/* This file is part of libmicrohttpd Copyright (C) 2019-2021 Karlson2k (Evgeny Grin) libmicrohttpd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library. If not, see . */ /** * @file microhttpd/sha256.c * @brief Calculation of SHA-256 digest as defined in FIPS PUB 180-4 (2015) * @author Karlson2k (Evgeny Grin) */ #include "sha256.h" #include #ifdef HAVE_MEMORY_H #include #endif /* HAVE_MEMORY_H */ #include "mhd_bithelpers.h" #include "mhd_assert.h" /** * Initialise structure for SHA256 calculation. * * @param ctx_ must be a `struct sha256_ctx *` */ void MHD_SHA256_init (void *ctx_) { struct sha256_ctx *const ctx = ctx_; /* Initial hash values, see FIPS PUB 180-4 paragraph 5.3.3 */ /* First thirty-two bits of the fractional parts of the square * roots of the first eight prime numbers: 2, 3, 5, 7, 11, 13, * 17, 19." */ ctx->H[0] = 0x6a09e667UL; ctx->H[1] = 0xbb67ae85UL; ctx->H[2] = 0x3c6ef372UL; ctx->H[3] = 0xa54ff53aUL; ctx->H[4] = 0x510e527fUL; ctx->H[5] = 0x9b05688cUL; ctx->H[6] = 0x1f83d9abUL; ctx->H[7] = 0x5be0cd19UL; /* Initialise number of bytes. */ ctx->count = 0; } /** * Base of SHA-256 transformation. * Gets full 64 bytes block of data and updates hash values; * @param H hash values * @param data data, must be exactly 64 bytes long */ static void sha256_transform (uint32_t H[_SHA256_DIGEST_LENGTH], const uint8_t data[SHA256_BLOCK_SIZE]) { /* Working variables, see FIPS PUB 180-4 paragraph 6.2. */ uint32_t a = H[0]; uint32_t b = H[1]; uint32_t c = H[2]; uint32_t d = H[3]; uint32_t e = H[4]; uint32_t f = H[5]; uint32_t g = H[6]; uint32_t h = H[7]; /* Data buffer, used as cyclic buffer. See FIPS PUB 180-4 paragraphs 5.2.1, 6.2. */ uint32_t W[16]; /* 'Ch' and 'Maj' macro functions are defined with widely-used optimization. See FIPS PUB 180-4 formulae 4.2, 4.3. */ #define Ch(x,y,z) ( (z) ^ ((x) & ((y) ^ (z))) ) #define Maj(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) ) /* Unoptimized (original) versions: */ /* #define Ch(x,y,z) ( ( (x) & (y) ) ^ ( ~(x) & (z) ) ) */ /* #define Maj(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */ /* Four 'Sigma' macro functions. See FIPS PUB 180-4 formulae 4.4, 4.5, 4.6, 4.7. */ #define SIG0(x) (_MHD_ROTR32 ((x), 2) ^ _MHD_ROTR32 ((x), 13) ^ \ _MHD_ROTR32 ((x), 22) ) #define SIG1(x) (_MHD_ROTR32 ((x), 6) ^ _MHD_ROTR32 ((x), 11) ^ \ _MHD_ROTR32 ((x), 25) ) #define sig0(x) (_MHD_ROTR32 ((x), 7) ^ _MHD_ROTR32 ((x), 18) ^ \ ((x) >> 3) ) #define sig1(x) (_MHD_ROTR32 ((x), 17) ^ _MHD_ROTR32 ((x),19) ^ \ ((x) >> 10) ) /* Single step of SHA-256 computation, see FIPS PUB 180-4 paragraph 6.2.2 step 3. * Note: instead of reassigning all working variables on each step, variables are rotated for each step: SHA2STEP32(a, b, c, d, e, f, g, h, K[0], data[0]); SHA2STEP32(h, a, b, c, d, e, f, g, K[1], data[1]); so current 'vD' will be used as 'vE' on next step, current 'vH' will be used as 'vA' on next step. * Note: first (vH += SIG1(vE) + Ch(vE,vF,vG) + kt + wt) equals T1 in FIPS PUB 180-4 