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Abstract. We present a new cryptographic auction protocol that pre-
vents extraction of bid information despite any collusion of participants.
This requirement is stronger than common assumptions in existing pro-
tocols that prohibit the collusion of certain third-parties (e.g. distinct
auctioneers). Full privacy is obtained by using homomorphic ElGamal
encryption and a private key that is distributed among the set of bid-
ders. Bidders jointly compute the auction outcome on their own without
uncovering any additional information in a constant number of rounds
(three in the random oracle model). No auctioneers or other trusted third
parties are needed to resolve the auction. Yet, robustness is assured due
to public verifiability of the entire protocol. The scheme can be applied to
any uniform-price (or so-called (M + 1)st-price) auction. An additional,
optional, feature of the protocol is that the selling price is only revealed
to the seller and the winning bidders themselves. We furthermore pro-
vide an in-depth analysis of ties in our protocol and sketch a scheme that
requires more rounds but is computationally much more efficient.

1 Introduction

Auctions have become the major phenomenon of electronic commerce during the
last years. In recent times, the need for privacy has been a factor of increasing
importance in auction design and various schemes to ensure the safe conduction
of sealed-bid auctions have been proposed.

We consider a situation where one seller and n bidders or buyers intend to
come to an agreement on the selling of a good1. Each bidder submits a sealed
bid expressing how much he is willing to pay. The bidders want the highest
bidder to win the auction for a price that has to be determined by a publicly
known rule (e.g. the highest or second-highest bid). In order to fulfill this task,
they need a trusted third-party, which is called the “auctioneer”. Among the
different auction protocols, the second-price or so-called Vickrey auction [1],
where the highest bidder wins by paying the amount of the second-highest bid,
has received particular attention in recent times because it is “strategy-proof”,
i.e., bidders are always best off bidding their private valuation of a good. This
1 The assignment of tasks in reverse auctions works similarly.
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is a huge advantage over first-price auctions, where bidders have to estimate
the other bidders’ valuations when calculating their bid. However, despite its
impressive theoretical properties, the Vickrey auction is rarely used in practice.
It is generally agreed [2,3,4] that the Vickrey auction’s sparseness is due to two
major reasons: the fear of an untruthful auctioneer and the reluctance of bidders
to reveal their true valuations. The winner of an auction has to doubt whether
the price the auctioneer tells him to pay is actually the second-highest bid. The
auctioneer could easily make up a “second-highest” bid to increase his (or the
seller’s) revenue. In addition to a possibly insincere auctioneer, bidders have
to reveal their valuations to the auctioneer. There are numerous ways to misuse
these values by giving them away to other bidders or the seller [5,6,7]. It remains
in the hands of the auctioneer whether the auction really is a sealed-bid auction.

The proposed protocol removes both crucial weaknesses of the Vickrey auc-
tion by omitting the auctioneer and distributing the calculation of the selling
price on the bidders themselves. No information concerning the bids is revealed
unless all bidders share their knowledge, which obviously uncovers all bids in
any auction protocol. Furthermore, our protocol is applicable to a generaliza-
tion of the Vickrey auction called uniform-price or (M + 1)st-price auction. In
an (M + 1)st-price auction, the seller offers M identical items and each bidder
intends to buy one of them. It has been proven that it is an strategy-proof mech-
anism to sell those items to the M highest bidders for the uniform price given
by the (M + 1)st highest bid [1,8]. The Vickrey auction is just a special case of
this mechanism for the selling of single goods (M = 1).

Thus, our main contribution is a verifiable protocol for n participants, each
having a secret value, that only reveals the (M + 1)st highest value to the M
participants who possess higher values.

The remainder of this paper is structured as follows. Section 2 summarizes
existing efforts in the field of cryptographic auction protocols. Section 3 de-
fines essential attributes that ensure a secure and private auction conduction
and Section 4 introduces “bidder-resolved auctions”. In Section 5, we propose a
bidder-resolved (M + 1)st-price auction protocol. The paper concludes with an
overview of the protocol’s complexity and a brief outlook in Section 6.

2 Related Work

There has been a very fast-growing interest in cryptographic protocols for auc-
tions during the last years. In particular, Vickrey auctions and recently the more
general (M+1)st-price auctions attracted much attention. Starting with the work
by Franklin and Reiter [9], which introduced the basic problems of sealed-bid
auctions, but disregarded the privacy of bids after the auction is finished, many
secure auction mechanisms have been proposed, e.g. [7,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,26].

