1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
|
/*
This file is part of GNUnet.
Copyright (C) 2002-2013 GNUnet e.V.
GNUnet is free software: you can redistribute it and/or modify it
under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.
GNUnet is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
SPDX-License-Identifier: AGPL3.0-or-later
Portions of this code are derived from the Elligator-2 project,
which is licensed under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The Elligator-2 project can be found at: https://github.com/Kleshni/Elligator-2
Note that gmp is already a dependency of GnuTLS
*/
#include "platform.h"
#include "gnunet_common.h"
#include <gcrypt.h>
#include <sodium.h>
#include "gnunet_util_lib.h"
#include "benchmark.h"
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <gmp.h>
// Ed25519 subgroup of points with a low order
static const uint8_t lookupTable[8][crypto_scalarmult_SCALARBYTES] = {
{
0x26, 0xE8, 0x95, 0x8F, 0xC2, 0xB2, 0x27, 0xB0,
0x45, 0xC3, 0xF4, 0x89, 0xF2, 0xEF, 0x98, 0xF0,
0xD5, 0xDF, 0xAC, 0x05, 0xD3, 0xC6, 0x33, 0x39,
0xB1, 0x38, 0x02, 0x88, 0x6D, 0x53, 0xFC, 0x05
},
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
},
{
0xC7, 0x17, 0x6A, 0x70, 0x3D, 0x4D, 0xD8, 0x4F,
0xBA, 0x3C, 0x0B, 0x76, 0x0D, 0x10, 0x67, 0x0F,
0x2A, 0x20, 0x53, 0xFA, 0x2C, 0x39, 0xCC, 0xC6,
0x4E, 0xC7, 0xFD, 0x77, 0x92, 0xAC, 0x03, 0x7A
},
{
0xEC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F
}, {
0xC7, 0x17, 0x6A, 0x70, 0x3D, 0x4D, 0xD8, 0x4F,
0xBA, 0x3C, 0x0B, 0x76, 0x0D, 0x10, 0x67, 0x0F,
0x2A, 0x20, 0x53, 0xFA, 0x2C, 0x39, 0xCC, 0xC6,
0x4E, 0xC7, 0xFD, 0x77, 0x92, 0xAC, 0x03, 0xFA
}, {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80
}, {
0x26, 0xE8, 0x95, 0x8F, 0xC2, 0xB2, 0x27, 0xB0,
0x45, 0xC3, 0xF4, 0x89, 0xF2, 0xEF, 0x98, 0xF0,
0xD5, 0xDF, 0xAC, 0x05, 0xD3, 0xC6, 0x33, 0x39,
0xB1, 0x38, 0x02, 0x88, 0x6D, 0x53, 0xFC, 0x85
},{
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
};
// main.h from Kleshnis's elligator implementation
#include <limits.h>
#define P_BITS (256) // 255 significant bits + 1 for carry
#define P_BYTES ((P_BITS + CHAR_BIT - 1) / CHAR_BIT)
#define P_LIMBS ((P_BITS + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS)
// main.c from Kleshnis's elligator implementation
static const unsigned char p_bytes[P_BYTES] = {
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f
};
static const unsigned char negative_1_bytes[P_BYTES] = {
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f
};
static const unsigned char negative_2_bytes[P_BYTES] = {
0xeb, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f
};
static const unsigned char divide_negative_1_2_bytes[P_BYTES] = {
0xf6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f
};
static const unsigned char divide_plus_p_3_8_bytes[P_BYTES] = {
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f
};
static const unsigned char divide_minus_p_1_2_bytes[P_BYTES] = {
0xf6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f
};
static const unsigned char square_root_negative_1_bytes[P_BYTES] = {
0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4,
0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f,
0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b,
0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b
};
static const unsigned char A_bytes[P_BYTES] = {
0x06, 0x6d, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const unsigned char negative_A_bytes[P_BYTES] = {
