summaryrefslogtreecommitdiff
path: root/src/util/crypto_paillier.c
blob: 97dfad6301419194fb09ce36c0ce97a0e481e764 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/*
     This file is part of GNUnet.
     Copyright (C) 2014 GNUnet e.V.

     GNUnet is free software: you can redistribute it and/or modify it
     under the terms of the GNU Affero General Public License as published
     by the Free Software Foundation, either version 3 of the License,
     or (at your option) any later version.

     GNUnet is distributed in the hope that it will be useful, but
     WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     Affero General Public License for more details.

     You should have received a copy of the GNU Affero General Public License
     along with this program.  If not, see <http://www.gnu.org/licenses/>.

     SPDX-License-Identifier: AGPL3.0-or-later
 */

/**
 * @file util/crypto_paillier.c
 * @brief implementation of the paillier crypto system with libgcrypt
 * @author Florian Dold
 * @author Christian Fuchs
 */
#include "platform.h"
#include <gcrypt.h>
#include "gnunet_util_lib.h"


/**
 * Create a freshly generated paillier public key.
 *
 * @param[out] public_key Where to store the public key?
 * @param[out] private_key Where to store the private key?
 */
void
GNUNET_CRYPTO_paillier_create (struct
                               GNUNET_CRYPTO_PaillierPublicKey *public_key,
                               struct GNUNET_CRYPTO_PaillierPrivateKey *
                               private_key)
{
  gcry_mpi_t p;
  gcry_mpi_t q;
  gcry_mpi_t phi;
  gcry_mpi_t mu;
  gcry_mpi_t n;

  /* Generate two distinct primes.  The probability that the loop body
     is executed more than once is very very low... */
  p = NULL;
  q = NULL;
  do
  {
    if (NULL != p)
      gcry_mpi_release (p);
    if (NULL != q)
      gcry_mpi_release (q);
    GNUNET_assert (0 ==
                   gcry_prime_generate (&p,
                                        GNUNET_CRYPTO_PAILLIER_BITS / 2,
                                        0, NULL, NULL, NULL,
                                        GCRY_STRONG_RANDOM, 0));
    GNUNET_assert (0 ==
                   gcry_prime_generate (&q,
                                        GNUNET_CRYPTO_PAILLIER_BITS / 2,
                                        0, NULL, NULL, NULL,
                                        GCRY_STRONG_RANDOM, 0));
  }
  while (0 == gcry_mpi_cmp (p, q));
  /* n = p * q */
  GNUNET_assert (NULL != (n = gcry_mpi_new (0)));
  gcry_mpi_mul (n,
                p,
                q);
  GNUNET_CRYPTO_mpi_print_unsigned (public_key,
                                    sizeof(struct
                                           GNUNET_CRYPTO_PaillierPublicKey),
                                    n);

  /* compute phi(n) = (p-1)(q-1) */
  GNUNET_assert (NULL != (phi = gcry_mpi_new (0)));
  gcry_mpi_sub_ui (p, p, 1);
  gcry_mpi_sub_ui (q, q, 1);
  gcry_mpi_mul (phi, p, q);
  gcry_mpi_release (p);
  gcry_mpi_release (q);

  /* lambda equals phi(n) in the simplified key generation */
  GNUNET_CRYPTO_mpi_print_unsigned (private_key->lambda,
                                    GNUNET_CRYPTO_PAILLIER_BITS / 8,
                                    phi);
  /* mu = phi^{-1} mod n, as we use g = n + 1 */
  GNUNET_assert (NULL != (mu = gcry_mpi_new (0)));
  GNUNET_assert (0 != gcry_mpi_invm (mu,
                                     phi,
                                     n));
  gcry_mpi_release (phi);
  gcry_mpi_release (n);
  GNUNET_CRYPTO_mpi_print_unsigned (private_key->mu,
                                    GNUNET_CRYPTO_PAILLIER_BITS / 8,
                                    mu);
  gcry_mpi_release (mu);
}


/**
 * Encrypt a plaintext with a paillier public key.
 *
 * @param public_key Public key to use.
 * @param m Plaintext to encrypt.
 * @param desired_ops How many homomorphic ops the caller intends to use
 * @param[out] ciphertext Encryption of @a plaintext with @a public_key.
 * @return guaranteed number of supported homomorphic operations >= 1,
 *         or desired_ops, in case that is lower,
 *         or -1 if less than one homomorphic operation is possible
 */
int
GNUNET_CRYPTO_paillier_encrypt1 (const struct
                                 GNUNET_CRYPTO_PaillierPublicKey *public_key,
                                 const gcry_mpi_t m,
                                 int desired_ops,
                                 struct GNUNET_CRYPTO_PaillierCiphertext *
                                 ciphertext)
{
  int possible_opts;
  gcry_mpi_t n_square;
  gcry_mpi_t r;
  gcry_mpi_t c;
  gcry_mpi_t n;
  gcry_mpi_t tmp1;
  gcry_mpi_t tmp2;
  unsigned int highbit;