When taking away all the protocols that (in their current form) are only
suitable for the secure execution of first-price auctions or reveal (partial) infor-
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mation after the auction is finished [7,9,11,15,19,22,23,27,25,26], the remaining
work can be divided into two categories.

Most of the publications rely on threshold computation that is distributed
among auctioneers [14,16,17,18,24]. This technique requires m auctioneers, out of
which a fraction (mostly a majority) must be trustworthy. Bidders send shares of
their bids to each auctioneer. The auctioneers jointly compute the selling price
without ever knowing a single bid. This is achieved by using techniques like
verifiable secret sharing and secure multiparty function evaluation. However, a
collusion of, e.g., three out of five auctioneer servers can already exploit the bid-
ders’ trust. We argue that distributing the trust onto several distinct auctioneers
does not solve the privacy problem, because you can never rule out that some
of them, or even all of them, collude.

The remaining auction protocols prune the auctioneer’s ability to falsify the
auction outcome and reveal confidential information by introducing a new third-
party that is not fully trusted. However, all of these approaches make weak
assumptions about the trustworthiness of this third-party. In [12,13] the third-
party may not collude with any participating bidder; in [20,21] it is prohibited
that the third-party and the auctioneer collude. A recent scheme [10] uses a
homomorphic, indistinguishable public-key encryption scheme like ElGamal to
compute on encrypted bids. However, the private key is either held by a trusted
third-party or is shared among a set of confidants which makes the protocol as
safe as the ones using several auctioneers (see Section 4 for information on how
this scheme can be distributed on bidders).

Concluding, all present work on secure auctions more or less relies on the
exclusion of third-party collusion, may it be auctioneers or other semi-trusted
institutions. Additionally, many of the existing schemes publicly announce the
winner’s identity and all of them declare the selling price rather than making
this information only visible to the seller and the winners.

3 General Assumptions

This section specifies demands that a secure auction protocol has to meet. Fur-
thermore, we make several rigorous assumptions about auction participants and
collusions between them. The required properties for safe conductions of sealed-
bid auctions can be divided into two categories.

Privacy. No information concerning bids and the corresponding bidders’ iden-
tities is revealed during and after the auction.
The only information that naturally has to be delivered is the information
that is needed to carry out the transaction, i.e., the winning bidders and the
seller learn the selling price and the seller gets to know the winners’ identi-
ties. As [27] pointed out, anonymity of the winners is crucial. Otherwise, a
bidder that breaks a collusive agreement could be identified by his partners.
[11] introduced the property of “receipt-freeness” in the context of auctions.
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It prevents bidders from proving their bidding prices in order to circum-
vent bid-rigging. Our protocol is not receipt-free as this would heavily affect
efficiency and because receipt-freeness requires untappable channels.
Privacy, as we understand it, implies that no information on any bid is
revealed to the public, in particular no bid statistics (e.g. the amount of the
lowest bid or an upper bound for the highest bid) can be extracted.

Correctness. The winner and the selling price are determined correctly.
This requirement includes non-repudiation (winning bidders cannot deny
having made winning bids) and the immutability of bids. Robustness (no
subset of malicious bidders can render the auction outcome invalid) also
belongs to this category (see Section 4).

Privacy and correctness have to be ensured in a hostile environment as we
allow every feasible type of collusion. We assume that up to n− 1 bidders might
share their knowledge and act as a team. This implies that each bidder can have
arbitrarily many bidder sub-agents, controlled by him. Besides, the seller might
collude with bidders, and any number of auctioneers or other third parties might
collude and are therefore not trustworthy. We assume the standard model of a
secure broadcast channel.

4 Bidder-Resolved Auctions

According to the assumptions of the previous section, bidders cannot trust any
third-party. We therefore distribute the trust onto the bidders themselves. This
allows us to set a new standard for privacy. In a scenario with m auctioneers
it cannot be ruled out that all of them collude. However, when distributing
the computation on n bidders, we can assume that all bidders will never share
their knowledge due to the competition between them. If they did, each of them
would completely abandon his own privacy, resulting in a public auction. We
therefore argue, that only bidder-resolved auctions provide full privacy, i.e., no
information on any bid can be retrieved unless all bidders collude. Full privacy
can be interpreted as (n − 1)-privacy or (n, n)-threshold privacy.