0xe7, 0x92, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f
};
static const unsigned char u_bytes[P_BYTES] = {
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const unsigned char inverted_u_bytes[P_BYTES] = {
0xf7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f
};
static const unsigned char d_bytes[P_BYTES] = {
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52
};
static mp_limb_t p[P_LIMBS];
static mp_limb_t negative_1[P_LIMBS];
static mp_limb_t negative_2[P_LIMBS];
static mp_limb_t divide_negative_1_2[P_LIMBS];
static mp_limb_t divide_plus_p_3_8[P_LIMBS];
static mp_limb_t divide_minus_p_1_2[P_LIMBS];
static mp_limb_t square_root_negative_1[P_LIMBS];
static mp_limb_t A[P_LIMBS];
static mp_limb_t negative_A[P_LIMBS];
static mp_limb_t u[P_LIMBS];
static mp_limb_t inverted_u[P_LIMBS];
static mp_limb_t d[P_LIMBS];
static mp_size_t scratch_space_length;
// TODO
static void
decode_bytes (mp_limb_t *number, const uint8_t *bytes)
{
mp_limb_t scratch_space[1];
for (size_t i = 0; i < P_BYTES; ++i)
{
mpn_lshift (number, number, P_LIMBS, 8);
mpn_sec_add_1 (number, number, 1, bytes[P_BYTES - i - 1], scratch_space);
}
}
// TODO
static void
encode_bytes (uint8_t *bytes, mp_limb_t *number)
{
for (size_t i = 0; i < P_BYTES; ++i)
{
bytes[P_BYTES - i - 1] = mpn_lshift (number, number, P_LIMBS, 8);
}
}
void
GNUNET_CRYPTO_ecdhe_elligator_initialize (void);
/**
* Initialize elligator scratch space.
*/
void __attribute__ ((constructor))
GNUNET_CRYPTO_ecdhe_elligator_initialize (void)
{
static bool initialized = false;
mp_size_t scratch_space_lengths[] = {
// For least_square_root
mpn_sec_powm_itch (P_LIMBS, P_BITS - 1, P_LIMBS),
mpn_sec_sqr_itch (P_LIMBS),
mpn_sec_div_r_itch (P_LIMBS + P_LIMBS, P_LIMBS),
mpn_sec_sub_1_itch (P_LIMBS),
mpn_sec_mul_itch (P_LIMBS, P_LIMBS),
// For Elligator_2_Curve25519_encode
mpn_sec_powm_itch (P_LIMBS, P_BITS - 1, P_LIMBS),
mpn_sec_mul_itch (P_LIMBS, P_LIMBS),
mpn_sec_div_r_itch (P_LIMBS + P_LIMBS, P_LIMBS),
mpn_sec_sqr_itch (P_LIMBS),
mpn_sec_sub_1_itch (P_LIMBS),
// For Elligator_2_Curve25519_decode
mpn_sec_sqr_itch (P_LIMBS),
mpn_sec_div_r_itch (P_LIMBS + P_LIMBS, P_LIMBS),
mpn_sec_div_r_itch (P_LIMBS, P_LIMBS),
mpn_sec_mul_itch (P_LIMBS, P_LIMBS),
mpn_sec_add_1_itch (P_LIMBS),
mpn_sec_powm_itch (P_LIMBS, P_BITS - 1, P_LIMBS),
// For Elligator_2_Curve25519_convert_from_Ed25519
mpn_sec_sqr_itch (P_LIMBS),
mpn_sec_div_r_itch (P_LIMBS + P_LIMBS, P_LIMBS),
mpn_sec_mul_itch (P_LIMBS, P_LIMBS),
mpn_sec_add_1_itch (P_LIMBS),
mpn_sec_powm_itch (P_LIMBS, P_BITS - 1, P_LIMBS),
mpn_sec_sub_1_itch (P_LIMBS)
};
if (initialized)
{
return;
}
decode_bytes (p, p_bytes);
decode_bytes (negative_1, negative_1_bytes);
decode_bytes (negative_2, negative_2_bytes);
decode_bytes (divide_negative_1_2, divide_negative_1_2_bytes);
decode_bytes (divide_plus_p_3_8, divide_plus_p_3_8_bytes);
decode_bytes (divide_minus_p_1_2, divide_minus_p_1_2_bytes);
decode_bytes (square_root_negative_1, square_root_negative_1_bytes);
decode_bytes (A, A_bytes);
decode_bytes (negative_A, negative_A_bytes);
decode_bytes (u, u_bytes);
decode_bytes (inverted_u, inverted_u_bytes);
decode_bytes (d, d_bytes);
for (size_t i = 0; i < sizeof scratch_space_lengths
/ sizeof *scratch_space_lengths; ++i)
{
if (scratch_space_lengths[i] > scratch_space_length)
{
scratch_space_length = scratch_space_lengths[i];
}
}
initialized = true;
}
/**
* Calculates the root of a given number.
