/* This file is part of libbrandt. * Copyright (C) 2016 GNUnet e.V. * * libbrandt is free software: you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * libbrandt is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * libbrandt. If not, see . */ /** * @file mp_pub.c * @brief Implementation of the m+1st price public outcome algorithm. * @author Markus Teich */ #include "platform.h" #include #include "crypto.h" #include "internals.h" #include "util.h" void mp_pub_prep_outcome (struct BRANDT_Auction *ad) { gcry_mpi_t factor = gcry_mpi_new (256); gcry_mpi_point_t subtr = gcry_mpi_point_new (0); gcry_mpi_point_t tmpa = gcry_mpi_point_new (0); gcry_mpi_point_t tmpb = gcry_mpi_point_new (0); gcry_mpi_point_t *tlta1; gcry_mpi_point_t *tltb1; gcry_mpi_point_t **tlta2; gcry_mpi_point_t **tltb2; gcry_mpi_point_t **tlta3; gcry_mpi_point_t **tltb3; ad->gamma3 = smc_init3 (ad->n, 2, ad->k); brandt_assert (ad->gamma3); ad->delta3 = smc_init3 (ad->n, 2, ad->k); brandt_assert (ad->delta3); /* create temporary lookup tables with partial sums */ tlta1 = smc_init1 (ad->k); tltb1 = smc_init1 (ad->k); tlta2 = smc_init2 (ad->n, ad->k); tltb2 = smc_init2 (ad->n, ad->k); tlta3 = smc_init2 (ad->n, ad->k); tltb3 = smc_init2 (ad->n, ad->k); /* temporary lookup table for first summand (building ladder of bids) */ for (uint16_t i = 0; i < ad->n; i++) { smc_sums_partial (tlta3[i], ad->alpha[i], ad->k, 1, 1); smc_sums_partial (tltb3[i], ad->beta[i], ad->k, 1, 1); for (uint16_t j = 0; j < ad->k; j++) { gcry_mpi_ec_sub (tlta2[i][j], tlta3[i][ad->k - 1], tlta3[i][j], ec_ctx); gcry_mpi_ec_sub (tltb2[i][j], tltb3[i][ad->k - 1], tltb3[i][j], ec_ctx); } brandt_assert (!ec_point_cmp (ec_zero, tlta2[i][ad->k - 1])); brandt_assert (!ec_point_cmp (ec_zero, tltb2[i][ad->k - 1])); } for (uint16_t j = 0; j < ad->k; j++) { /* 2L - 2I */ smc_sum (tmpa, &tlta2[0][j], ad->n, ad->k); smc_sum (tmpb, &tltb2[0][j], ad->n, ad->k); gcry_mpi_ec_mul (tlta1[j], GCRYMPI_CONST_TWO, tmpa, ec_ctx); gcry_mpi_ec_mul (tltb1[j], GCRYMPI_CONST_TWO, tmpb, ec_ctx); /* I */ smc_sum (tmpa, &ad->alpha[0][j], ad->n, ad->k); smc_sum (tmpb, &ad->beta[0][j], ad->n, ad->k); /* 2L - 2I + I = 2L - I */ gcry_mpi_ec_add (tlta1[j], tlta1[j], tmpa, ec_ctx); gcry_mpi_ec_add (tltb1[j], tltb1[j], tmpb, ec_ctx); } brandt_assert (!ec_point_cmp (tmpa, tlta1[ad->k - 1])); brandt_assert (!ec_point_cmp (tmpb, tltb1[ad->k - 1])); /* compute subtrahend: (2M+1)G */ gcry_mpi_set_ui (factor, ad->m); gcry_mpi_lshift (factor, factor, 1); gcry_mpi_add_ui (factor, factor, 1); gcry_mpi_ec_mul (subtr, factor, ec_gen, ec_ctx); /* compute gamma and delta for price determination */ for (uint16_t j = 0; j < ad->k; j++) { /* compute inner gamma */ gcry_mpi_ec_sub (tmpa, tlta1[j], subtr, ec_ctx); /* inner delta */ ec_point_copy (tmpb, tltb1[j]); /* copy unmasked outcome to all other bidder layers so they don't * have to be recomputed to check the ZK proof_2dle's from other * bidders when receiving their outcome messages */ for (uint16_t a = 0; a < ad->n; a++) { ec_point_copy (ad->gamma3[a][0][j], tmpa); ec_point_copy (ad->delta3[a][0][j], tmpb); } } /* gamma and delta for winner determination: compute * @f$\sum_{h=1}^n\sum_{d=j+1}^k2^{h-1}b_h@f and store it in every bidders gamma and * delta, since it is needed each time a gamma,delta pair is