paragraph 6.2.2 step 3. second (vH += SIG0(vA) + Maj(vE,vF,vC) equals T1 + T2 in FIPS PUB 180-4 paragraph 6.2.2 step 3. * Note: 'wt' must be used exactly one time in this macro as it change other data as well every time when used. */ #define SHA2STEP32(vA,vB,vC,vD,vE,vF,vG,vH,kt,wt) do { \ (vD) += ((vH) += SIG1 ((vE)) + Ch ((vE),(vF),(vG)) + (kt) + (wt)); \ (vH) += SIG0 ((vA)) + Maj ((vA),(vB),(vC)); } while (0) #ifndef _MHD_GET_32BIT_BE_UNALIGNED if (0 != (((uintptr_t) data) % _MHD_UINT32_ALIGN)) { /* Copy the unaligned input data to the aligned buffer */ memcpy (W, data, SHA256_BLOCK_SIZE); /* The W[] buffer itself will be used as the source of the data, * but data will be reloaded in correct bytes order during * the next steps */ data = (uint8_t*) W; } #endif /* _MHD_GET_32BIT_BE_UNALIGNED */ /* Get value of W(t) from input data buffer, See FIPS PUB 180-4 paragraph 6.2. Input data must be read in big-endian bytes order, see FIPS PUB 180-4 paragraph 3.1.2. */ #define GET_W_FROM_DATA(buf,t) \ _MHD_GET_32BIT_BE (((const uint8_t*) (buf)) + (t) * SHA256_BYTES_IN_WORD) /* During first 16 steps, before making any calculations on each step, the W element is read from input data buffer as big-endian value and stored in array of W elements. */ /* Note: instead of using K constants as array, all K values are specified individually for each step, see FIPS PUB 180-4 paragraph 4.2.2 for K values. */ SHA2STEP32 (a, b, c, d, e, f, g, h, 0x428a2f98UL, W[0] = \ GET_W_FROM_DATA (data, 0)); SHA2STEP32 (h, a, b, c, d, e, f, g, 0x71374491UL, W[1] = \ GET_W_FROM_DATA (data, 1)); SHA2STEP32 (g, h, a, b, c, d, e, f, 0xb5c0fbcfUL, W[2] = \ GET_W_FROM_DATA (data, 2)); SHA2STEP32 (f, g, h, a, b, c, d, e, 0xe9b5dba5UL, W[3] = \ GET_W_FROM_DATA (data, 3)); SHA2STEP32 (e, f, g, h, a, b, c, d, 0x3956c25bUL, W[4] = \ GET_W_FROM_DATA (data, 4)); SHA2STEP32 (d, e, f, g, h, a, b, c, 0x59f111f1UL, W[5] = \ GET_W_FROM_DATA (data, 5)); SHA2STEP32 (c, d, e, f, g, h, a, b, 0x923f82a4UL, W[6] = \ GET_W_FROM_DATA (data, 6)); SHA2STEP32 (b, c, d, e, f, g, h, a, 0xab1c5ed5UL, W[7] = \ GET_W_FROM_DATA (data, 7)); SHA2STEP32 (a, b, c, d, e, f, g, h, 0xd807aa98UL, W[8] = \ GET_W_FROM_DATA (data, 8)); SHA2STEP32 (h, a, b, c, d, e, f, g, 0x12835b01UL, W[9] = \ GET_W_FROM_DATA (data, 9)); SHA2STEP32 (g, h, a, b, c, d, e, f, 0x243185beUL, W[10] = \ GET_W_FROM_DATA (data, 10)); SHA2STEP32 (f, g, h, a, b, c, d, e, 0x550c7dc3UL, W[11] = \ GET_W_FROM_DATA (data, 11)); SHA2STEP32 (e, f, g, h, a, b, c, d, 0x72be5d74UL, W[12] = \ GET_W_FROM_DATA (data, 12)); SHA2STEP32 (d, e, f, g, h, a, b, c, 0x80deb1feUL, W[13] = \ GET_W_FROM_DATA (data, 13)); SHA2STEP32 (c, d, e, f, g, h, a, b, 0x9bdc06a7UL, W[14] = \ GET_W_FROM_DATA (data, 14)); SHA2STEP32 (b, c, d, e, f, g, h, a, 0xc19bf174UL, W[15] = \ GET_W_FROM_DATA (data, 15)); /* 'W' generation and assignment for 16 <= t <= 63. See FIPS PUB 180-4 paragraph 6.2.2. As only last 16 'W' are used in calculations, it is possible to use 16 elements