* Returns trash if the number is a quadratic non-residue.
*
* @param root storage for calculated root
* @param number value for which the root is calculated
* @param scratch_space buffer for calculation
*/
static void
least_square_root (mp_limb_t *root,
const mp_limb_t *number,
mp_limb_t *scratch_space)
{
mp_limb_t a[P_LIMBS + P_LIMBS];
mp_limb_t b[P_LIMBS];
mp_limb_t condition;
// root := number ^ ((p + 3) / 8)
mpn_add_n (b, number, p, P_LIMBS); // The next function requires a nonzero input
mpn_sec_powm (root, b, P_LIMBS, divide_plus_p_3_8, P_BITS - 1, p, P_LIMBS,
scratch_space);
// If root ^ 2 != number, root := root * square_root(-1)
mpn_sec_sqr (a, root, P_LIMBS, scratch_space);
mpn_sec_div_r (a, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_sub_n (b, a, number, P_LIMBS);
condition = mpn_sec_sub_1 (b, b, P_LIMBS, 1, scratch_space) ^ 1;
mpn_sec_mul (a, root, P_LIMBS, square_root_negative_1, P_LIMBS,
scratch_space);
mpn_sec_div_r (a, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_cnd_swap (condition, root, a, P_LIMBS);
// If root > (p - 1) / 2, root := -root
condition = mpn_sub_n (a, divide_minus_p_1_2, root, P_LIMBS);
mpn_sub_n (a, p, root, P_LIMBS); // If root = 0, a := p
mpn_cnd_swap (condition, root, a, P_LIMBS);
}
bool
GNUNET_CRYPTO_ecdhe_elligator_encoding (
uint8_t random_tweak,
struct GNUNET_CRYPTO_ElligatorRepresentative *r,
const struct GNUNET_CRYPTO_EcdhePublicKey *pub)
{
bool high_y;
bool msb_set;
bool smsb_set;
uint8_t *representative = r->r;
uint8_t *point = (uint8_t *) pub->q_y;
mp_limb_t scratch_space[scratch_space_length];
mp_limb_t a[P_LIMBS + P_LIMBS];
mp_limb_t b[P_LIMBS + P_LIMBS];
mp_limb_t c[P_LIMBS + P_LIMBS];
high_y = random_tweak & 1;
// a := point
decode_bytes (a, point);
// b := -a / (a + A), or b := p if a = 0
mpn_add_n (b, a, A, P_LIMBS);
mpn_sec_powm (c, b, P_LIMBS, negative_2, P_BITS - 1, p, P_LIMBS,
scratch_space);
mpn_sec_mul (b, c, P_LIMBS, a, P_LIMBS, scratch_space);
mpn_sec_div_r (b, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_sub_n (b, p, b, P_LIMBS);
// If high_y = true, b := 1 / b or b := 0 if it was = p
mpn_sec_powm (c, b, P_LIMBS, negative_2, P_BITS - 1, p, P_LIMBS,
scratch_space);
mpn_cnd_swap (high_y, b, c, P_LIMBS);
// c := b / u
mpn_sec_mul (c, b, P_LIMBS, inverted_u, P_LIMBS, scratch_space);
mpn_sec_div_r (c, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
// If c is a square modulo p, b := least_square_root(c)
least_square_root (b, c, scratch_space);
// Determine, whether b ^ 2 = c
mpn_sec_sqr (a, b, P_LIMBS, scratch_space);
mpn_sec_div_r (a, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_sub_n (a, a, c, P_LIMBS);
{
bool result = mpn_sec_sub_1 (a, a, P_LIMBS, 1, scratch_space);
encode_bytes (representative, b);
// Setting most significant bit and second most significant bit randomly
msb_set = (random_tweak >> 1) & 1;
smsb_set = (random_tweak >> 2) & 1;
if (msb_set)
{
r->r[31] |= 128;
}
if (smsb_set)
{
r->r[31] |= 64;
}
return result;
}
}
/**
* Takes a number of the underlying finite field of Curve25519 and projects it into a valid point on that curve.
