/* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MHD_MD5Init, call MHD_MD5Update as * needed on buffers full of bytes, and then call MHD_MD5Final, which * will fill a supplied 16-byte array with the digest. */ /* Based on OpenBSD modifications. * Optimized by Karlson2k (Evgeny Grin). */ #include "md5.h" #include #ifdef HAVE_MEMORY_H #include #endif /* HAVE_MEMORY_H */ #include "mhd_bithelpers.h" #include "mhd_assert.h" /** * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. * * @param ctx must be a `struct MD5Context *` */ void MHD_MD5Init (void *ctx_) { struct MD5Context *ctx = ctx_; mhd_assert (ctx != NULL); ctx->count = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xefcdab89; ctx->state[2] = 0x98badcfe; ctx->state[3] = 0x10325476; } static void MD5Transform (uint32_t state[4], const uint8_t block[MD5_BLOCK_SIZE]); /** * Final wrapup, fill in digest and zero out ctx. * * @param ctx must be a `struct MD5Context *` */ void MHD_MD5Final (void *ctx_, uint8_t digest[MD5_DIGEST_SIZE]) { struct MD5Context *ctx = ctx_; uint64_t count_bits; size_t have_bytes; mhd_assert (ctx != NULL); mhd_assert (digest != NULL); /* Convert count to 8 bytes in little endian order. */ have_bytes = (ctx->count) & (MD5_BLOCK_SIZE - 1); /* Pad data */ /* Buffer always have space for one byte or more. */ ctx->buffer[have_bytes++] = 0x80; /* First padding byte is 0x80 */ if (MD5_BLOCK_SIZE - have_bytes < 8) { /* Not enough space to put number of bits */ while (have_bytes < MD5_BLOCK_SIZE) ctx->buffer[have_bytes++] = 0; MD5Transform(ctx->state, ctx->buffer); have_bytes = 0; /* Additional block */ } /* Pad out to 56 */ memset(ctx->buffer + have_bytes, 0, MD5_BLOCK_SIZE - have_bytes - 8); /* Put number of bits */ count_bits = ctx->count << 3; _MHD_PUT_64BIT_LE(ctx->buffer + 56, count_bits); MD5Transform(ctx->state, ctx->buffer); /* Put digest in LE mode */ _MHD_PUT_32BIT_LE(digest, ctx->state[0]); _MHD_PUT_32BIT_LE(digest + 4, ctx->state[1]); _MHD_PUT_32BIT_LE(digest + 8, ctx->state[2]); _MHD_PUT_32BIT_LE(digest + 12, ctx->state[3]); /* Erase buffer */ memset(ctx, 0, sizeof(*ctx)); } /** * Number of bytes in single SHA-256 word * used to process data */ #define MD5_BYTES_IN_WORD (32 / 8) /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) /** * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MHD_MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void MD5Transform (uint32_t state[4], const uint8_t block[MD5_BLOCK_SIZE]) { uint32_t a, b, c, d; #if _MHD_BYTE_ORDER == _MHD_LITTLE_ENDIAN const uint32_t *in = (const uint32_t *)block; #else uint32_t in[MD5_BLOCK_SIZE / MD5_BYTES_IN_WORD]; int i; for (i = 0; i < MD5_BLOCK_SIZE / MD5_BYTES_IN_WORD; i++) { in[i] = _MHD_GET_32BIT_LE(block + i * MD5_BYTES_IN_WORD); } #endif a = state[0]; b = state[1]; c = state[2]; d = state[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); state[0] += a; state[1] += b; state[2] += c; state[3] += d; } /** * Update context to reflect the concatenation of another buffer full * of bytes. */ void MHD_MD5Update (void *ctx_, const uint8_t *input, size_t len) { struct MD5Context *ctx = ctx_; size_t have, need; mhd_assert (ctx != NULL); mhd_assert ((ctx != NULL) || (len == 0)); /* Check how many bytes we already have and how many more we need. */ have = (size_t)((ctx->count) & (MD5_BLOCK_SIZE - 1)); need = MD5_BLOCK_SIZE - have; /* Update bytecount */ ctx->count += (uint64_t)len; if (len >= need) { if (have != 0) { memcpy (ctx->buffer + have, input, need); MD5Transform(ctx->state, ctx->buffer); input += need; len -= need; have = 0; } /* Process data in MD5_BLOCK_SIZE-byte chunks. */ while (len >= MD5_BLOCK_SIZE) { MD5Transform (ctx->state, (const unsigned char *) input); input += MD5_BLOCK_SIZE; len -= MD5_BLOCK_SIZE; } } /* Handle any remaining bytes of data. */ if (0 != len) memcpy (ctx->buffer + have, input, len); } /* end of md5.c */