aboutsummaryrefslogtreecommitdiff
path: root/src/util/crypto_cs.c
blob: 5c441b669d375631b053afdb2c2183f699ee34bd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/*
   This file is part of GNUnet
   Copyright (C) 2014,2016,2019 GNUnet e.V.

   GNUnet is free software: you can redistribute it and/or modify it
   under the terms of the GNU Affero General Public License as published
   by the Free Software Foundation, either version 3 of the License,
   or (at your option) any later version.

   GNUnet is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Affero General Public License for more details.

   You should have received a copy of the GNU Affero General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.

     SPDX-License-Identifier: AGPL3.0-or-later
 */

/**
 * @file util/crypto_cs.c
 * @brief Clause Blind Schnorr signatures using Curve25519
 * @author Lucien Heuzeveldt <lucienclaude.heuzeveldt@students.bfh.ch>
 * @author Gian Demarmels <gian@demarmels.org>
 */
#include "platform.h"
#include "gnunet_crypto_lib.h"
#include <sodium.h>
#include <gcrypt.h>

/**
 * IMPLEMENTATION NOTICE:
 *
 * This is an implementation of the Clause Blind Schnorr Signature Scheme using Curve25519.
 * Further details about the Clause Blind Schnorr Signature Scheme can be found here:
 * https://eprint.iacr.org/2019/877.pdf
 *
 * We use libsodium wherever possible.
 */


/**
 * Create a new random private key.
 *
 * @param[out] priv where to write the fresh private key
 */
void
GNUNET_CRYPTO_cs_private_key_generate (struct GNUNET_CRYPTO_CsPrivateKey *priv)
{
  crypto_core_ed25519_scalar_random (priv->scalar.d);
}


/**
 * Extract the public key of the given private key.
 *
 * @param priv the private key
 * @param[out] pub where to write the public key
 */
void
GNUNET_CRYPTO_cs_private_key_get_public (const struct
                                         GNUNET_CRYPTO_CsPrivateKey *priv,
                                         struct GNUNET_CRYPTO_CsPublicKey *pub)
{
  GNUNET_assert (0 == crypto_scalarmult_ed25519_base_noclamp (pub->point.y,
                                                              priv->scalar.d));
}


/**
 * maps 32 random bytes to a scalar
 * this is necessary because libsodium expects scalar to be in the prime order subgroup
 * @param[out] scalar containing 32 byte char array, is modified to be in prime order subgroup
 */
static void
map_to_scalar_subgroup (struct GNUNET_CRYPTO_Cs25519Scalar *scalar)
{
  // perform clamping as described in RFC7748
  scalar->d[0] &= 248;
  scalar->d[31] &= 127;
  scalar->d[31] |= 64;
}


/**
 * Derive a new secret r pair r0 and r1.
 * In original papers r is generated randomly
 * To provide abort-idempotency, r needs to be derived but still needs to be UNPREDICTABLE
 * To ensure unpredictability a new nonce should be used when a new r needs to be derived.
 * Uses HKDF internally.
 * Comment: Can be done in one HKDF shot and split output.
 *
 * @param nonce is a random nonce
 * @param lts is a long-term-secret in form of a private key
 * @param[out] r array containing derived secrets r0 and r1
 */
void
GNUNET_CRYPTO_cs_r_derive (const struct GNUNET_CRYPTO_CsNonce *nonce,
                           const struct GNUNET_CRYPTO_CsPrivateKey *lts,
                           struct GNUNET_CRYPTO_CsRSecret r[2])
{
  GNUNET_assert (GNUNET_YES ==
                 GNUNET_CRYPTO_hkdf (r,
                                     sizeof (struct GNUNET_CRYPTO_CsRSecret)
                                     * 2,
                                     GCRY_MD_SHA512,
                                     GCRY_MD_SHA256,
                                     "r",
                                     strlen ("r"),
                                     lts,
                                     sizeof (*lts),
                                     nonce,
                                     sizeof (*nonce),
                                     NULL,
                                     0));

  map_to_scalar_subgroup (&r[0].scalar);
  map_to_scalar_subgroup (&r[1].scalar);
}