It is difficult to assure robustness in bidder-resolved auctions. However, ver-
ifiability can be used to provide what we call weak robustness, so that malicious
bidders will be detected immediately (without additional communication and
information revelation) and can be excluded from the set of bidders. The proto-
col can then be restarted with the remaining bidders proving that their bids did
not change2. This guarantees termination (after at most n − M iterations) and
correctness (if we agree that the removal of malicious bidders (and their bids)
does not violate correctness). As malicious bidders can easily be fined and they
do not gain any information, there should be no incentive to perturb the auction
and we henceforth assume that a single protocol run suffices.

2 This is not mandatory as their should be no reason to strategically change a bid
after a bidder has been excluded (assuming the private-value model).



Fully Private Auctions in a Constant Number of Rounds 227

Public verifiability of the protocol is sufficient to provide weak robustness
and verifiability can be easily achieved by using zero-knowledge proofs. Unfortu-
nately, when abandoning (strong) robustness, we also lose “fairness”. Typically,
in the end of a protocol run, each participant holds a share of the result. As
simultaneous publication of these shares is impossible, a malicious agent might
quit the protocol after having learned the result but before others were able
to learn it. There are various techniques to approximate fairness by gradually
releasing parts of the secrets to be swapped. Another possibility is to introduce
a third-party that publishes the outcome after it received all shares. This third-
party does not learn confidential information. It is only assumed not to leave
the protocol prematurely. We believe that in auctions with a single seller, it is
practical to assign this role to the seller. This obviously leaves the possibility
of a “cheating seller” who quits the protocol after having learned the (possibly
unsatisfying) result. However, such a seller could be forced to sell the good for
the resulting price as bidders can compute the auction outcome on their own (or
with another fairness-providing third party).

The naive approach to build a Boolean circuit that computes the auction
outcome on binary representations of bids by applying a general multiparty
computation (MPC) scheme is not feasible as those schemes are quite inefficient
and the circuit depth, and thus the round complexity, depends on the number
of bidders and the bid size. Like many other existing schemes, we therefore use
an ordered set of k possible prices (or valuations) (p1, p2, . . . , pk). This results
in linear computational complexity but enables special purpose protocols that
do not require a general MPC scheme. In fact, our protocol has constant round
complexity because it only uses additions and no multiplications.

A framework for bidder-resolved auction protocols could look like this:

– The seller publicly announces the selling of a certain good by publishing
• the good’s description,
• the amount of units to be sold,
• the registration deadline,
• lower and upper bounds of the valuation interval, and
• a function that prescribes how and how many valuations (p1, p2, . . . , pk)

are distributed among that interval subject to the number of bidders n
(enabling linear, logarithmic, or any other form of scaling)

on a blackboard.
– Interested bidders publish their id’s on the blackboard.

— registration deadline —
– The bidders jointly compute the winners and the selling price.

A threshold-scheme providing t-resilience is not appropriate when informa-
tion is shared among bidders, as any group of bidders might collude due to the
assumptions of the previous section. As a consequence, we cannot simply adapt
existing auction protocols that were designed for multiple auctioneers. Protocols
like [14], or [16] rely on information-theoretic secure multiparty computation
according to Ben-Or, Goldwasser and Wigderson [28], which provides at most
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insufficient
⌊

n−1
2

⌋
-privacy due to the multiplication of degree n polynomials.

Another recent protocol by Abe and Suzuki [10] uses verifiable mix and match
[15] of ElGamal ciphertexts assuming an honest majority due to robustness
requirements. When relaxing these requirements in order to realize a bidder-
resolved protocol and discarding binary search to minimize the round complex-
ity, mixing would still require O(n) rounds. With further changes that enable
privacy of the selling price, the computational and message complexity per bid-
der would be O(nkM log(M)), which is fairly good as M is negligibly small in
many cases (e.g. in a Vickrey auction). However, the number of rounds depends
on the number of bidders n.

5 Protocol Description

We will use an additive vector notation to describe our approach. The actual
implementation described in Section 5.1, however, will take place in a multiplica-
tive group using ElGamal encryption with a public key that is jointly created
by all bidders.
Each bidder sets the bid vector3

bi = (bi1, bi2, . . . , bik) = (0, . . . , 0
︸ ︷︷ ︸

bi−1

, Y, 0, . . . , 0
︸ ︷︷ ︸

k−bi

)

according to his bid bi ∈ {1, 2, . . . , k}, publishes its encryption, and shows its
correctness by proving ∀j ∈ {1, 2, . . . , k} : bij ∈ {0, Y } and

∑k
j=1 bij = Y in

zero-knowledge manner (like in [10]). Y �= 0 is a generally known group element,
e.g. 1.