* This function works deterministically.
* This step is also known as elligators "decoding" step.
* Taken from https://github.com/Kleshni/Elligator-2/blob/master/main.c.
*
* @param point storage for calculated point on Curve25519
* @param high_y The 'high_y' argument of the corresponding GNUNET_CRYPTO_ecdhe_elligator_encoding call
* @param representative Given representative
* @return 'false' if extra step during direct map calculation is needed, otherwise 'true'
*/
static bool
elligator_direct_map (uint8_t *point,
bool *high_y,
uint8_t *representative)
{
mp_limb_t scratch_space[scratch_space_length];
mp_limb_t a[P_LIMBS + P_LIMBS];
mp_limb_t b[P_LIMBS + P_LIMBS];
mp_limb_t c[P_LIMBS];
mp_limb_t e[P_LIMBS + P_LIMBS];
bool result;
// a := representative
decode_bytes (a, representative);
// Determine whether a < (p - 1) / 2
result = mpn_sub_n (b, divide_minus_p_1_2, a, P_LIMBS) ^ 1;
// b := -A / (1 + u * a ^ 2)
mpn_sec_sqr (b, a, P_LIMBS, scratch_space);
mpn_sec_div_r (b, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_sec_mul (a, u, P_LIMBS, b, P_LIMBS, scratch_space);
mpn_sec_div_r (a, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_sec_add_1 (b, a, P_LIMBS, 1, scratch_space);
mpn_sec_powm (a, b, P_LIMBS, negative_2, P_BITS - 1, p, P_LIMBS,
scratch_space);
mpn_sec_mul (b, a, P_LIMBS, negative_A, P_LIMBS, scratch_space);
mpn_sec_div_r (b, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
// a := b ^ 3 + A * b ^ 2 + b (with 1-bit overflow)
mpn_sec_sqr (a, b, P_LIMBS, scratch_space);
mpn_sec_div_r (a, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_add_n (c, b, A, P_LIMBS);
mpn_sec_mul (e, c, P_LIMBS, a, P_LIMBS, scratch_space);
mpn_sec_div_r (e, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_add_n (a, e, b, P_LIMBS);
// If a is a quadratic residue modulo p, point := b and high_y := 1
// Otherwise point := -b - A and high_y := 0
mpn_sub_n (c, p, b, P_LIMBS);
mpn_add_n (c, c, negative_A, P_LIMBS);
mpn_sec_div_r (c, P_LIMBS, p, P_LIMBS, scratch_space);
mpn_sec_powm (e, a, P_LIMBS, divide_minus_p_1_2, P_BITS - 1, p, P_LIMBS,
scratch_space);
*high_y = mpn_sub_n (e, e, divide_minus_p_1_2, P_LIMBS);
mpn_cnd_swap (*high_y, b, c, P_LIMBS);
encode_bytes (point, c);
return result;
}
void
GNUNET_CRYPTO_ecdhe_elligator_decoding (
struct GNUNET_CRYPTO_EcdhePublicKey *point,
bool *high_y,
const struct GNUNET_CRYPTO_ElligatorRepresentative *representative)
{
// if sign of direct map transformation not needed throw it away
struct GNUNET_CRYPTO_ElligatorRepresentative r_tmp;
bool high_y_local;
bool *high_y_ptr;
if (NULL == high_y)
high_y_ptr = &high_y_local;
else
high_y_ptr = high_y;
memcpy (&r_tmp.r, &representative->r, sizeof(r_tmp.r));
r_tmp.r[31] &= 63;
// GNUNET_log (GNUNET_ERROR_TYPE_DEBUG,"Print high_y\n");
elligator_direct_map ((uint8_t *) point->q_y,
high_y_ptr,
(uint8_t *) r_tmp.r);
}
/**
* Takes a number of the underlying finite field of Curve25519 and projects it into a valid point on that curve.
