/* This file is part of libmicrohttpd Copyright (C) 2019-2021 Karlson2k (Evgeny Grin) libmicrohttpd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library. If not, see . */ /** * @file microhttpd/sha1.c * @brief Calculation of SHA-1 digest as defined in FIPS PUB 180-4 (2015) * @author Karlson2k (Evgeny Grin) */ #include "sha1.h" #include #ifdef HAVE_MEMORY_H #include #endif /* HAVE_MEMORY_H */ #include "mhd_bithelpers.h" #include "mhd_assert.h" /** * Initialise structure for SHA-1 calculation. * * @param ctx_ must be a `struct sha1_ctx *` */ void MHD_SHA1_init (void *ctx_) { struct sha1_ctx *const ctx = ctx_; /* Initial hash values, see FIPS PUB 180-4 paragraph 5.3.1 */ /* Just some "magic" numbers defined by standard */ ctx->H[0] = UINT32_C (0x67452301); ctx->H[1] = UINT32_C (0xefcdab89); ctx->H[2] = UINT32_C (0x98badcfe); ctx->H[3] = UINT32_C (0x10325476); ctx->H[4] = UINT32_C (0xc3d2e1f0); /* Initialise number of bytes. */ ctx->count = 0; } /** * Base of SHA-1 transformation. * Gets full 512 bits / 64 bytes block of data and updates hash values; * @param H hash values * @param data data, must be exactly 64 bytes long */ static void sha1_transform (uint32_t H[_SHA1_DIGEST_LENGTH], const uint8_t data[SHA1_BLOCK_SIZE]) { /* Working variables, see FIPS PUB 180-4 paragraph 6.1.3 */ uint32_t a = H[0]; uint32_t b = H[1]; uint32_t c = H[2]; uint32_t d = H[3]; uint32_t e = H[4]; /* Data buffer, used as cyclic buffer. See FIPS PUB 180-4 paragraphs 5.2.1, 6.1.3 */ uint32_t W[16]; /* 'Ch' and 'Maj' macro functions are defined with widely-used optimization. See FIPS PUB 180-4 formulae 4.1. */ #define Ch(x,y,z) ( (z) ^ ((x) & ((y) ^ (z))) ) #define Maj(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) ) /* Unoptimized (original) versions: */ /* #define Ch(x,y,z) ( ( (x) & (y) ) ^ ( ~(x) & (z) ) ) */ /* #define Maj(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */ #define Par(x,y,z) ( (x) ^ (y) ^ (z) ) /* Single step of SHA-1 computation, see FIPS PUB 180-4 paragraph 6.1.3 step 3. * Note: instead of reassigning all working variables on each step, variables are rotated for each step: SHA1STEP32 (a, b, c, d, e, func, K00, W[0]); SHA1STEP32 (e, a, b, c, d, func, K00, W[1]); so current 'vC' will be used as 'vD' on the next step, current 'vE' will be used as 'vA' on the next step. * Note: 'wt' must be used exactly one time in this macro as it change other data as well every time when used. */ #define SHA1STEP32(vA,vB,vC,vD,vE,ft,kt,wt) do { \ (vE) += _MHD_ROTL32 ((vA), 5) + ft ((vB), (vC), (vD)) + (kt) + (wt); \ (vB) = _MHD_ROTL32 ((vB), 30); } while (0) /* Get value of W(t) from input data buffer, See FIPS PUB 180-4 paragraph 6.1.3. Input data must be read in big-endian bytes order, see FIPS PUB 180-4 paragraph 3.1.2. */ /* Use cast to (void*) to mute compiler alignment warning, * data was already aligned in previous step */ #define GET_W_FROM_DATA(buf,t) \ _MHD_GET_32BIT_BE ((const void *)(((const uint8_t*) (buf)) + \ (t) * SHA1_BYTES_IN_WORD)) #ifndef _MHD_GET_32BIT_BE_UNALIGNED if (0 != (((uintptr_t) data) % _MHD_UINT32_ALIGN)) { /* Copy the unaligned input data to the aligned buffer */ memcpy (W, data, SHA1_BLOCK_SIZE); /* The W[] buffer itself will be used as the source of the data, * but data will be reloaded in correct bytes order during * the next steps */ data = (uint8_t *) W; } #endif /* _MHD_GET_32BIT_BE_UNALIGNED */ /* SHA-1 values of Kt for t=0..19, see FIPS PUB 180-4 paragraph 4.2.1. */ #define K00 UINT32_C(0x5a827999) /* SHA-1 values of Kt for t=20..39, see FIPS PUB 180-4 paragraph 4.2.1.*/ #define K20 UINT32_C(0x6ed9eba1) /* SHA-1 values of Kt for t=40..59, see FIPS PUB 180-4 paragraph 4.2.1.*/ #define K40 UINT32_C(0x8f1bbcdc) /* SHA-1 values of Kt for t=60..79, see FIPS PUB 180-4 paragraph 4.2.1.*/ #define K60 UINT32_C(0xca62c1d6) /* During first 16 steps, before making any calculations on each step, the W element is read from input data buffer as big-endian value and stored in array of W elements. */ /* Note: instead of using K constants as array, all K values are specified individually for each step. */ SHA1STEP32 (a, b, c, d, e, Ch, K00, W[0] = GET_W_FROM_DATA (data, 0)); SHA1STEP32 (e, a, b, c, d, Ch, K00, W[1] = GET_W_FROM_DATA (data, 1)); SHA1STEP32 (d, e, a, b, c, Ch, K00, W[2] = GET_W_FROM_DATA (data, 2)); SHA1STEP32 (c, d, e, a, b, Ch, K00, W[3] = GET_W_FROM_DATA (data, 3)); SHA1STEP32 (b, c, d, e, a, Ch, K00, W[4] = GET_W_FROM_DATA (data, 4)); SHA1STEP32 (a, b, c, d, e, Ch, K00, W[5] = GET_W_FROM_DATA (data, 5)); SHA1STEP32 (e, a, b, c, d, Ch, K00, W[6] = GET_W_FROM_DATA (data, 6)); SHA1STEP32 (d, e, a, b, c, Ch, K00, W[7] = GET_W_FROM_DATA (data, 7)); SHA1STEP32 (c, d, e, a, b, Ch, K00, W[8] = GET_W_FROM_DATA (data, 8)); SHA1STEP32 (b, c, d, e, a, Ch, K00, W[9] = GET_W_FROM_DATA (data, 9)); SHA1STEP32 (a, b, c, d, e, Ch, K00, W[10] = GET_W_FROM_DATA (data, 10)); SHA1STEP32 (e, a, b, c, d, Ch, K00, W[11] = GET_W_FROM_DATA (data, 11)); SHA1STEP32 (d, e, a, b, c, Ch, K00, W[12] = GET_W_FROM_DATA (data, 12)); SHA1STEP32 (c, d, e, a, b, Ch, K00, W[13] = GET_W_FROM_DATA (data, 13)); SHA1STEP32 (b, c, d, e, a, Ch, K00, W[14] = GET_W_FROM_DATA (data, 14)); SHA1STEP32 (a, b, c, d, e, Ch, K00, W[15] = GET_W_FROM_DATA (data, 15)); /* 'W' generation and assignment for 16 <= t <= 79. See FIPS PUB 180-4 paragraph 6.1.3. As only last 16 'W' are used in calculations, it is possible to use 16 elements array of W as cyclic buffer. */ #define Wgen(w,t) _MHD_ROTL32((w)[(t + 13) & 0xf] ^ (w)[(t + 8) & 0xf] \ ^ (w)[(t + 2) & 0xf] ^ (w)[t & 0xf], 1) /* During last 60 steps, before making any calculations on each step, W element is generated from W elements of cyclic buffer and generated value stored back in cyclic buffer. */ /* Note: instead of using K constants as array, all K values are specified