The homomorphic encryption scheme allows verifiable computation of lin-
ear combinations of secrets in a single round. When computing on vectors of
homomorphically encrypted values (like bi), this means that besides addition
and substraction of (encrypted) vectors, multiplication with (known) matrices
is feasible. For example, the “integrated”[10] bid vector

b′
i = (Y, . . . , Y

︸ ︷︷ ︸
bi

, 0, . . . , 0
︸ ︷︷ ︸

k−bi

) = (bi1 + b′
i2, bi2 + b′

i3, . . . , bik)

can be derived by multiplying the bid vector with the k × k lower triangular
matrix L (b′

i = Lbi).

L =









1 0 · · · 0
...

. . . . . .
...

...
. . . 0

1 · · · · · · 1









(lower triangular matrix)

3 To save space, vector components are listed horizontally (bottom-up).
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Multiplying a vector with L − I, where I is the k × k identity matrix, yields
b′

i shifted down by one component.

I =









1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1









(identity matrix)

If we sum up all integrated bid vectors and down-shifted integrated bid vec-
tors, we obtain a vector that has the following structure (let us for now disregard
the possibility of equal bids, we will refer to this case in Section 5.2).

(2L − I)
n∑

i=1

bi = (. . . , 6Y, . . . , 6Y, 5Y, 4Y, . . . , 4Y, 3Y, 2Y, . . . , 2Y, Y, 0, . . . , 0)

The position of the (single) component that equals 3Y denotes the second-highest
bid, 5Y the third-highest bid, and so forth. Subtracting (2M + 1)Y e with e =
(1, . . . , 1), thus yields a vector in which the component, that refers to the amount
of the (M + 1)st highest bid, is 0. All other components are not 0.
As we intend to create personal indicators for each bidder, we mask the resulting
vector so that only winning bidders can read the selling price. This is achieved
by adding Ubi.

U =









1 · · · · · · 1

0
. . .

...
...

. . . . . .
...

0 · · · 0 1









(upper triangular matrix)

For an arbitrary bidder a, the vector (2L−I)
∑n

i=1 bi−(2M+1)Y e+(2M+2)Uba

only contains a component equal 0, when a qualifies as a winner of the auction.
The position of this component then indicates the selling price.
In order to get rid of all information besides the selling price, each component
is multiplied with a different random multiplier Mij that is jointly created and
unknown to any subset of bidders. Finally, each bidder’s personal indicator vector
is computed according to the following equation.

va =

(

(2L − I)
n∑

i=1

bi − (2M + 1)Y e + (2M + 2)Uba

)

R∗
a

R∗
i =









Mik 0 · · · 0

0 Mi,k−1
. . .

...
...

. . . . . . 0
0 · · · 0 Mi1









(random multiplication matrix)
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Be aware that R∗
i does not represent a feasible linear operation on encrypted val-

ues as the homomorphic property only provides addition, but not multiplication,
of secrets. The components Mij are unknown to bidders. In Section 5.1, we will
present a very efficient way to randomize ElGamal encrypted vector components.

The invariant of the “blinding” transformation are components that equal 0.
As described before, those components mark the selling price to winning bidders.
Only bidder i and the seller get to know vi.

vij = 0 ⇐⇒ Bidder i won and has to pay pj

The following simple example for two bidders illustrates the functional-
ity of the protocol. The computations take place in Z11 and the auction to
be conducted is a Vickrey auction (M = 1). Bids are b1 = 2 and b2 = 5:
b1 = (0, 1, 0, 0, 0, 0), b2 = (0, 0, 0, 0, 1, 0). The selling price can be determined by
computing










1 0 0 0 0 0
2 1 0 0 0 0
2 2 1 0 0 0
2 2 2 1 0 0
2 2 2 2 1 0
2 2 2 2 2 1































0
0
0
0
1
0











+











0
1
0
0
0
0





















−











3
3
3
3
3
3











=











0
1
2
2
3
4











−











3
3
3
3
3
3











=











8
9

10
10
0
1











.