* This function works deterministically.
* This step is also known as elligators "decoding" step.
* Taken from https://github.com/Kleshni/Elligator-2/blob/master/main.c.
*
* @param point storage for calculated point on Curve25519
* @param source Ed25519 curve point
* @return 'false' if source is not a valid Ed25519 point. In this case the 'point' array will be undefined but dependent on source.
*/
static bool
convert_from_ed_to_curve (uint8_t *point,
const uint8_t *source)
{
mp_limb_t scratch_space[scratch_space_length];
mp_limb_t y[P_LIMBS];
mp_limb_t a[P_LIMBS + P_LIMBS];
mp_limb_t b[P_LIMBS + P_LIMBS];
mp_limb_t c[P_LIMBS + P_LIMBS];
uint8_t y_bytes[P_BYTES];
bool result;
memcpy (y_bytes, source, 31);
y_bytes[31] = source[31] & 0x7f;
decode_bytes (y, y_bytes);
// Check if y < p
result = mpn_sub_n (a, y, p, P_LIMBS);
// a := (y ^ 2 - 1) / (1 + d * y ^ 2)
mpn_sec_sqr (a, y, P_LIMBS, scratch_space);
mpn_sec_div_r (a, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_sec_mul (b, a, P_LIMBS, d, P_LIMBS, scratch_space);
mpn_sec_add_1 (b, b, P_LIMBS, 1, scratch_space);
mpn_sec_div_r (b, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
mpn_sec_powm (c, b, P_LIMBS, negative_2, P_BITS - 1, p, P_LIMBS,
scratch_space);
mpn_add_n (b, a, negative_1, P_LIMBS);
mpn_sec_mul (a, b, P_LIMBS, c, P_LIMBS, scratch_space);
mpn_sec_div_r (a, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
// Check, whether a is a square modulo p (including a = 0)
mpn_add_n (a, a, p, P_LIMBS);
mpn_sec_powm (b, a, P_LIMBS, divide_negative_1_2, P_BITS - 1, p, P_LIMBS,
scratch_space);
result &= mpn_sub_n (c, b, divide_minus_p_1_2, P_LIMBS);
// If a = p, the parity bit must be 0
mpn_sub_n (a, a, p, P_LIMBS);
result ^= mpn_sec_sub_1 (a, a, P_LIMBS, 1, scratch_space) & source[31] >> 7;
// If y != 1, c := (1 + y) / (1 - y), otherwise c := 0
mpn_sub_n (a, p, y, P_LIMBS);
mpn_sec_add_1 (a, a, P_LIMBS, 1, scratch_space);
mpn_sec_powm (b, a, P_LIMBS, negative_2, P_BITS - 1, p, P_LIMBS,
scratch_space);
mpn_sec_add_1 (a, y, P_LIMBS, 1, scratch_space);
mpn_sec_mul (c, a, P_LIMBS, b, P_LIMBS, scratch_space);
mpn_sec_div_r (c, P_LIMBS + P_LIMBS, p, P_LIMBS, scratch_space);
encode_bytes (point, c);
return result;
}
static enum GNUNET_GenericReturnValue
elligator_generate_public_key (
