1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
|
/*
* Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation
*
* Author: Nikos Mavrogiannopoulos
*
* This file is part of GNUTLS.
*
* The GNUTLS library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA
*
*/
#include <gnutls_int.h>
#include <gnutls_datum.h>
#include <gnutls_global.h>
#include <gnutls_errors.h>
#include <gnutls_rsa_export.h>
#include <gnutls_sig.h>
#include <common.h>
#include <gnutls_x509.h>
#include <x509_b64.h>
#include <x509.h>
#include <dn.h>
#include <mpi.h>
#include <extensions.h>
static int MHD__gnutls_asn1_encode_rsa (ASN1_TYPE * c2, mpi_t * params);
int MHD__gnutls_asn1_encode_dsa (ASN1_TYPE * c2, mpi_t * params);
/* remove this when libgcrypt can handle the PKCS #1 coefficients from
* rsa keys
*/
#define CALC_COEFF 1
/**
* MHD_gnutls_x509_privkey_init - This function initializes a MHD_gnutls_crl structure
* @key: The structure to be initialized
*
* This function will initialize an private key structure.
*
* Returns 0 on success.
*
**/
int
MHD_gnutls_x509_privkey_init (MHD_gnutls_x509_privkey_t * key)
{
*key = MHD_gnutls_calloc (1, sizeof (MHD_gnutls_x509_privkey_int));
if (*key)
{
(*key)->key = ASN1_TYPE_EMPTY;
(*key)->pk_algorithm = MHD_GNUTLS_PK_UNKNOWN;
return 0; /* success */
}
return GNUTLS_E_MEMORY_ERROR;
}
/**
* MHD_gnutls_x509_privkey_deinit - This function deinitializes memory used by a MHD_gnutls_x509_privkey_t structure
* @key: The structure to be initialized
*
* This function will deinitialize a private key structure.
*
**/
void
MHD_gnutls_x509_privkey_deinit (MHD_gnutls_x509_privkey_t key)
{
int i;
if (!key)
return;
for (i = 0; i < key->params_size; i++)
{
MHD_gtls_mpi_release (&key->params[i]);
}
MHD__asn1_delete_structure (&key->key);
MHD_gnutls_free (key);
}
/**
* MHD_gnutls_x509_privkey_cpy - This function copies a private key
* @dst: The destination key, which should be initialized.
* @src: The source key
*
* This function will copy a private key from source to destination key.
*
**/
int
MHD_gnutls_x509_privkey_cpy (MHD_gnutls_x509_privkey_t dst,
MHD_gnutls_x509_privkey_t src)
{
int i, ret;
if (!src || !dst)
return GNUTLS_E_INVALID_REQUEST;
for (i = 0; i < src->params_size; i++)
{
dst->params[i] = MHD__gnutls_mpi_copy (src->params[i]);
if (dst->params[i] == NULL)
return GNUTLS_E_MEMORY_ERROR;
}
dst->params_size = src->params_size;
dst->pk_algorithm = src->pk_algorithm;
dst->crippled = src->crippled;
if (!src->crippled)
{
switch (dst->pk_algorithm)
{
case MHD_GNUTLS_PK_RSA:
ret = MHD__gnutls_asn1_encode_rsa (&dst->key, dst->params);
if (ret < 0)
{
MHD_gnutls_assert ();
return ret;
}
break;
default:
MHD_gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
}
return 0;
}
/* Converts an RSA PKCS#1 key to
* an internal structure (MHD_gnutls_private_key)
*/
ASN1_TYPE
MHD__gnutls_privkey_decode_pkcs1_rsa_key (const MHD_gnutls_datum_t * raw_key,
MHD_gnutls_x509_privkey_t pkey)
{
int result;
ASN1_TYPE pkey_asn;
if ((result = MHD__asn1_create_element (MHD__gnutls_getMHD__gnutls_asn (),
"GNUTLS.RSAPrivateKey",
&pkey_asn)) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
return NULL;
}
if ((sizeof (pkey->params) / sizeof (mpi_t)) < RSA_PRIVATE_PARAMS)
{
MHD_gnutls_assert ();
/* internal error. Increase the mpi_ts in params */
return NULL;
}
result =
MHD__asn1_der_decoding (&pkey_asn, raw_key->data, raw_key->size, NULL);
if (result != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
goto error;
}
if ((result =
MHD__gnutls_x509_read_int (pkey_asn, "modulus", &pkey->params[0])) < 0)
{
MHD_gnutls_assert ();
goto error;
}
if ((result = MHD__gnutls_x509_read_int (pkey_asn, "publicExponent",
&pkey->params[1])) < 0)
{
MHD_gnutls_assert ();
goto error;
}
if ((result = MHD__gnutls_x509_read_int (pkey_asn, "privateExponent",
&pkey->params[2])) < 0)
{
MHD_gnutls_assert ();
goto error;
}
if ((result =
MHD__gnutls_x509_read_int (pkey_asn, "prime1", &pkey->params[3])) < 0)
{
MHD_gnutls_assert ();
goto error;
}
if ((result =
MHD__gnutls_x509_read_int (pkey_asn, "prime2", &pkey->params[4])) < 0)
{
MHD_gnutls_assert ();
goto error;
}
#ifdef CALC_COEFF
/* Calculate the coefficient. This is because the gcrypt
* library is uses the p,q in the reverse order.