Now, the selling price has to be masked to losing bidders. Bidder 1 is unable to
identify the selling price. His indication vector (v1) contains random numbers.










8
9

10
10
0
1











+ 4











1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1





















0
0
0
0
1
0











=











8
9

10
10
0
1











+











4
4
4
4
4
0











=











1
2
3
3
4
1











×R∗
1−→











.

.

.

.

.

.











Bidder 2’s indicator v2, however, indicates the selling price at the second com-
ponent (bottom-up).










8
9

10
10
0
1











+ 4











1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1





















0
1
0
0
0
0











=











8
9

10
10
0
1











+











4
4
0
0
0
0











=











1
2

10
10
0
1











×R∗
2−→











.

.

.

.
0
.











5.1 Implementation Using ElGamal Encryption

The following implementation of the protocol is based on a distributed version
of ElGamal cipher and uses several zero-knowledge proofs like Schnorr’s proof of
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knowledge of a discrete logarithm [29], Chaum and Pedersen’s proof of equality
of discrete logarithms [30], and Cramer, Damg̊ard, and Schoenmaker’s proof of
partial knowledge [31]. It is much more efficient than a previous version [32] that
was based on verifiable secret sharing. Indices +i and ×i are used to indicate
additive and multiplicative shares, respectively.

ElGamal cipher [33] is a probabilistic public-key cryptosystem that provides
two very useful properties: homomorphic and semantically secure encryption
[34]. p and q are large primes so that q divides p − 1. Gq denotes Zp’s unique
multiplicative subgroup of order q. The private key is x ∈ Zq, the public key
y = gx (g ∈ Gq). A message m ∈ Gq is encrypted by computing the cipher-
text tuple (α, β) = (myr, gr) where r is an arbitrary number in Zq. A message
is decrypted by computing α

βx = mya

(ga)x = m. The product of two ciphertexts
(αα′, ββ′) represents an encryption of the plaintexts’ product mm′ (homomor-
phic property). We will now describe how to apply the ElGamal cryptosystem
as a fully private, i.e. non-threshold, multiparty computation scheme.

Distributed key generation: Each participant chooses x+i at random and
publishes y×i = gx+i along with a zero-knowledge proof of knowledge of y×i’s
discrete logarithm using [29]. The public key is y =

∏n
i=1 y×i, the private key

is x =
∑n

i=1 x+i. The broadcast round complexity and the computational
complexity of the key generation are O(1).

Distributed decryption: Given an encrypted message (α, β), each participant
publishes β×i = βx+i and proves its correctness (as described in [30]). The
plaintext can be derived by computing α∏n

i=1 β×i
. Like the key generation, the

decryption can be performed in constant time.
Random Exponentiation: A given encrypted value (α, β) can easily be raised

to the power of an unknown random number M =
∑n

i=1 m+i whose addends
can be freely chosen by the participants if each bidder publishes (αm+i , βm+i)
and proves the equality of logarithms. The product of the published cipher-
texts yields (αM , βM ). Random Exponentiation can thus be executed simul-
taneously with distributed decryption in a single step. Random exponentia-
tion has been the bottleneck of our previous auction protocol [32] that was
based on verifiable secret sharing.

What follows is the step-by-step protocol specification for bidder a and his
bid ba. i, h ∈ {1, 2, . . . , n}, and j, ba ∈ {1, 2, . . . , k}. Y ∈ Gq\{1} is known to all
bidders.

1. Choose x+a and ∀i, j : m+a
ij , raj ∈ Z

∗
q at random.

2. Publish y×a = gx+a along with a zero-knowledge proof of knowledge of y×a’s
discrete logarithm using [29]. Compute y =

∏n
i=1 y×i.

3. ∀j : Set baj =

{
Y if j = ba

1 else
and publish αaj = bajy

raj and βaj = graj .

4. Prove that ∀j : αaj ∈ {Y yraj , yraj } ([31]) and
k∏

j=1

αaj = Y yra .
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5. Compute ∀i, j : γij =

∏n
h=1

∏k
d=j(αhdαh,d+1)

(∏j
d=1 αid

)2M+2

(2M + 1)Y
and

δij =
n∏

h=1

k∏

d=j

(βhdβh,d+1)

(
j∏

d=1

βid

)2M+2

.