  /* determine how many operations we could allow, if the other number
     has the same length. */
  GNUNET_assert (NULL != (tmp1 = gcry_mpi_set_ui (NULL, 1)));
  GNUNET_assert (NULL != (tmp2 = gcry_mpi_set_ui (NULL, 2)));
  gcry_mpi_mul_2exp (tmp1, tmp1, GNUNET_CRYPTO_PAILLIER_BITS);

  /* count number of possible operations
     this would be nicer with gcry_mpi_get_nbits, however it does not return
     the BITLENGTH of the given MPI's value, but the bits required
     to represent the number as MPI. */
  for (possible_opts = -2; gcry_mpi_cmp (tmp1, m) > 0; possible_opts++)
    gcry_mpi_div (tmp1, NULL, tmp1, tmp2, 0);
  gcry_mpi_release (tmp1);
  gcry_mpi_release (tmp2);

  if (possible_opts < 1)
    possible_opts = 0;
  /* soft-cap by caller */
  possible_opts = (desired_ops < possible_opts) ? desired_ops : possible_opts;

  ciphertext->remaining_ops = htonl (possible_opts);

  GNUNET_CRYPTO_mpi_scan_unsigned (&n,
                                   public_key,
                                   sizeof(struct
                                          GNUNET_CRYPTO_PaillierPublicKey));
  highbit = GNUNET_CRYPTO_PAILLIER_BITS - 1;
  while ((! gcry_mpi_test_bit (n, highbit)) &&
         (0 != highbit))
    highbit--;
  if (0 == highbit)
  {
    /* invalid public key */
    GNUNET_break_op (0);
    gcry_mpi_release (n);
    return GNUNET_SYSERR;
  }
  GNUNET_assert (0 != (n_square = gcry_mpi_new (0)));
  GNUNET_assert (0 != (r = gcry_mpi_new (0)));
  GNUNET_assert (0 != (c = gcry_mpi_new (0)));
  gcry_mpi_mul (n_square, n, n);

  /* generate r < n (without bias) */
  do
  {
    gcry_mpi_randomize (r, highbit + 1, GCRY_STRONG_RANDOM);
  }
  while (gcry_mpi_cmp (r, n) >= 0);

  /* c = (n+1)^m mod n^2 */
  /* c = n + 1 */
  gcry_mpi_add_ui (c, n, 1);
  /* c = (n+1)^m mod n^2 */
  gcry_mpi_powm (c, c, m, n_square);
  /* r <- r^n mod n^2 */
  gcry_mpi_powm (r, r, n, n_square);
  /* c <- r*c mod n^2 */
  gcry_mpi_mulm (c, r, c, n_square);

  GNUNET_CRYPTO_mpi_print_unsigned (ciphertext->bits,
                                    sizeof ciphertext->bits,
                                    c);

  gcry_mpi_release (n_square);
  gcry_mpi_release (n);
  gcry_mpi_release (r);
  gcry_mpi_release (c);

  return possible_opts;
}


/**
 * Encrypt a plaintext with a paillier public key.
 *
 * @param public_key Public key to use.
 * @param m Plaintext to encrypt.
 * @param desired_ops How many homomorphic ops the caller intends to use
 * @param[out] ciphertext Encryption of @a plaintext with @a public_key.
 * @return guaranteed number of supported homomorphic operations >= 1,
 *         or desired_ops, in case that is lower,
 *         or -1 if less than one homomorphic operation is possible
 */
int
GNUNET_CRYPTO_paillier_encrypt (const struct
                                GNUNET_CRYPTO_PaillierPublicKey *public_key,
                                const gcry_mpi_t m,
                                int desired_ops,
                                struct GNUNET_CRYPTO_PaillierCiphertext *
                                ciphertext)
{
  int possible_opts;
  gcry_mpi_t n_square;
  gcry_mpi_t r;
  gcry_mpi_t rn;
  gcry_mpi_t g;
  gcry_mpi_t gm;
  gcry_mpi_t c;
  gcry_mpi_t n;
  gcry_mpi_t max_num;
  unsigned int highbit;