individually for each step, see FIPS PUB 180-4 paragraph 4.2.1. */ SHA1STEP32 (e, a, b, c, d, Ch, K00, W[16 & 0xf] = Wgen (W, 16)); SHA1STEP32 (d, e, a, b, c, Ch, K00, W[17 & 0xf] = Wgen (W, 17)); SHA1STEP32 (c, d, e, a, b, Ch, K00, W[18 & 0xf] = Wgen (W, 18)); SHA1STEP32 (b, c, d, e, a, Ch, K00, W[19 & 0xf] = Wgen (W, 19)); SHA1STEP32 (a, b, c, d, e, Par, K20, W[20 & 0xf] = Wgen (W, 20)); SHA1STEP32 (e, a, b, c, d, Par, K20, W[21 & 0xf] = Wgen (W, 21)); SHA1STEP32 (d, e, a, b, c, Par, K20, W[22 & 0xf] = Wgen (W, 22)); SHA1STEP32 (c, d, e, a, b, Par, K20, W[23 & 0xf] = Wgen (W, 23)); SHA1STEP32 (b, c, d, e, a, Par, K20, W[24 & 0xf] = Wgen (W, 24)); SHA1STEP32 (a, b, c, d, e, Par, K20, W[25 & 0xf] = Wgen (W, 25)); SHA1STEP32 (e, a, b, c, d, Par, K20, W[26 & 0xf] = Wgen (W, 26)); SHA1STEP32 (d, e, a, b, c, Par, K20, W[27 & 0xf] = Wgen (W, 27)); SHA1STEP32 (c, d, e, a, b, Par, K20, W[28 & 0xf] = Wgen (W, 28)); SHA1STEP32 (b, c, d, e, a, Par, K20, W[29 & 0xf] = Wgen (W, 29)); SHA1STEP32 (a, b, c, d, e, Par, K20, W[30 & 0xf] = Wgen (W, 30)); SHA1STEP32 (e, a, b, c, d, Par, K20, W[31 & 0xf] = Wgen (W, 31)); SHA1STEP32 (d, e, a, b, c, Par, K20, W[32 & 0xf] = Wgen (W, 32)); SHA1STEP32 (c, d, e, a, b, Par, K20, W[33 & 0xf] = Wgen (W, 33)); SHA1STEP32 (b, c, d, e, a, Par, K20, W[34 & 0xf] = Wgen (W, 34)); SHA1STEP32 (a, b, c, d, e, Par, K20, W[35 & 0xf] = Wgen (W, 35)); SHA1STEP32 (e, a, b, c, d, Par, K20, W[36 & 0xf] = Wgen (W, 36)); SHA1STEP32 (d, e, a, b, c, Par, K20, W[37 & 0xf] = Wgen (W, 37)); SHA1STEP32 (c, d, e, a, b, Par, K20, W[38 & 0xf] = Wgen (W, 38)); SHA1STEP32 (b, c, d, e, a, Par, K20, W[39 & 0xf] = Wgen (W, 39)); SHA1STEP32 (a, b, c, d, e, Maj, K40, W[40 & 0xf] = Wgen (W, 40)); SHA1STEP32 (e, a, b, c, d, Maj, K40, W[41 & 0xf] = Wgen (W, 41)); SHA1STEP32 (d, e, a, b, c, Maj, K40, W[42 & 0xf] = Wgen (W, 42)); SHA1STEP32 (c, d, e, a, b, Maj, K40, W[43 & 0xf] = Wgen (W, 43)); SHA1STEP32 (b, c, d, e, a, Maj, K40, W[44 & 0xf] = Wgen (W, 44)); SHA1STEP32 (a, b, c, d, e, Maj, K40, W[45 & 0xf] = Wgen (W, 45)); SHA1STEP32 (e, a, b, c, d, Maj, K40, W[46 & 0xf] = Wgen (W, 46)); SHA1STEP32 (d, e, a, b, c, Maj, K40, W[47 & 0xf] = Wgen (W, 47)); SHA1STEP32 (c, d, e, a, b, Maj, K40, W[48 & 0xf] = Wgen (W, 48)); SHA1STEP32 (b, c, d, e, a, Maj, K40, W[49 & 0xf] = Wgen (W, 49)); SHA1STEP32 (a, b, c, d, e, Maj, K40, W[50 & 0xf] = Wgen (W, 50)); SHA1STEP32 (e, a, b, c, d, Maj, K40, W[51 & 0xf] = Wgen (W, 51)); SHA1STEP32 (d, e, a, b, c, Maj, K40, W[52 & 0xf] = Wgen (W, 52)); SHA1STEP32 (c, d, e, a, b, Maj, K40, W[53 & 0xf] = Wgen (W, 53)); SHA1STEP32 (b, c, d, e, a, Maj, K40, W[54 & 0xf] = Wgen (W, 54)); SHA1STEP32 (a, b, c, d, e, Maj, K40, W[55 & 0xf] = Wgen (W, 55)); SHA1STEP32 (e, a, b, c, d, Maj, K40, W[56 & 0xf] = Wgen (W, 56)); SHA1STEP32 (d, e, a, b, c, Maj, K40, W[57 & 0xf] = Wgen (W, 57)); SHA1STEP32 (c, d, e, a, b, Maj, K40, W[58 & 0xf] = Wgen (W, 58)); SHA1STEP32 (b, c, d, e, a, Maj, K40, W[59 & 0xf] = Wgen (W, 59)); SHA1STEP32 (a, b, c, d, e, Par, K60, W[60 & 0xf] = Wgen (W, 60)); SHA1STEP32 (e, a, b, c, d, Par, K60, W[61 & 0xf] = Wgen (W, 61)); SHA1STEP32 (d, e, a, b, c, Par, K60, W[62 & 0xf] = Wgen (W, 62)); SHA1STEP32 (c, d, e, a, b, Par, K60, W[63 & 0xf] = Wgen (W, 63)); SHA1STEP32 (b, c, d, e, a, Par, K60, W[64 & 0xf] = Wgen (W, 64)); SHA1STEP32 (a, b, c, d, e, Par, K60, W[65 & 0xf] = Wgen (W, 65)); SHA1STEP32 (e, a, b, c, d, Par, K60, W[66 & 0xf] = Wgen (W, 66)); SHA1STEP32 (d, e, a, b, c, Par, K60, W[67 & 0xf] = Wgen (W, 67)); SHA1STEP32 (c, d, e, a, b, Par, K60, W[68 & 0xf] = Wgen (W, 68)); SHA1STEP32 (b, c, d, e, a, Par, K60, W[69 & 0xf] = Wgen (W, 69)); SHA1STEP32 (a, b, c, d, e, Par, K60, W[70 & 0xf] = Wgen (W, 70)); SHA1STEP32 (e, a, b, c, d, Par, K60, W[71 & 0xf] = Wgen (W, 71)); SHA1STEP32 (d, e, a, b, c, Par, K60, W[72 & 0xf] = Wgen (W, 72)); SHA1STEP32 (c, d, e, a, b, Par, K60, W[73 & 0xf] = Wgen (W, 73)); SHA1STEP32 (b, c, d, e, a, Par, K60, W[74 & 0xf] = Wgen (W, 74)); SHA1STEP32 (a, b, c, d, e, Par, K60, W[75 & 0xf] = Wgen (W, 75)); SHA1STEP32 (e, a, b, c, d, Par, K60, W[76 & 0xf] = Wgen (W, 76)); SHA1STEP32 (d, e, a, b, c, Par, K60, W[77 & 0xf] = Wgen (W, 77)); SHA1STEP32 (c, d, e, a, b, Par, K60, W[78 & 0xf] = Wgen (W, 78)); SHA1STEP32 (b, c, d, e, a, Par, K60, W[79 & 0xf] = Wgen (W, 79)); /* Compute intermediate hash. See FIPS PUB 180-4 paragraph 6.1.3 step 4. */ H[0] += a; H[1] += b; H[2] += c; H[3] += d; H[4] += e; } /** * Process portion of bytes. * * @param ctx_ must be a `struct sha1_ctx *` * @param data bytes to add to hash * @param length number of bytes in @a data */ void MHD_SHA1_update (void *ctx_, const uint8_t *data, size_t length) { struct sha1_ctx *const ctx = ctx_; unsigned bytes_have; /**< Number of bytes in buffer */ mhd_assert ((data != NULL) || (length == 0)); if (0 == length) return; /* Do nothing */ /* Note: (count & (SHA1_BLOCK_SIZE-1)) equal (count % SHA1_BLOCK_SIZE) for this block size. */ bytes_have = (unsigned) (ctx->count & (SHA1_BLOCK_SIZE - 1)); ctx->count += length; if (0 != bytes_have) { unsigned bytes_left = SHA1_BLOCK_SIZE - bytes_have; if (length >= bytes_left) { /* Combine new data with the data in the buffer and process the full block. */ memcpy (ctx->buffer + bytes_have, data, bytes_left); data += bytes_left; length -= bytes_left; sha1_transform (ctx->H, ctx->buffer); bytes_have = 0; } } while (SHA1_BLOCK_SIZE <= length) { /* Process any full blocks of new data directly, without copying to the buffer. */ sha1_transform (ctx->H, data); data += SHA1_BLOCK_SIZE; length -= SHA1_BLOCK_SIZE; } if (0 != length) { /* Copy incomplete block of new data (if any) to the buffer. */ memcpy (ctx->buffer + bytes_have, data, length); } } /** * Size of "length" padding addition in bytes. * See FIPS PUB 180-4 paragraph 5.1.1. */ #define SHA1_SIZE_OF_LEN_ADD (64 / 