6. Send ∀i, j : γ×a
ij = (γij)m+a

ij and δ×a
ij = (δij)m+a

ij x+a with a proof of their
correctness ([30]) to the seller who publishes all γ×h

ij and δ×h
ij and the corre-

sponding proofs of correctness for each i, j, h �= i after having received all of
them.

7. Compute vaj =

∏n
i=1 γ×i

aj∏n
i=1 δ×i

aj

.

8. If vaw = 1 for any w, then bidder a is a winner of the auction. pw is the
selling price.

The final steps are conducted in a way that allows the seller to assemble
all decrypted indicators before the bidders can compute them. This prevents
a winning bidder from aborting the protocol after having learned the auction
result. Alternatively, a sub-protocol that enables “fair exchange of secrets” could
be used while including the seller into the secret sharing process.
Assuming the random oracle model that allows non-interactive zero-knowledge
proofs, the entire protocol requires just three rounds of interaction.

5.2 The Problem of Equal Bids

When two or more bidders have the (M + 1)st highest bid in common, the
protocol yields no winners. There is no information revelation in this case, except
that there has been a tie on the (M + 1)st highest bid. However, this might be
used by a group of malicious bidders who submit equal bids on purpose to learn
about the selling price. If the tie is undetected, their bids were lower than the
selling price. If the protocol fails, their bids were at least as high as the selling
price would have been (without their participation). Besides, ties can be used to
destroy the protocol’s robustness, as tieing bidders can anonymously disrupt the
auction. In the following, we will discuss three different methods to circumvent
the tie problem. The first two avoid ties while the last one identifies ties.

“Interlacing” Vector Components (Int.) A straight-forward way to avoid
the problem is to increase the number of components in vi from k to nk and insert
bidder i’s bid in row nj + i − 1. This increases the computational complexity to
O(n2k). Unfortunately, this method reveals the identity of one of the (M + 1)st
highest bidders to the winners.

Preventing Equal Bids (Pre). Exact bid amounts bi can be computed by
summing up the components of Lbi. The equality of bids can be detected by com-
puting (bi − bh)Mih for each pair of bids, requiring n2−n

2 comparisons. When
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equal bids have been detected, k extra rows might be inserted similar to the
previous technique. As n < k in most reasonable auction settings, the compu-
tational complexity per bidder remains O(nk) when bids are pairwise different.
The exact complexity is O(nkT ), where T = n − |{bi}n

i=1| + 1. This technique is
generally less complex than the previous one (they are equally complex for the
extreme case when all bids are equal). Due to the revelation of equal bids, there
is no incentive for malicious bidders to use ties on purpose anymore. However,
malicious bidders can try to “guess” bids, i.e., they submit various differing bids
and hope for ties, because ties reveal opponents’ bids.

Determining Ties (Det). Instead of trying to avoid ties, we can locate the
position of ties. As mentioned before, ties only inhibit the protocol when they
occur at the (M + 1)st-highest bid. For this reason, “bad” ties always indicate
the selling price. The following method marks ties if they prevent the regular
protocol from working.

∑n
i=1 bi − te is a vector that contains zeros if t bidders

share the same bid at the corresponding position (1 < t ≤ n). “Good” ties
can be masked by adding (n + 1) (L

∑n
i=1 bi − (t + u)e) where 0 ≤ u ≤ M and

M + 1 ≤ t + u ≤ n. The resulting vector contains a zero when t bids are equal
and there are u bids higher than the tie. The preceding factor (n + 1) is large
enough to ensure that both addends do not add up to zero. Finally, the position
of the tie (which is the selling price) has to be made invisible to losing bidders
like in Section 5. This can be done by adding (n2 + 2n + 1)(U − I)ba.

Concluding, this method requires the additional computation of indicators

v′
atu =

(
n∑

i=1

bi − te + (n + 1)

(

L
n∑

i=1

bi − (t + u)e

)

+ (n2 + 2n + 1)(U − I)ba

)

R∗
atu =

=

(

(L + (n + 1)I)
n∑

i=1

bi − (nt + nu + 2t + u) e + (n2 + 2n + 1)(U−I)ba

)

R∗
atu,

which increases the overall computational complexity to O(n2kM). Information
revelation is low compared with the previous two methods if we assume that ties
happen “accidently” which can be justified by the fact that there is no gain by
using equal bids strategically. Winning bidders learn that the selling price was
shared by t bidders and that there were u higher bids. In contrast to the previous
two methods, not a single bid origin, i.e. a bidder’s identity, is uncovered.