array of W as cyclic buffer. * Note: ((t-16)&0xf) have same value as (t&0xf) */ #define Wgen(w,t) ( (w)[(t - 16) & 0xf] + sig1 ((w)[((t) - 2) & 0xf]) \ + (w)[((t) - 7) & 0xf] + sig0 ((w)[((t) - 15) & 0xf]) ) /* During last 48 steps, before making any calculations on each step, W element is generated from W elements of cyclic buffer and generated value stored back in cyclic buffer. */ /* Note: instead of using K constants as array, all K values are specified individually for each step, see FIPS PUB 180-4 paragraph 4.2.2 for K values. */ SHA2STEP32 (a, b, c, d, e, f, g, h, 0xe49b69c1UL, W[16 & 0xf] = Wgen (W,16)); SHA2STEP32 (h, a, b, c, d, e, f, g, 0xefbe4786UL, W[17 & 0xf] = Wgen (W,17)); SHA2STEP32 (g, h, a, b, c, d, e, f, 0x0fc19dc6UL, W[18 & 0xf] = Wgen (W,18)); SHA2STEP32 (f, g, h, a, b, c, d, e, 0x240ca1ccUL, W[19 & 0xf] = Wgen (W,19)); SHA2STEP32 (e, f, g, h, a, b, c, d, 0x2de92c6fUL, W[20 & 0xf] = Wgen (W,20)); SHA2STEP32 (d, e, f, g, h, a, b, c, 0x4a7484aaUL, W[21 & 0xf] = Wgen (W,21)); SHA2STEP32 (c, d, e, f, g, h, a, b, 0x5cb0a9dcUL, W[22 & 0xf] = Wgen (W,22)); SHA2STEP32 (b, c, d, e, f, g, h, a, 0x76f988daUL, W[23 & 0xf] = Wgen (W,23)); SHA2STEP32 (a, b, c, d, e, f, g, h, 0x983e5152UL, W[24 & 0xf] = Wgen (W,24)); SHA2STEP32 (h, a, b, c, d, e, f, g, 0xa831c66dUL, W[25 & 0xf] = Wgen (W,25)); SHA2STEP32 (g, h, a, b, c, d, e, f, 0xb00327c8UL, W[26 & 0xf] = Wgen (W,26)); SHA2STEP32 (f, g, h, a, b, c, d, e, 0xbf597fc7UL, W[27 & 0xf] = Wgen (W,27)); SHA2STEP32 (e, f, g, h, a, b, c, d, 0xc6e00bf3UL, W[28 & 0xf] = Wgen (W,28)); SHA2STEP32 (d, e, f, g, h, a, b, c, 0xd5a79147UL, W[29 & 0xf] = Wgen (W,29)); SHA2STEP32 (c, d, e, f, g, h, a, b, 0x06ca6351UL, W[30 & 0xf] = Wgen (W,30)); SHA2STEP32 (b, c, d, e, f, g, h, a, 0x14292967UL, W[31 & 0xf] = Wgen (W,31)); SHA2STEP32 (a, b, c, d, e, f, g, h, 0x27b70a85UL, W[32 & 0xf] = Wgen (W,32)); SHA2STEP32 (h, a, b, c, d, e, f, g, 0x2e1b2138UL, W[33 & 0xf] = Wgen (W,33)); SHA2STEP32 (g, h, a, b, c, d, e, f, 0x4d2c6dfcUL, W[34 & 0xf] = Wgen (W,34)); SHA2STEP32 (f, g, h, a, b, c, d, e, 0x53380d13UL, W[35 & 0xf] = Wgen (W,35)); SHA2STEP32 (e, f, g, h, a, b, c, d, 0x650a7354UL, W[36 & 0xf] = Wgen (W,36)); SHA2STEP32 (d, e, f, g, h, a, b, c, 0x766a0abbUL, W[37 & 0xf] = Wgen (W,37)); SHA2STEP32 (c, d, e, f, g, h, a, b, 0x81c2c92eUL, W[38 & 0xf] = Wgen (W,38)); SHA2STEP32 (b, c, d, e, f, g, h, a, 0x92722c85UL, W[39 & 0xf] = Wgen (W,39)); SHA2STEP32 (a, b, c, d, e, f, g, h, 0xa2bfe8a1UL, W[40 & 0xf] = Wgen (W,40)); SHA2STEP32 (h, a, b, c, d, e, f, g, 0xa81a664bUL, W[41 & 0xf] = Wgen (W,41)); SHA2STEP32 (g, h, a, b, c, d, e, f, 0xc24b8b70UL, W[42 & 0xf] = Wgen (W,42)); SHA2STEP32 (f, g, h, a, b, c, d, e, 0xc76c51a3UL, W[43 & 0xf] = Wgen (W,43)); SHA2STEP32 (e, f, g, h, a, b, c, d, 0xd192e819UL, W[44 & 0xf] = Wgen (W,44)); SHA2STEP32 (d, e, f, g, h, a, b, c, 0xd6990624UL, W[45 & 0xf] = Wgen (W,45)); SHA2STEP32 (c, d, e, f, g, h, a, b, 0xf40e3585UL, W[46 & 0xf] = Wgen (W,46)); SHA2STEP32 (b, c, d, e, f, g, h, a, 0x106aa070UL, W[47 & 0xf] = Wgen (W,47)); SHA2STEP32 (a, b, c, d, e, f, g, h, 0x19a4c116UL, W[48 & 0xf] = Wgen (W,48)); SHA2STEP32 (h, a, b, c, d, e, f, g, 0x1e376c08UL, W[49 & 0xf] = Wgen (W,49)); SHA2STEP32 (g, h, a, b, c, d, e, f, 0x2748774cUL, W[50 & 0xf] = Wgen (W,50)); SHA2STEP32 (f, g, h, a, b, c, d, e, 0x34b0bcb5UL, W[51 & 0xf] = Wgen (W,51)); SHA2STEP32 (e, f, g, h, a, b, c, d, 0x391c0cb3UL, W[52 & 0xf] = Wgen (W,52)); SHA2STEP32 (d, e, f, g, h, a, b, c, 0x4ed8aa4aUL, W[53 & 0xf] = Wgen (W,53)); SHA2STEP32 (c, d, e, f, g, h, a, b, 0x5b9cca4fUL, W[54 & 0xf] = Wgen (W,54)); SHA2STEP32 (b, c, d, e, f, g, h, a, 0x682e6ff3UL, W[55 & 0xf] = Wgen (W,55)); SHA2STEP32 (a, b, c, d, e, f, g, h, 0x748f82eeUL, W[56 & 0xf] = Wgen (W,56)); SHA2STEP32 (h, a, b, c, d, e, f, g, 0x78a5636fUL, W[57 & 0xf] = Wgen (W,57)); SHA2STEP32 (g, h, a, b, c, d, e, f, 0x84c87814UL, W[58 & 0xf] = Wgen (W,58)); SHA2STEP32 (f, g, h, a, b, c, d, e, 0x8cc70208UL, W[59 & 0xf] = Wgen (W,59)); SHA2STEP32 (e, f, g, h, a, b, c, d, 0x90befffaUL, W[60 & 0xf] = Wgen (W,60)); SHA2STEP32 (d, e, f, g, h, a, b, c, 0xa4506cebUL, W[61 & 0xf] = Wgen (W,61)); SHA2STEP32 (c, d, e, f, g, h, a, b, 0xbef9a3f7UL, W[62 & 0xf] = Wgen (W,62)); SHA2STEP32 (b, c, d, e, f, g, h, a, 0xc67178f2UL, W[63 & 0xf] = Wgen (W,63)); /* Compute intermediate hash. See FIPS PUB 180-4 paragraph 6.2.2 step 4. */ H[0] += a; H[1] += b; H[2] += c; H[3] += d; H[4] += e; H[5] += f; H[6] += g; H[7] += h; } /** * Process portion of bytes. * * @param ctx_ must be a `struct sha256_ctx *` * @param data bytes to add to hash * @param length number of bytes in @a data */ void MHD_SHA256_update (void *ctx_, const uint8_t *data, size_t length) { struct sha256_ctx *const ctx = ctx_; unsigned bytes_have; /**< Number of bytes in buffer */ mhd_assert ((data != NULL) || (length == 0)); if (0 == length) return; /* Do nothing */ /* Note: (count & (SHA256_BLOCK_SIZE-1)) equals (count % SHA256_BLOCK_SIZE) for this block size. */ bytes_have = (unsigned) (ctx->count & (SHA256_BLOCK_SIZE - 1)); ctx->count += length; if (0 != bytes_have) { unsigned bytes_left = SHA256_BLOCK_SIZE - bytes_have; if (length >= bytes_left) { /* Combine new data with data in the buffer and process full block. */ memcpy (ctx->buffer + bytes_have, data, bytes_left); data += bytes_left; length -= bytes_left; sha256_transform (ctx->H, ctx->buffer); bytes_have = 0; } } while (SHA256_BLOCK_SIZE <= length) { /* Process any full blocks of new data directly, without copying to the buffer. */ sha256_transform (ctx->H, data); data += SHA256_BLOCK_SIZE; length -= SHA256_BLOCK_SIZE; } if (0 != length) { /* Copy incomplete block of new data (if any) to the buffer. */ memcpy (ctx->buffer + bytes_have, data, length); } } /** * Size of "length" padding addition in bytes. * See FIPS PUB 180-4 paragraph 5.1.1. */ #define SHA256_SIZE_OF_LEN_ADD (64 / 8) /** * Finalise SHA256 calculation, return digest. * * @param ctx_ must be a `struct sha256_ctx *` * @param[out] digest set to the hash, must be #SHA256_DIGEST_SIZE bytes */ void MHD_SHA256_finish (void *ctx_, uint8_t digest[SHA256_DIGEST_SIZE]) { struct sha256_ctx *const ctx = ctx_; uint64_t num_bits; /**< Number of processed bits */ unsigned bytes_have; /**< Number of bytes in buffer */ num_bits = ctx->count << 3; /* Note: (count & (SHA256_BLOCK_SIZE-1)) equal (count % SHA256_BLOCK_SIZE) for this block size. */ bytes_have = (unsigned) (ctx->count & (SHA256_BLOCK_SIZE - 1)); /* Input data must be padded with bit "1" and with length of data in bits. See FIPS PUB 180-4 paragraph 5.1.1. */ /* Data is always processed in form of bytes (not by individual bits), therefore position of first padding bit in byte is always predefined (0x80). */ /* Buffer always have space at least for one byte (as full buffers are processed immediately). */ ctx->buffer[bytes_have++] = 0x80; if (SHA256_BLOCK_SIZE - bytes_have < SHA256_SIZE_OF_LEN_ADD) { /* No space in current block to put total length of message. Pad current block with zeros and process it. */ if (bytes_have < SHA256_BLOCK_SIZE) memset (ctx->buffer + bytes_have, 0, SHA256_BLOCK_SIZE - bytes_have); /* Process full block. */ sha256_transform (ctx->H, ctx->buffer); /* Start new block. */ bytes_have = 0; } /* Pad the rest of the buffer with zeros. */ memset (ctx->buffer + bytes_have, 0, SHA256_BLOCK_SIZE - SHA256_SIZE_OF_LEN_ADD - bytes_have); /* Put number of bits in processed message as big-endian value. */ _MHD_PUT_64BIT_BE_SAFE (ctx->buffer + SHA256_BLOCK_SIZE - SHA256_SIZE_OF_LEN_ADD, num_bits); /* Process full final block. */ sha256_transform (ctx->H, ctx->buffer); /* Put final hash/digest in BE mode */ #ifndef _MHD_PUT_32BIT_BE_UNALIGNED if (0 != ((uintptr_t) digest) % _MHD_UINT32_ALIGN) { uint32_t alig_dgst[_SHA256_DIGEST_LENGTH]; _MHD_PUT_32BIT_BE (alig_dgst + 0, ctx->H[0]); _MHD_PUT_32BIT_BE (alig_dgst + 1, ctx->H[1]); _MHD_PUT_32BIT_BE (alig_dgst + 2, ctx->H[2]); _MHD_PUT_32BIT_BE (alig_dgst + 3, ctx->H[3]); _MHD_PUT_32BIT_BE (alig_dgst + 4, ctx->H[4]); _MHD_PUT_32BIT_BE (alig_dgst + 5, ctx->H[5]); _MHD_PUT_32BIT_BE (alig_dgst + 6, ctx->H[6]); _MHD_PUT_32BIT_BE (alig_dgst + 7, ctx->H[7]); /* Copy result to unaligned destination address */ memcpy (digest, alig_dgst, SHA256_DIGEST_SIZE); } else #else /* _MHD_PUT_32BIT_BE_UNALIGNED */ if (1) #endif /* _MHD_PUT_32BIT_BE_UNALIGNED */ { _MHD_PUT_32BIT_BE (digest + 0 * SHA256_BYTES_IN_WORD, ctx->H[0]); _MHD_PUT_32BIT_BE (digest + 1 * SHA256_BYTES_IN_WORD, ctx->H[1]); _MHD_PUT_32BIT_BE (digest + 2 * SHA256_BYTES_IN_WORD, ctx->H[2]); _MHD_PUT_32BIT_BE (digest + 3 * SHA256_BYTES_IN_WORD, ctx->H[3]); _MHD_PUT_32BIT_BE (digest + 4 * SHA256_BYTES_IN_WORD, ctx->H[4]); _MHD_PUT_32BIT_BE (digest + 5 * SHA256_BYTES_IN_WORD, ctx->H[5]); _MHD_PUT_32BIT_BE (digest + 6 * SHA256_BYTES_IN_WORD, ctx->H[6]); _MHD_PUT_32BIT_BE (digest + 7 * SHA256_BYTES_IN_WORD, ctx->H[7]); } /* Erase potentially sensitive data. */ memset (ctx, 0, sizeof(struct sha256_ctx)); }