8) /** * Finalise SHA-1 calculation, return digest. * * @param ctx_ must be a `struct sha1_ctx *` * @param[out] digest set to the hash, must be #SHA1_DIGEST_SIZE bytes */ void MHD_SHA1_finish (void *ctx_, uint8_t digest[SHA1_DIGEST_SIZE]) { struct sha1_ctx *const ctx = ctx_; uint64_t num_bits; /**< Number of processed bits */ unsigned bytes_have; /**< Number of bytes in buffer */ num_bits = ctx->count << 3; /* Note: (count & (SHA1_BLOCK_SIZE-1)) equals (count % SHA1_BLOCK_SIZE) for this block size. */ bytes_have = (unsigned) (ctx->count & (SHA1_BLOCK_SIZE - 1)); /* Input data must be padded with bit "1" and with length of data in bits. See FIPS PUB 180-4 paragraph 5.1.1. */ /* Data is always processed in form of bytes (not by individual bits), therefore position of first padding bit in byte is always predefined (0x80). */ /* Buffer always have space at least for one byte (as full buffers are processed immediately). */ ctx->buffer[bytes_have++] = 0x80; if (SHA1_BLOCK_SIZE - bytes_have < SHA1_SIZE_OF_LEN_ADD) { /* No space in current block to put total length of message. Pad current block with zeros and process it. */ if (SHA1_BLOCK_SIZE > bytes_have) memset (ctx->buffer + bytes_have, 0, SHA1_BLOCK_SIZE - bytes_have); /* Process full block. */ sha1_transform (ctx->H, ctx->buffer); /* Start new block. */ bytes_have = 0; } /* Pad the rest of the buffer with zeros. */ memset (ctx->buffer + bytes_have, 0, SHA1_BLOCK_SIZE - SHA1_SIZE_OF_LEN_ADD - bytes_have); /* Put the number of bits in the processed message as a big-endian value. */ _MHD_PUT_64BIT_BE_SAFE (ctx->buffer + SHA1_BLOCK_SIZE - SHA1_SIZE_OF_LEN_ADD, num_bits); /* Process the full final block. */ sha1_transform (ctx->H, ctx->buffer); /* Put final hash/digest in BE mode */ #ifndef _MHD_PUT_32BIT_BE_UNALIGNED if (0 != ((uintptr_t) digest) % _MHD_UINT32_ALIGN) { uint32_t alig_dgst[_SHA1_DIGEST_LENGTH]; _MHD_PUT_32BIT_BE (alig_dgst + 0, ctx->H[0]); _MHD_PUT_32BIT_BE (alig_dgst + 1, ctx->H[1]); _MHD_PUT_32BIT_BE (alig_dgst + 2, ctx->H[2]); _MHD_PUT_32BIT_BE (alig_dgst + 3, ctx->H[3]); _MHD_PUT_32BIT_BE (alig_dgst + 4, ctx->H[4]); /* Copy result to unaligned destination address */ memcpy (digest, alig_dgst, SHA1_DIGEST_SIZE); } else #else /* _MHD_PUT_32BIT_BE_UNALIGNED */ if (1) #endif /* _MHD_PUT_32BIT_BE_UNALIGNED */ { /* Use cast to (void*) here to mute compiler alignment warnings. * Compilers are not smart enough to see that alignment has been checked. */ _MHD_PUT_32BIT_BE ((void *) (digest + 0 * SHA1_BYTES_IN_WORD), ctx->H[0]); _MHD_PUT_32BIT_BE ((void *) (digest + 1 * SHA1_BYTES_IN_WORD), ctx->H[1]); _MHD_PUT_32BIT_BE ((void *) (digest + 2 * SHA1_BYTES_IN_WORD), ctx->H[2]); _MHD_PUT_32BIT_BE ((void *) (digest + 3 * SHA1_BYTES_IN_WORD), ctx->H[3]); _MHD_PUT_32BIT_BE ((void *) (digest + 4 * SHA1_BYTES_IN_WORD), ctx->H[4]); } /* Erase potentially sensitive data. */ memset (ctx, 0, sizeof(struct sha1_ctx)); }