Suppose we have the following compilation of bids (M = 1, computation
takes place in Z11):

b1 =











0
1
0
0
0
0











, b2 =











0
1
0
0
0
0











, b3 =











0
0
0
1
0
0











, and b4 =











0
0
0
1
0
0











.
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The first two (t = 2, u ∈ {0, 1}) indicators look like this (before being masked
for each bidder):











0
2
0
2
0
0











−











2
2
2
2
2
2











+ 5





















0
2
2
4
4
4











−











2
2
2
2
2
2





















=











10
0
9

10
8
8











×R∗
1,2,0−→











.
0
.
.
.
.





















0
2
0
2
0
0











−











2
2
2
2
2
2











+ 5





















0
2
2
4
4
4











−











3
3
3
3
3
3





















=











5
6
4
5
3
3











×R∗
1,2,1−→











.

.

.

.

.

.











For t > 2 the first difference contains no zeros, leading to random vectors.

5.3 Round vs. Computational Complexity

General fully private MPC is possible (in the computational model) when assum-
ing weak robustness [35,36]. This means that computational complexity could be
drastically reduced by working with the currently most efficient scheme based on
homomorphic encryption [37], which allows multiplication of encrypted values
in three rounds. Different vectors that indicate prices by zeros can be multiplied
into a single vector. This can be used to simplify the computation of indication
vectors without any tie problems (0 ≤ u ≤ M).

vau = (L − I)
n∑

i=1

bi − ue, va =















∏M
u=0 vau1∏M
u=0 vau2

...∏M
u=0 vauj








+ Uba








R∗
a

This technique results in O(log M) rounds after all. Additionally, the new struc-
ture of va enables binary search (in public-price mode, see Section 6) which
furthermore decreases the computational complexity to O(log k log M)). Please
note, that bidders still need to submit k bid values.

However, MPC based on homomorphic encryption is currently only possi-
ble for factorization based encryption schemes like Paillier encryption [38]. In
contrast to discrete logarithm based schemes, the joint generation of secret keys
needed for such schemes is very inefficient [39,40,41], especially when requiring
full privacy. There is (yet) no general MPC scheme based on ElGamal encryp-
tion.
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6 Conclusion

We presented a novel cryptographic auction protocol where bidders jointly com-
pute the auction outcome in a constant number of rounds (three when assuming
the random oracle model). The price we pay for round complexity that does
neither depend on the number of bidders n nor on the number of possible bids
k is computational complexity that is linear in k. However, experimental results
indicate that the computational amount and message sizes are manageable in
many realistic settings, despite its linearity in k.

The protocol complies with the highest standard of privacy possible: it is
safe for a single bidder no matter how many of the other participants collude.
The only agent being able to discover who won the auction besides the con-
cerned bidders is the seller. We are not aware of any auction protocol, that
achieves a similar level of privacy. Only computationally unbounded adversaries
can uncover information. When using verifiable secret sharing instead of homo-
morphic encryption (like in [32]), only bid statistics are revealed to less than
n − 1 unbounded adversaries. As the protocol is publicly verifiable, malicious
bidders that do not follow the protocol will be detected immediately and can be
excluded from the set of bidders.

Table 1. Protocol complexity (computation per bidder)

Price Rounds Computation (exponentiations)

Private O(1) Int: O(n2k), Pre: O(nkT ), Det: O(n2kM)

Public O(1) Int: O(nk), Pre: O(kT ), Det: O(nkM)

n: bidders, k: prices/possible bids, M : units to be sold, T : ties

Table 1 shows the complexity of the protocol. When the selling price does
not need to be protected (“public price”), the computational complexity can be
reduced by just computing one value for all bidders that indicates the selling
price pw. Winning bidders can prove their claims to the seller by showing that
(αiw, βiw) is an encryption of Y . However, winning bidders are able to remain
silent if they dislike the selling price (violating non-repudiation) in public-price
mode. This could be circumvented by forcing all bidders to open their com-
mitments for the selling price, thus proving to the seller whether they won or
lost.

The protocol can be easily adapted to execute first-price or ascending (e.g.
English) auctions. The latter might be useful in common-value scenarios where
valuations interdepend. In the future, we intend to apply the presented tech-
niques to solve tractable instances of combinatorial auctions like general multi-
unit or linear-good auctions while maintaining full privacy.
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