  /* set max_num = 2^{GNUNET_CRYPTO_PAILLIER_BITS}, the largest
     number we can have as a result */
  GNUNET_assert (NULL != (max_num = gcry_mpi_set_ui (NULL, 1)));
  gcry_mpi_mul_2exp (max_num,
                     max_num,
                     GNUNET_CRYPTO_PAILLIER_BITS);

  /* Determine how many operations we could allow, assuming the other
     number has the same length (or is smaller), by counting the
     number of possible operations.  We essentially divide max_num by
     2 until the result is no longer larger than 'm', incrementing the
     maximum number of operations in each round, starting at -2 */for (possible_opts = -2; gcry_mpi_cmp (max_num, m) > 0; possible_opts++)
    gcry_mpi_div (max_num,
                  NULL,
                  max_num,
                  GCRYMPI_CONST_TWO,
                  0);
  gcry_mpi_release (max_num);

  if (possible_opts < 1)
    possible_opts = 0;
  /* Enforce soft-cap by caller */
  possible_opts = GNUNET_MIN (desired_ops, possible_opts);
  ciphertext->remaining_ops = htonl (possible_opts);

  GNUNET_CRYPTO_mpi_scan_unsigned (&n,
                                   public_key,
                                   sizeof(struct
                                          GNUNET_CRYPTO_PaillierPublicKey));

  /* check public key for number of bits, bail out if key is all zeros */
  highbit = GNUNET_CRYPTO_PAILLIER_BITS - 1;
  while ((! gcry_mpi_test_bit (n, highbit)) &&
         (0 != highbit))
    highbit--;
  if (0 == highbit)
  {
    /* invalid public key */
    GNUNET_break_op (0);
    gcry_mpi_release (n);
    return GNUNET_SYSERR;
  }

  /* generate r < n (without bias) */
  GNUNET_assert (NULL != (r = gcry_mpi_new (0)));
  do
  {
    gcry_mpi_randomize (r, highbit + 1, GCRY_STRONG_RANDOM);
  }
  while (gcry_mpi_cmp (r, n) >= 0);

  /* g = n + 1 */
  GNUNET_assert (0 != (g = gcry_mpi_new (0)));
  gcry_mpi_add_ui (g, n, 1);

  /* n_square = n^2 */
  GNUNET_assert (0 != (n_square = gcry_mpi_new (0)));
  gcry_mpi_mul (n_square,
                n,
                n);

  /* gm = g^m mod n^2 */
  GNUNET_assert (0 != (gm = gcry_mpi_new (0)));
  gcry_mpi_powm (gm, g, m, n_square);
  gcry_mpi_release (g);

  /* rn <- r^n mod n^2 */
  GNUNET_assert (0 != (rn = gcry_mpi_new (0)));
  gcry_mpi_powm (rn, r, n, n_square);
  gcry_mpi_release (r);
  gcry_mpi_release (n);

  /* c <- rn * gm mod n^2 */
  GNUNET_assert (0 != (c = gcry_mpi_new (0)));
  gcry_mpi_mulm (c, rn, gm, n_square);
  gcry_mpi_release (n_square);
  gcry_mpi_release (gm);
  gcry_mpi_release (rn);

  GNUNET_CRYPTO_mpi_print_unsigned (ciphertext->bits,
                                    sizeof(ciphertext->bits),
                                    c);
  gcry_mpi_release (c);

  return possible_opts;
}


/**
 * Decrypt a paillier ciphertext with a private key.
 *
 * @param private_key Private key to use for decryption.
 * @param public_key Public key to use for encryption.
 * @param ciphertext Ciphertext to decrypt.
 * @param[out] m Decryption of @a ciphertext with @private_key.
 */
void
GNUNET_CRYPTO_paillier_decrypt (const struct
                                GNUNET_CRYPTO_PaillierPrivateKey *private_key,
                                const struct
                                GNUNET_CRYPTO_PaillierPublicKey *public_key,
                                const struct
                                GNUNET_CRYPTO_PaillierCiphertext *ciphertext,
                                gcry_mpi_t m)
{
  gcry_mpi_t mu;
  gcry_mpi_t lambda;
  gcry_mpi_t n;
  gcry_mpi_t n_square;
  gcry_mpi_t c;
  gcry_mpi_t cmu;
  gcry_mpi_t cmum1;
  gcry_mpi_t mod;

  GNUNET_CRYPTO_mpi_scan_unsigned (&lambda,
                                   private_key->lambda,
                                   sizeof(private_key->lambda));
  GNUNET_CRYPTO_mpi_scan_unsigned (&mu,
                                   private_key->mu,
                                   sizeof(private_key->mu));
  GNUNET_CRYPTO_mpi_scan_unsigned (&n,
                                   public_key,
                                   sizeof(struct
                                          GNUNET_CRYPTO_PaillierPublicKey));
  GNUNET_CRYPTO_mpi_scan_unsigned (&c,
                                   ciphertext->bits,
                                   sizeof(ciphertext->bits));

