/* gc-pbkdf2-sha1.c --- Password-Based Key Derivation Function a'la PKCS#5 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Written by Simon Josefsson. The comments in this file are taken from RFC 2898. */ #include "MHD_config.h" #include "gc.h" #include #include /* * 5.2 PBKDF2 * * PBKDF2 applies a pseudorandom function (see Appendix B.1 for an * example) to derive keys. The length of the derived key is essentially * unbounded. (However, the maximum effective search space for the * derived key may be limited by the structure of the underlying * pseudorandom function. See Appendix B.1 for further discussion.) * PBKDF2 is recommended for new applications. * * PBKDF2 (P, S, c, dkLen) * * Options: PRF underlying pseudorandom function (hLen * denotes the length in octets of the * pseudorandom function output) * * Input: P password, an octet string (ASCII or UTF-8) * S salt, an octet string * c iteration count, a positive integer * dkLen intended length in octets of the derived * key, a positive integer, at most * (2^32 - 1) * hLen * * Output: DK derived key, a dkLen-octet string */ Gc_rc MHD_gc_pbkdf2_sha1 (const char *P, size_t Plen, const char *S, size_t Slen, unsigned int c, char *DK, size_t dkLen) { unsigned int hLen = 20; char U[20]; char T[20]; unsigned int u; unsigned int l; unsigned int r; unsigned int i; unsigned int k; int rc; char *tmp; size_t tmplen = Slen + 4; if (c == 0) return GC_PKCS5_INVALID_ITERATION_COUNT; if (dkLen == 0) return GC_PKCS5_INVALID_DERIVED_KEY_LENGTH; /* * * Steps: * * 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and * stop. */ if (dkLen > 4294967295U) return GC_PKCS5_DERIVED_KEY_TOO_LONG; /* * 2. Let l be the number of hLen-octet blocks in the derived key, * rounding up, and let r be the number of octets in the last * block: * * l = CEIL (dkLen / hLen) , * r = dkLen - (l - 1) * hLen . * * Here, CEIL (x) is the "ceiling" function, i.e. the smallest * integer greater than, or equal to, x. */ l = ((dkLen - 1) / hLen) + 1; r = dkLen - (l - 1) * hLen; /* * 3. For each block of the derived key apply the function F defined * below to the password P, the salt S, the iteration count c, and * the block index to compute the block: * * T_1 = F (P, S, c, 1) , * T_2 = F (P, S, c, 2) , * ... * T_l = F (P, S, c, l) , * * where the function F is defined as the exclusive-or sum of the * first c iterates of the underlying pseudorandom function PRF * applied to the password P and the concatenation of the salt S * and the block index i: * * F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c * * where * * U_1 = PRF (P, S || INT (i)) , * U_2 = PRF (P, U_1) , * ... * U_c = PRF (P, U_{c-1}) . * * Here, INT (i) is a four-octet encoding of the integer i, most * significant octet first. * * 4. Concatenate the blocks and extract the first dkLen octets to * produce a derived key DK: * * DK = T_1 || T_2 || ... || T_l<0..r-1> * * 5. Output the derived key DK. * * Note. The construction of the function F follows a "belt-and- * suspenders" approach. The iterates U_i are computed recursively to * remove a degree of parallelism from an opponent; they are exclusive- * ored together to reduce concerns about the recursion degenerating * into a small set of values. * */ tmp = malloc (tmplen); if (tmp == NULL) return GC_MALLOC_ERROR; memcpy (tmp, S, Slen); for (i = 1; i <= l; i++) { memset (T, 0, hLen); for (u = 1; u <= c; u++) { if (u == 1) { tmp[Slen + 0] = (i & 0xff000000) >> 24; tmp[Slen + 1] = (i & 0x00ff0000) >> 16; tmp[Slen + 2] = (i & 0x0000ff00) >> 8; tmp[Slen + 3] = (i & 0x000000ff) >> 0; rc = MHD_gc_MHD_hmac_sha1 (P, Plen, tmp, tmplen, U); } else rc = MHD_gc_MHD_hmac_sha1 (P, Plen, U, hLen, U); if (rc != GC_OK) { free (tmp); return rc; } for (k = 0; k < hLen; k++) T[k] ^= U[k]; } memcpy (DK + (i - 1) * hLen, T, i == l ? r : hLen); } free (tmp); return GC_OK; }