * * @param start some absolute time * @param duration some relative time to subtract * @return ZERO if start <= duration, or FOREVER if start time is FOREVER; start-duration otherwise */ struct GNUNET_TIME_Absolute GNUNET_TIME_absolute_subtract (struct GNUNET_TIME_Absolute start, struct GNUNET_TIME_Relative duration) { struct GNUNET_TIME_Absolute ret; if (start.abs_value_us <= duration.rel_value_us) return GNUNET_TIME_UNIT_ZERO_ABS; if (start.abs_value_us == GNUNET_TIME_UNIT_FOREVER_ABS.abs_value_us) return GNUNET_TIME_UNIT_FOREVER_ABS; ret.abs_value_us = start.abs_value_us - duration.rel_value_us; return ret; } /** * Multiply relative time by a given factor. * * @return FOREVER if rel=FOREVER or on overflow; otherwise rel*factor */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_multiply (struct GNUNET_TIME_Relative rel, unsigned int factor) { struct GNUNET_TIME_Relative ret; if (0 == factor) return GNUNET_TIME_UNIT_ZERO; if (rel.rel_value_us == GNUNET_TIME_UNIT_FOREVER_REL.rel_value_us) return GNUNET_TIME_UNIT_FOREVER_REL; ret.rel_value_us = rel.rel_value_us * (unsigned long long) factor; if (ret.rel_value_us / factor != rel.rel_value_us) { GNUNET_break (0); return GNUNET_TIME_UNIT_FOREVER_REL; } return ret; } /** * Divide relative time by a given factor. * * @param rel some duration * @param factor integer to divide by * @return FOREVER if rel=FOREVER or factor==0; otherwise rel/factor */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_divide (struct GNUNET_TIME_Relative rel, unsigned int factor) { struct GNUNET_TIME_Relative ret; if ((0 == factor) || (rel.rel_value_us == GNUNET_TIME_UNIT_FOREVER_REL.rel_value_us)) return GNUNET_TIME_UNIT_FOREVER_REL; ret.rel_value_us = rel.rel_value_us / (unsigned long long) factor; return ret; } /** * Calculate the estimate time of arrival/completion * for an operation. * * @param start when did the operation start? * @param finished how much has been done? * @param total how much must be done overall (same unit as for "finished") * @return remaining duration for the operation, * assuming it continues at the same speed */ struct GNUNET_TIME_Relative GNUNET_TIME_calculate_eta (struct GNUNET_TIME_Absolute start, uint64_t finished, uint64_t total) { struct GNUNET_TIME_Relative dur; double exp; struct GNUNET_TIME_Relative ret; GNUNET_break (finished <= total); if (finished >= total) return GNUNET_TIME_UNIT_ZERO; if (0 == finished) return GNUNET_TIME_UNIT_FOREVER_REL; dur = GNUNET_TIME_absolute_get_duration (start); exp = ((double) dur.rel_value_us) * ((double) total) / ((double) finished); ret.rel_value_us = ((uint64_t) exp) - dur.rel_value_us; return ret; } /** * Add relative times together. * * @param a1 first timestamp * @param a2 second timestamp * @return FOREVER if either argument is FOREVER or on overflow; a1+a2 otherwise */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_add (struct GNUNET_TIME_Relative a1, struct GNUNET_TIME_Relative a2) { struct GNUNET_TIME_Relative ret; if ((a1.rel_value_us == UINT64_MAX) || (a2.rel_value_us == UINT64_MAX)) return GNUNET_TIME_UNIT_FOREVER_REL; if (a1.rel_value_us + a2.rel_value_us < a1.rel_value_us) { GNUNET_break (0); return GNUNET_TIME_UNIT_FOREVER_REL; } ret.rel_value_us = a1.rel_value_us + a2.rel_value_us; return ret; } /** * Subtract relative timestamp from the other. * * @param a1 first timestamp * @param a2 second timestamp * @return ZERO if a2>=a1 (including both FOREVER), FOREVER if a1 is FOREVER, a1-a2 otherwise */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_subtract (struct GNUNET_TIME_Relative a1, struct GNUNET_TIME_Relative a2) { struct GNUNET_TIME_Relative ret; if (a2.rel_value_us >= a1.rel_value_us) return GNUNET_TIME_UNIT_ZERO; if (a1.rel_value_us == UINT64_MAX) return GNUNET_TIME_UNIT_FOREVER_REL; ret.rel_value_us = a1.rel_value_us - a2.rel_value_us; return ret; } /** * Convert relative time to network byte order. * * @param a time to convert * @return time in network byte order */ struct GNUNET_TIME_RelativeNBO GNUNET_TIME_relative_hton (struct GNUNET_TIME_Relative a) { struct GNUNET_TIME_RelativeNBO ret; ret.rel_value_us__ = GNUNET_htonll (a.rel_value_us); return ret; } /** * Convert relative time from network byte order. * * @param a time to convert * @return time in host byte order */ struct GNUNET_TIME_Relative GNUNET_TIME_relative_ntoh (struct GNUNET_TIME_RelativeNBO a) { struct GNUNET_TIME_Relative ret; ret.rel_value_us = GNUNET_ntohll (a.rel_value_us__); return ret; } /** * Convert absolute time to network byte order. * * @param a time to convert * @return time in network byte order */ struct GNUNET_TIME_AbsoluteNBO GNUNET_TIME_absolute_hton (struct GNUNET_TIME_Absolute a) { struct GNUNET_TIME_AbsoluteNBO ret; ret.abs_value_us__ = GNUNET_htonll (a.abs_value_us); return ret; } /** * Convert absolute time from network byte order. * * @param a time to convert * @return time in host byte order */ struct GNUNET_TIME_Absolute GNUNET_TIME_absolute_ntoh (struct GNUNET_TIME_AbsoluteNBO a) { struct GNUNET_TIME_Absolute ret; ret.abs_value_us = GNUNET_ntohll (a.abs_value_us__); return ret; } /** * Return the current year (i.e. '2011'). */ unsigned int GNUNET_TIME_get_current_year () { time_t tp; struct tm *t; tp = time (NULL); t = gmtime (&tp); if (t == NULL) return 0; return t->tm_year + 1900; } /** * Convert an expiration time to the respective year (rounds) * * @param at absolute time * @return year a year (after 1970), 0 on error */ unsigned int GNUNET_TIME_time_to_year (struct GNUNET_TIME_Absolute at) { struct tm *t; time_t tp; tp = at.abs_value_us / 1000LL / 1000LL; /* microseconds to seconds */ t = gmtime (&tp); if (t == NULL) return 0; return t->tm_year + 1900; } /** * Convert a year to an expiration time of January 1st of that year. * * @param year a year (after 1970, please ;-)). * @return absolute time for January 1st of that year. */ struct GNUNET_TIME_Absolute GNUNET_TIME_year_to_time (unsigned int year) { struct GNUNET_TIME_Absolute ret; time_t tp; struct tm t; memset (&t, 0, sizeof (t)); if (year < 1900) { GNUNET_break (0); return GNUNET_TIME_absolute_get (); /* now */ } t.tm_year = year - 1900; t.tm_mday = 1; t.tm_mon = 1; t.tm_wday = 1; t.tm_yday = 1; tp = mktime (&t); GNUNET_break (tp != (time_t) - 1); ret.abs_value_us = tp * 1000LL * 1000LL; /* seconds to microseconds */ return ret; } /* end of time.c */