  /* n_square = n * n */
  GNUNET_assert (0 != (n_square = gcry_mpi_new (0)));
  gcry_mpi_mul (n_square, n, n);

  /* cmu = c^lambda mod n^2 */
  GNUNET_assert (0 != (cmu = gcry_mpi_new (0)));
  gcry_mpi_powm (cmu,
                 c,
                 lambda,
                 n_square);
  gcry_mpi_release (n_square);
  gcry_mpi_release (lambda);
  gcry_mpi_release (c);

  /* cmum1 = cmu - 1 */
  GNUNET_assert (0 != (cmum1 = gcry_mpi_new (0)));
  gcry_mpi_sub_ui (cmum1, cmu, 1);
  gcry_mpi_release (cmu);

  /* mod = cmum1 / n (mod n) */
  GNUNET_assert (0 != (mod = gcry_mpi_new (0)));
  gcry_mpi_div (mod, NULL, cmum1, n, 0);
  gcry_mpi_release (cmum1);

  /* m = mod * mu mod n */
  gcry_mpi_mulm (m, mod, mu, n);
  gcry_mpi_release (mod);
  gcry_mpi_release (mu);
  gcry_mpi_release (n);
}


/**
 * Compute a ciphertext that represents the sum of the plaintext in @a
 * c1 and @a c2.
 *
 * Note that this operation can only be done a finite number of times
 * before an overflow occurs.
 *
 * @param public_key Public key to use for encryption.
 * @param c1 Paillier cipher text.
 * @param c2 Paillier cipher text.
 * @param[out] result Result of the homomorphic operation.
 * @return #GNUNET_OK if the result could be computed,
 *         #GNUNET_SYSERR if no more homomorphic operations are remaining.
 */
int
GNUNET_CRYPTO_paillier_hom_add (const struct
                                GNUNET_CRYPTO_PaillierPublicKey *public_key,
                                const struct
                                GNUNET_CRYPTO_PaillierCiphertext *c1,
                                const struct
                                GNUNET_CRYPTO_PaillierCiphertext *c2,
                                struct GNUNET_CRYPTO_PaillierCiphertext *result)
{
  gcry_mpi_t a;
  gcry_mpi_t b;
  gcry_mpi_t c;
  gcry_mpi_t n;
  gcry_mpi_t n_square;
  int32_t o1;
  int32_t o2;

  o1 = (int32_t) ntohl (c1->remaining_ops);
  o2 = (int32_t) ntohl (c2->remaining_ops);
  if ((0 >= o1) || (0 >= o2))
  {
    GNUNET_break_op (0);
    return GNUNET_SYSERR;
  }

  GNUNET_CRYPTO_mpi_scan_unsigned (&a,
                                   c1->bits,
                                   sizeof(c1->bits));
  GNUNET_CRYPTO_mpi_scan_unsigned (&b,
                                   c2->bits,
                                   sizeof(c2->bits));
  GNUNET_CRYPTO_mpi_scan_unsigned (&n,
                                   public_key,
                                   sizeof(struct
                                          GNUNET_CRYPTO_PaillierPublicKey));

  /* n_square = n * n */
  GNUNET_assert (0 != (n_square = gcry_mpi_new (0)));
  gcry_mpi_mul (n_square, n, n);
  gcry_mpi_release (n);

  /* c = a * b mod n_square */
  GNUNET_assert (0 != (c = gcry_mpi_new (0)));
  gcry_mpi_mulm (c, a, b, n_square);
  gcry_mpi_release (n_square);
  gcry_mpi_release (a);
  gcry_mpi_release (b);

  result->remaining_ops = htonl (GNUNET_MIN (o1, o2) - 1);
  GNUNET_CRYPTO_mpi_print_unsigned (result->bits,
                                    sizeof(result->bits),
                                    c);
  gcry_mpi_release (c);
  return ntohl (result->remaining_ops);
}


/**
 * Get the number of remaining supported homomorphic operations.
 *
 * @param c Paillier cipher text.
 * @return the number of remaining homomorphic operations
 */
int
GNUNET_CRYPTO_paillier_hom_get_remaining (const struct
                                          GNUNET_CRYPTO_PaillierCiphertext *c)
{
  GNUNET_assert (NULL != c);
  return ntohl (c->remaining_ops);
}


/* end of crypto_paillier.c */