const struct GNUNET_CRYPTO_ElligatorEcdhePrivateKey *pk,
struct GNUNET_CRYPTO_EcdhePublicKey *pub)
{
// eHigh
// crypto_scalarmult_ed25519_base clamps the scalar pk->d and return only 0 if pk->d is zero
unsigned char eHigh[crypto_scalarmult_SCALARBYTES] = {0};
int sLow = (pk->d)[0] % 8;
unsigned char eLow[crypto_scalarmult_SCALARBYTES] = {0};
unsigned char edPub[crypto_scalarmult_SCALARBYTES] = {0};
GNUNET_assert (0 == crypto_scalarmult_ed25519_base (eHigh, pk->d));
// eLow: choose a random point of low order
memcpy (eLow, lookupTable[sLow], crypto_scalarmult_SCALARBYTES);
// eHigh + eLow
if (crypto_core_ed25519_add (edPub, eLow, eHigh) == -1)
{
return GNUNET_SYSERR;
}
if (convert_from_ed_to_curve (pub->q_y, edPub) == false)
{
return GNUNET_SYSERR;
}
return GNUNET_OK;
}
enum GNUNET_GenericReturnValue
GNUNET_CRYPTO_ecdhe_elligator_key_get_public_norand (
uint8_t random_tweak,
const struct GNUNET_CRYPTO_ElligatorEcdhePrivateKey *sk,
struct GNUNET_CRYPTO_EcdhePublicKey *pk,
struct GNUNET_CRYPTO_ElligatorRepresentative *repr)
{
struct GNUNET_CRYPTO_EcdhePublicKey pub = {0};
if (GNUNET_SYSERR ==
elligator_generate_public_key (sk, &pub))
return GNUNET_SYSERR;
if (NULL == repr)
return GNUNET_OK;
if (! GNUNET_CRYPTO_ecdhe_elligator_encoding (random_tweak,
repr,
&pub))
return GNUNET_SYSERR;
memcpy (pk->q_y, pub.q_y, sizeof(pk->q_y));
return GNUNET_OK;
}
enum GNUNET_GenericReturnValue
GNUNET_CRYPTO_ecdhe_elligator_key_get_public (
const struct GNUNET_CRYPTO_ElligatorEcdhePrivateKey *sk,
struct GNUNET_CRYPTO_EcdhePublicKey *pk,
struct GNUNET_CRYPTO_ElligatorRepresentative *repr)
{
uint8_t random_tweak;
GNUNET_CRYPTO_random_block (GNUNET_CRYPTO_QUALITY_NONCE,
&random_tweak,
sizeof(uint8_t));
return GNUNET_CRYPTO_ecdhe_elligator_key_get_public_norand (random_tweak,
sk,
pk,
repr);
}
void
GNUNET_CRYPTO_ecdhe_elligator_key_create (
struct GNUNET_CRYPTO_ElligatorEcdhePrivateKey *sk)
{
struct GNUNET_CRYPTO_ElligatorRepresentative repr;
struct GNUNET_CRYPTO_EcdhePublicKey pk;
// inverse map can fail for some public keys generated by GNUNET_CRYPTO_ecdhe_elligator_generate_public_key
while (true)
{
GNUNET_CRYPTO_random_block (GNUNET_CRYPTO_QUALITY_NONCE,
sk,
sizeof (struct
GNUNET_CRYPTO_ElligatorEcdhePrivateKey))
;
if (GNUNET_OK == GNUNET_CRYPTO_ecdhe_elligator_key_get_public (sk, &pk,
&repr))
break;
}
}
|