/**
 * Extract the public R of the given secret r.
 *
 * @param r_priv the private key
 * @param[out] r_pub where to write the public key
 */
void
GNUNET_CRYPTO_cs_r_get_public (const struct GNUNET_CRYPTO_CsRSecret *r_priv,
                               struct GNUNET_CRYPTO_CsRPublic *r_pub)
{
  GNUNET_assert (0 == crypto_scalarmult_ed25519_base_noclamp (r_pub->point.y,
                                                              r_priv->scalar.d));
}


/**
 * Derives new random blinding factors.
 * In original papers blinding factors are generated randomly
 * To provide abort-idempotency, blinding factors need to be derived but still need to be UNPREDICTABLE
 * To ensure unpredictability a new nonce has to be used.
 * Uses HKDF internally
 *
 * @param secret is secret to derive blinding factors
 * @param secret_len secret length
 * @param[out] bs array containing the two derived blinding secrets
 */
void
GNUNET_CRYPTO_cs_blinding_secrets_derive (const void *secret,
                                          size_t secret_len,
                                          struct GNUNET_CRYPTO_CsBlindingSecret
                                          bs[2])
{
  GNUNET_assert (GNUNET_YES ==
                 GNUNET_CRYPTO_hkdf (bs,
                                     sizeof (struct
                                             GNUNET_CRYPTO_CsBlindingSecret)
                                     * 2,
                                     GCRY_MD_SHA512,
                                     GCRY_MD_SHA256,
                                     "alphabeta",
                                     strlen ("alphabeta"),
                                     secret,
                                     secret_len,
                                     NULL,
                                     0));
  map_to_scalar_subgroup (&bs[0].alpha);
  map_to_scalar_subgroup (&bs[0].beta);
  map_to_scalar_subgroup (&bs[1].alpha);
  map_to_scalar_subgroup (&bs[1].beta);
}


/*
order of subgroup required for scalars by libsodium
2^252 + 27742317777372353535851937790883648493
copied from https://github.com/jedisct1/libsodium/blob/master/src/libsodium/crypto_core/ed25519/ref10/ed25519_ref10.c
and converted to big endian
*/
static const unsigned char L_BIG_ENDIAN[32] = {
  0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0xde, 0xf9, 0xde, 0xa2, 0xf7,
  0x9c, 0xd6, 0x58, 0x12, 0x63, 0x1a, 0x5c, 0xf5, 0xd3, 0xed
};


/**
 * Computes a Hash of (R', m) mapped to a Curve25519 scalar
 *
 * @param hash initial hash of the message to be signed
 * @param pub denomination public key (used as salt)
 * @param[out] c C containing scalar
 */
static void
cs_full_domain_hash (const struct GNUNET_CRYPTO_CsRPublic *r_dash,
                     const void *msg,
                     size_t msg_len,
                     const struct GNUNET_CRYPTO_CsPublicKey *pub,
                     struct GNUNET_CRYPTO_CsC *c)
{
  // SHA-512 hash of R' and message
  size_t r_m_concat_len = sizeof(struct GNUNET_CRYPTO_CsRPublic) + msg_len;
  char r_m_concat[r_m_concat_len];
  memcpy (r_m_concat, r_dash, sizeof(struct GNUNET_CRYPTO_CsRPublic));
  memcpy (r_m_concat + sizeof(struct GNUNET_CRYPTO_CsRPublic), msg, msg_len);
  struct GNUNET_HashCode prehash;
  GNUNET_CRYPTO_hash (r_m_concat, r_m_concat_len, &prehash);

  // modulus converted to MPI representation
  gcry_mpi_t l_mpi;
  GNUNET_CRYPTO_mpi_scan_unsigned (&l_mpi, L_BIG_ENDIAN, sizeof(L_BIG_ENDIAN));

  // calculate full domain hash
  gcry_mpi_t c_mpi;
  GNUNET_CRYPTO_kdf_mod_mpi (&c_mpi,
                             l_mpi,
                             pub,
                             sizeof(struct GNUNET_CRYPTO_CsPublicKey),
                             &prehash,
                             sizeof(struct GNUNET_HashCode),
                             "Curve25519FDH");
  gcry_mpi_release (l_mpi);

  // convert c from mpi
  unsigned char c_big_endian[256 / 8];
  GNUNET_CRYPTO_mpi_print_unsigned (c_big_endian, sizeof(c_big_endian), c_mpi);
  gcry_mpi_release (c_mpi);
  for (size_t i = 0; i<32; i++)
    c->scalar.d[i] = c_big_endian[31 - i];
}