received from * another bidder. */ for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { /* initialize with zeroes, since we are calculating a sum */ ec_point_copy (ad->gamma3[i][1][j], ec_zero); ec_point_copy (ad->delta3[i][1][j], ec_zero); } } gcry_mpi_set_ui (factor, 1); for (uint16_t h = 0; h < ad->n; h++) { for (uint16_t j = 0; j < ad->k; j++) { for (uint16_t d = j + 1; d < ad->k; d++) { gcry_mpi_ec_mul (tmpa, factor, ad->alpha[h][d], ec_ctx); gcry_mpi_ec_add (ad->gamma3[0][1][j], ad->gamma3[0][1][j], tmpa, ec_ctx); gcry_mpi_ec_mul (tmpb, factor, ad->beta[h][d], ec_ctx); gcry_mpi_ec_add (ad->delta3[0][1][j], ad->delta3[0][1][j], tmpb, ec_ctx); } } gcry_mpi_lshift (factor, factor, 1); } /* copy component to all bidders so they don't have to be recomputed */ for (uint16_t a = 1; a < ad->n; a++) { for (uint16_t j = 0; j < ad->k; j++) { ec_point_copy (ad->gamma3[a][1][j], ad->gamma3[0][1][j]); ec_point_copy (ad->delta3[a][1][j], ad->delta3[0][1][j]); } } gcry_mpi_release (factor); gcry_mpi_point_release (subtr); gcry_mpi_point_release (tmpa); gcry_mpi_point_release (tmpb); smc_free1 (tlta1, ad->k); smc_free1 (tltb1, ad->k); smc_free2 (tlta2, ad->n, ad->k); smc_free2 (tltb2, ad->n, ad->k); smc_free2 (tlta3, ad->n, ad->k); smc_free2 (tltb3, ad->n, ad->k); } /** * mp_pub_compute_outcome computes encrypted outcome shares and packs them into * a message buffer together with proofs of correctnes. * * @param[in] ad Pointer to the BRANDT_Auction struct to operate on * @param[out] buflen Size of the returned message buffer in bytes * @return A buffer containing the encrypted outcome vectors * which needs to be broadcast */ unsigned char * mp_pub_compute_outcome (struct BRANDT_Auction *ad, size_t *buflen) { unsigned char *ret; unsigned char *cur; struct msg_head *head; gcry_mpi_point_t tmpa = gcry_mpi_point_new (0); gcry_mpi_point_t tmpb = gcry_mpi_point_new (0); struct ec_mpi *gamma; struct ec_mpi *delta; struct proof_2dle *proof2; brandt_assert (ad && buflen); *buflen = (sizeof (*head) + /* msg header */ ad->k * /* k * (gamma, delta, proof2) */ (sizeof (*gamma) + sizeof (*delta) + sizeof (*proof2))); ret = GNUNET_new_array (*buflen, unsigned char); head = (struct msg_head *)ret; head->prot_version = htonl (0); head->msg_type = htonl (msg_outcome); cur = ret + sizeof (*head); for (uint16_t j = 0; j < ad->k; j++) { gamma = (struct ec_mpi *)cur; delta = &((struct ec_mpi *)cur)[1]; proof2 = (struct proof_2dle *)(cur + 2 * sizeof (struct ec_mpi)); /* only send the price determination gamma,delta pair, since the winner * determination pair can and will be computed by the receiver */ ec_point_copy (tmpa, ad->gamma3[ad->i][0][j]); ec_point_copy (tmpb, ad->delta3[ad->i][0][j]); /* apply random masking for losing bidders */ smc_zkp_2dle (ad->gamma3[ad->i][0][j], ad->delta3[ad->i][0][j], tmpa, tmpb, NULL, proof2); ec_point_serialize (gamma, ad->gamma3[ad->i][0][j]); ec_point_serialize (delta, ad->delta3[ad->i][0][j]); /* compute own winner determination gamma,delta pair */ gcry_mpi_ec_add (ad->gamma3[ad->i][1][j], ad->gamma3[ad->i][0][j], ad->gamma3[ad->i][1][j], ec_ctx); gcry_mpi_ec_add (ad->delta3[ad->i][1][j], ad->delta3[ad->i][0][j], ad->delta3[ad->i][1][j], ec_ctx); cur += sizeof (*gamma) + sizeof (*delta) + sizeof (*proof2); } gcry_mpi_point_release (tmpa); gcry_mpi_point_release (tmpb); return ret; } int mp_pub_recv_outcome (struct BRANDT_Auction *ad, const unsigned char *buf, size_t buflen, uint16_t sender) { int ret = 0; const unsigned char *cur = buf; struct proof_2dle *proof2; gcry_mpi_point_t gamma = gcry_mpi_point_new (0); gcry_mpi_point_t delta = gcry_mpi_point_new (0); brandt_assert (ad && buf); if (buflen != (ad->k * (2 * sizeof (struct ec_mpi) + sizeof (*proof2)))) { GNUNET_log_from (GNUNET_ERROR_TYPE_ERROR, "libbrandt", "wrong size of received outcome\n"); goto quit; } for (uint16_t j = 0; j < ad->k; j++) { ec_point_parse (gamma, (struct ec_mpi *)cur); ec_point_parse (delta, &((struct ec_mpi *)cur)[1]); proof2 = (struct proof_2dle *)(cur + 2 * sizeof (struct ec_mpi)); if (smc_zkp_2dle_check (gamma, delta, ad->gamma3[sender][0][j], ad->delta3[sender][0][j], proof2)) { GNUNET_log_from (GNUNET_ERROR_TYPE_ERROR, "libbrandt", "wrong zkp2 for gamma, delta received\n"); goto quit; } ec_point_copy (ad->gamma3[sender][0][j], gamma); ec_point_copy (ad->delta3[sender][0][j], delta); /* compute winner determination gamma,delta pair */ gcry_mpi_ec_add (ad->gamma3[sender][1][j], ad->gamma3[sender][0][j], ad->gamma3[sender][1][j], ec_ctx); gcry_mpi_ec_add (ad->delta3[sender][1][j], ad->delta3[sender][0][j], ad->delta3[sender][1][j], ec_ctx); cur += 2 * sizeof (struct ec_mpi) + sizeof (*proof2); } ret = 1; quit: gcry_mpi_point_release (gamma); gcry_mpi_point_release (delta); return ret; } void mp_pub_prep_decryption (struct BRANDT_Auction *ad) { gcry_mpi_point_t tmp_price = gcry_mpi_point_new (0); gcry_mpi_point_t tmp_winner = gcry_mpi_point_new (0); ad->phi3 = smc_init3 (ad->n, 2, ad->k); brandt_assert (ad->phi3); for (uint16_t j = 0; j < ad->k; j++) { smc_sum (tmp_price, &ad->delta3[0][0][j], ad->n, 2 * ad->k); smc_sum (tmp_winner, &ad->delta3[0][1][j], ad->n, 2 * ad->k); /* copy still encrypted outcome to all other bidder layers so they * don't have to be recomputed to check the ZK proof_2dle's from * other bidders when receiving their outcome decryption messages */ for (uint16_t a = 0; a < ad->n; a++) { ec_point_copy (ad->phi3[a][0][j], tmp_price); ec_point_copy (ad->phi3[a][1][j], tmp_winner); } } gcry_mpi_point_release (tmp_price); gcry_mpi_point_release (tmp_winner); } /** * mp_pub_decrypt_outcome decrypts part of the outcome and packs it into a * message buffer together with proofs of correctnes. * * @param[in] ad Pointer to the BRANDT_Auction struct to operate on * @param[out] buflen Size of the returned message buffer in bytes * @return A buffer containing the own share of the decrypted outcome * which needs to be broadcast */ unsigned char * mp_pub_decrypt_outcome (struct BRANDT_Auction *ad, size_t *buflen) { unsigned char *ret; unsigned char *cur; gcry_mpi_point_t tmp = gcry_mpi_point_new (0); struct msg_head *head; struct ec_mpi *phi; struct proof_2dle *proof2; brandt_assert (ad && buflen); *buflen = (sizeof (*head) + 2 * ad->k * (sizeof (*phi) + sizeof (*proof2))); ret = GNUNET_new_array (*buflen, unsigned char); head = (struct msg_head *)ret; head->prot_version = htonl (0); head->msg_type = htonl (msg_decrypt); cur = ret + sizeof (*head); /* decrypt price and winner components */ for (uint16_t comp = 0; comp < 2; comp++) { for (uint16_t j = 0; j < ad->k; j++) { phi = (struct ec_mpi *)cur; proof2 = (struct proof_2dle *)(cur + sizeof (*phi)); ec_point_copy (tmp, ad->phi3[ad->i][comp][j]); /* decrypt outcome component and prove the correct key was used */ smc_zkp_2dle (ad->phi3[ad->i][comp][j], NULL, tmp, ec_gen, ad->x, proof2); ec_point_serialize (phi, ad->phi3[ad->i][comp][j]); cur += sizeof (*phi) + sizeof (*proof2); } } gcry_mpi_point_release (tmp); return ret; } int mp_pub_recv_decryption (struct BRANDT_Auction *ad, const unsigned char *buf, size_t buflen, uint16_t sender) { int ret = 0; const unsigned char *cur = buf; struct proof_2dle *proof2; gcry_mpi_point_t phi = gcry_mpi_point_new (0); brandt_assert (ad && buf); if (buflen != (2 * ad->k * (sizeof (struct ec_mpi) + sizeof (*proof2)))) { GNUNET_log_from (GNUNET_ERROR_TYPE_WARNING, "libbrandt", "wrong size of received outcome decryption\n"); goto quit; } /* handle received price and winner components */ for (uint16_t comp = 0; comp < 2; comp++) { for (uint16_t j = 0; j < ad->k; j++) { ec_point_parse (phi, (struct ec_mpi *)cur); proof2 = (struct proof_2dle *)(cur + sizeof (struct ec_mpi)); if (smc_zkp_2dle_check (phi, ad->y[sender], ad->phi3[sender][comp][j], ec_gen, proof2)) { GNUNET_log_from (GNUNET_ERROR_TYPE_WARNING, "libbrandt", "wrong zkp2 for phi, y received\n"); goto quit; } ec_point_copy (ad->phi3[sender][comp][j], phi); cur += sizeof (struct ec_mpi) + sizeof (*proof2); } } ret = 1; quit: gcry_mpi_point_release (phi); return ret; } struct BRANDT_Result * mp_pub_determine_outcome (struct BRANDT_Auction *ad, uint16_t *len) { struct BRANDT_Result *ret; int32_t price = -1; uint16_t cur_winner = 0; int dlogi = -1; gcry_mpi_point_t sum_gamma = gcry_mpi_point_new (0); gcry_mpi_point_t sum_phi = gcry_mpi_point_new (0); brandt_assert (ad); for (uint16_t j = ad->k - 1; j >= 0; j--) { smc_sum (sum_gamma, &ad->gamma3[0][0][j], ad->n, 2 * ad->k); smc_sum (sum_phi, &ad->phi3[0][0][j], ad->n, 2 * ad->k); gcry_mpi_ec_sub (sum_gamma, sum_gamma, sum_phi, ec_ctx); /* first zero component determines the price */ if (!ec_point_cmp (sum_gamma, ec_zero)) { price = j; break; } } if (-1 == price) return NULL; /* extract winners point for the winning price */ smc_sum (sum_gamma, &ad->gamma3[0][1][price], ad->n, 2 * ad->k); smc_sum (sum_phi, &ad->phi3[0][1][price], ad->n, 2 * ad->k); gcry_mpi_ec_sub (sum_gamma, sum_gamma, sum_phi, ec_ctx); dlogi = GNUNET_CRYPTO_ecc_dlog (ec_dlogctx, sum_gamma); brandt_assert (dlogi > 0); /* all bidders participated with a multiplicative share */ dlogi /= ad->n; price = price / ad->n; ret = GNUNET_new_array (ad->m, struct BRANDT_Result); /* can only support up to bits(dlogi) bidders */ brandt_assert (sizeof (int) * 8 > ad->n); for (uint16_t i = 0; i < ad->n; i++) { /* a set bit determines a winner */ if (dlogi & (1 << i)) { if (cur_winner >= ad->m) { GNUNET_log_from (GNUNET_ERROR_TYPE_ERROR, "libbrandt", "too many winners detected\n"); GNUNET_free (ret); ret = NULL; goto quit; } ret[cur_winner].bidder = i; ret[cur_winner].price = price; ret[cur_winner].status = BRANDT_bidder_won; cur_winner++; } } if (cur_winner != ad->m) { GNUNET_log_from (GNUNET_ERROR_TYPE_ERROR, "libbrandt", "too few winners detected\n"); GNUNET_free (ret); ret = NULL; goto quit; } if (len) *len = ad->m; quit: gcry_mpi_point_release (sum_gamma); gcry_mpi_point_release (sum_phi); return ret; }