/**
 * calculate R'
 *
 * @param bs blinding secret
 * @param r_pub R
 * @param pub public key
 * @param[out] blinded_r_pub R'
 */
static void
calc_r_dash (const struct GNUNET_CRYPTO_CsBlindingSecret *bs,
             const struct GNUNET_CRYPTO_CsRPublic *r_pub,
             const struct GNUNET_CRYPTO_CsPublicKey *pub,
             struct GNUNET_CRYPTO_CsRPublic *blinded_r_pub)
{
  // R'i = Ri + alpha i*G + beta i*pub
  struct GNUNET_CRYPTO_Cs25519Point alpha_mul_base;
  GNUNET_assert (0 == crypto_scalarmult_ed25519_base_noclamp (
                   alpha_mul_base.y,
                   bs->alpha.d));
  struct GNUNET_CRYPTO_Cs25519Point beta_mul_pub;
  GNUNET_assert (0 == crypto_scalarmult_ed25519_noclamp (beta_mul_pub.y,
                                                         bs->beta.d,
                                                         pub->point.y));
  struct GNUNET_CRYPTO_Cs25519Point alpha_mul_base_plus_beta_mul_pub;
  GNUNET_assert (0 == crypto_core_ed25519_add (
                   alpha_mul_base_plus_beta_mul_pub.y,
                   alpha_mul_base.y,
                   beta_mul_pub.y));
  GNUNET_assert (0 == crypto_core_ed25519_add (blinded_r_pub->point.y,
                                               r_pub->point.y,
                                               alpha_mul_base_plus_beta_mul_pub.
                                               y));
}


/**
 * Calculate two blinded c's
 * Comment: One would be insecure due to Wagner's algorithm solving ROS
 *
 * @param bs array of the two blinding factor structs each containing alpha and beta
 * @param r_pub array of the two signer's nonce R
 * @param pub the public key of the signer
 * @param msg the message to blind in preparation for signing
 * @param msg_len length of message msg
 * @param[out] blinded_c array of the two blinded c's
 * @param[out] blinded_r_pub array of the two blinded R
 */
void
GNUNET_CRYPTO_cs_calc_blinded_c (const struct GNUNET_CRYPTO_CsBlindingSecret
                                 bs[2],
                                 const struct GNUNET_CRYPTO_CsRPublic r_pub[2],
                                 const struct GNUNET_CRYPTO_CsPublicKey *pub,
                                 const void *msg,
                                 size_t msg_len,
                                 struct GNUNET_CRYPTO_CsC blinded_c[2],
                                 struct GNUNET_CRYPTO_CsRPublic
                                 blinded_r_pub[2])
{
  // for i 0/1: R'i = Ri + alpha i*G + beta i*pub
  calc_r_dash (&bs[0], &r_pub[0], pub, &blinded_r_pub[0]);
  calc_r_dash (&bs[1], &r_pub[1], pub, &blinded_r_pub[1]);

  // for i 0/1: c'i = H(R'i, msg)
  struct GNUNET_CRYPTO_CsC c_dash_0;
  struct GNUNET_CRYPTO_CsC c_dash_1;
  cs_full_domain_hash (&blinded_r_pub[0], msg, msg_len, pub, &c_dash_0);
  cs_full_domain_hash (&blinded_r_pub[1], msg, msg_len, pub, &c_dash_1);

  // for i 0/1: ci = c'i + beta i mod p
  crypto_core_ed25519_scalar_add (blinded_c[0].scalar.d,
                                  c_dash_0.scalar.d,
                                  bs[0].beta.d);
  crypto_core_ed25519_scalar_add (blinded_c[1].scalar.d,
                                  c_dash_1.scalar.d,
                                  bs[1].beta.d);
}


/**
 * Sign a blinded c
 * This function derives b from a nonce and a longterm secret
 * In original papers b is generated randomly
 * To provide abort-idempotency, b needs to be derived but still need to be UNPREDICTABLE.
 * To ensure unpredictability a new nonce has to be used for every signature
 * HKDF is used internally for derivation
 * r0 and r1 can be derived prior by using GNUNET_CRYPTO_cs_r_derive
 *
 * @param priv private key to use for the signing and as LTS in HKDF
 * @param r array of the two secret nonce from the signer
 * @param c array of the two blinded c to sign c_b
 * @param nonce is a random nonce
 * @param[out] blinded_signature_scalar where to write the signature
 * @return 0 or 1 for b (see Clause Blind Signature Scheme)
 */
unsigned int
GNUNET_CRYPTO_cs_sign_derive (const struct GNUNET_CRYPTO_CsPrivateKey *priv,
                              const struct GNUNET_CRYPTO_CsRSecret r[2],
                              const struct GNUNET_CRYPTO_CsC c[2],
                              const struct GNUNET_CRYPTO_CsNonce *nonce,
                              struct GNUNET_CRYPTO_CsBlindS *
                              blinded_signature_scalar
                              )
{
  uint32_t hkdf_out;

  // derive clause session identifier b (random bit)
  GNUNET_assert (GNUNET_YES ==
                 GNUNET_CRYPTO_hkdf (&hkdf_out,
                                     sizeof (hkdf_out),
                                     GCRY_MD_SHA512,
                                     GCRY_MD_SHA256,
                                     "b",
                                     strlen ("b"),
                                     priv,
                                     sizeof (*priv),
                                     nonce,
                                     sizeof (*nonce),
                                     NULL,
                                     0));
  unsigned int b = hkdf_out % 2;

  // s = r_b + c_b priv
  struct GNUNET_CRYPTO_Cs25519Scalar c_b_mul_priv;
  crypto_core_ed25519_scalar_mul (c_b_mul_priv.d,
                                  c[b].scalar.d,
                                  priv->scalar.d);
  crypto_core_ed25519_scalar_add (blinded_signature_scalar->scalar.d,
                                  r[b].scalar.d,
                                  c_b_mul_priv.d);

  return b;
}


/**
 * Unblind a blind-signed signature using a c that was blinded
 *
 * @param blinded_signature_scalar the signature made on the blinded c
 * @param bs the blinding factors used in the blinding
 * @param[out] signature_scalar where to write the unblinded signature
 */
void
GNUNET_CRYPTO_cs_unblind (const struct
                          GNUNET_CRYPTO_CsBlindS *blinded_signature_scalar,
                          const struct GNUNET_CRYPTO_CsBlindingSecret *bs,
                          struct GNUNET_CRYPTO_CsS *signature_scalar)
{
  crypto_core_ed25519_scalar_add (signature_scalar->scalar.d,
                                  blinded_signature_scalar->scalar.d,
                                  bs->alpha.d);
}


/**
 * Verify whether the given message corresponds to the given signature and the
 * signature is valid with respect to the given public key.
 *
 * @param sig signature that is being validated
 * @param pub public key of the signer
 * @param msg is the message that should be signed by @a sig  (message is used to calculate c)
 * @param msg_len is the message length
 * @returns #GNUNET_YES on success, #GNUNET_SYSERR if signature invalid
 */
enum GNUNET_GenericReturnValue
GNUNET_CRYPTO_cs_verify (const struct GNUNET_CRYPTO_CsSignature *sig,
                         const struct GNUNET_CRYPTO_CsPublicKey *pub,
                         const void *msg,
                         size_t msg_len)
{
  // calculate c' = H(R, m)
  struct GNUNET_CRYPTO_CsC c_dash;
  cs_full_domain_hash (&sig->r_point, msg, msg_len, pub, &c_dash);

  // s'G ?= R' + c' pub
  struct GNUNET_CRYPTO_Cs25519Point sig_scal_mul_base;
  GNUNET_assert (0 == crypto_scalarmult_ed25519_base_noclamp (
                   sig_scal_mul_base.y,
                   sig->s_scalar.scalar.d));
  struct GNUNET_CRYPTO_Cs25519Point c_dash_mul_pub;
  GNUNET_assert (0 == crypto_scalarmult_ed25519_noclamp (c_dash_mul_pub.y,
                                                         c_dash.scalar.d,
                                                         pub->point.y));
  struct GNUNET_CRYPTO_Cs25519Point R_add_c_dash_mul_pub;
  GNUNET_assert (0 == crypto_core_ed25519_add (R_add_c_dash_mul_pub.y,
                                               sig->r_point.point.y,
                                               c_dash_mul_pub.y));

  return 0 == GNUNET_memcmp (&sig_scal_mul_base,
                             &R_add_c_dash_mul_pub)
    ? GNUNET_OK
    : GNUNET_SYSERR;
}