*/
pkey->params[5] =
MHD__gnutls_mpi_snew (MHD__gnutls_mpi_get_nbits (pkey->params[0]));
if (pkey->params[5] == NULL)
{
MHD_gnutls_assert ();
goto error;
}
MHD__gnutls_mpi_invm (pkey->params[5], pkey->params[3], pkey->params[4]);
/* p, q */
#else
if ((result = MHD__gnutls_x509_read_int (pkey_asn, "coefficient",
&pkey->params[5])) < 0)
{
MHD_gnutls_assert ();
goto error;
}
#endif
pkey->params_size = 6;
return pkey_asn;
error:MHD__asn1_delete_structure (&pkey_asn);
MHD_gtls_mpi_release (&pkey->params[0]);
MHD_gtls_mpi_release (&pkey->params[1]);
MHD_gtls_mpi_release (&pkey->params[2]);
MHD_gtls_mpi_release (&pkey->params[3]);
MHD_gtls_mpi_release (&pkey->params[4]);
MHD_gtls_mpi_release (&pkey->params[5]);
return NULL;
}
#define PEM_KEY_RSA "RSA PRIVATE KEY"
/**
* MHD_gnutls_x509_privkey_import - This function will import a DER or PEM encoded key
* @key: The structure to store the parsed key
* @data: The DER or PEM encoded certificate.
* @format: One of DER or PEM
*
* This function will convert the given DER or PEM encoded key
* to the native MHD_gnutls_x509_privkey_t format. The output will be stored in @key .
*
* If the key is PEM encoded it should have a header of "RSA PRIVATE KEY", or
* "DSA PRIVATE KEY".
*
* Returns 0 on success.
*
**/
int
MHD_gnutls_x509_privkey_import (MHD_gnutls_x509_privkey_t key,
const MHD_gnutls_datum_t * data,
MHD_gnutls_x509_crt_fmt_t format)
{
int result = 0, need_free = 0;
MHD_gnutls_datum_t _data;
if (key == NULL)
{
MHD_gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
_data.data = data->data;
_data.size = data->size;
key->pk_algorithm = MHD_GNUTLS_PK_UNKNOWN;
/* If the Certificate is in PEM format then decode it */
if (format == GNUTLS_X509_FMT_PEM)
{
opaque *out;
/* Try the first header */
result
=
MHD__gnutls_fbase64_decode (PEM_KEY_RSA, data->data, data->size,
&out);
key->pk_algorithm = MHD_GNUTLS_PK_RSA;
_data.data = out;
_data.size = result;
need_free = 1;
}
if (key->pk_algorithm == MHD_GNUTLS_PK_RSA)
{
key->key = MHD__gnutls_privkey_decode_pkcs1_rsa_key (&_data, key);
if (key->key == NULL)
MHD_gnutls_assert ();
}
else
{
/* Try decoding with both, and accept the one that succeeds. */
key->pk_algorithm = MHD_GNUTLS_PK_RSA;
key->key = MHD__gnutls_privkey_decode_pkcs1_rsa_key (&_data, key);
// TODO rm
// if (key->key == NULL)
// {
// key->pk_algorithm = GNUTLS_PK_DSA;
// key->key = decode_dsa_key(&_data, key);
// if (key->key == NULL)
// MHD_gnutls_assert();
// }
}
if (key->key == NULL)
{
MHD_gnutls_assert ();
result = GNUTLS_E_ASN1_DER_ERROR;
key->pk_algorithm = MHD_GNUTLS_PK_UNKNOWN;
return result;
}
if (need_free)
MHD__gnutls_free_datum (&_data);
/* The key has now been decoded.
*/
return 0;
}
#define FREE_RSA_PRIVATE_PARAMS for (i=0;i<RSA_PRIVATE_PARAMS;i++) \
MHD_gtls_mpi_release(&key->params[i])
#define FREE_DSA_PRIVATE_PARAMS for (i=0;i<DSA_PRIVATE_PARAMS;i++) \
MHD_gtls_mpi_release(&key->params[i])
/**
* MHD_gnutls_x509_privkey_import_rsa_raw - This function will import a raw RSA key
* @key: The structure to store the parsed key
* @m: holds the modulus
* @e: holds the public exponent
* @d: holds the private exponent
* @p: holds the first prime (p)
* @q: holds the second prime (q)
* @u: holds the coefficient
*
* This function will convert the given RSA raw parameters
* to the native MHD_gnutls_x509_privkey_t format. The output will be stored in @key.
*
**/
int
MHD_gnutls_x509_privkey_import_rsa_raw (MHD_gnutls_x509_privkey_t key,
const MHD_gnutls_datum_t * m,
const MHD_gnutls_datum_t * e,
const MHD_gnutls_datum_t * d,
const MHD_gnutls_datum_t * p,
const MHD_gnutls_datum_t * q,
const MHD_gnutls_datum_t * u)
{
int i = 0, ret;
size_t siz = 0;
if (key == NULL)
{
MHD_gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
siz = m->size;
if (MHD_gtls_mpi_scan_nz (&key->params[0], m->data, &siz))
{
MHD_gnutls_assert ();
FREE_RSA_PRIVATE_PARAMS;
return GNUTLS_E_MPI_SCAN_FAILED;
}
siz = e->size;
if (MHD_gtls_mpi_scan_nz (&key->params[1], e->data, &siz))
{
MHD_gnutls_assert ();
FREE_RSA_PRIVATE_PARAMS;
return GNUTLS_E_MPI_SCAN_FAILED;
}
siz = d->size;
if (MHD_gtls_mpi_scan_nz (&key->params[2], d->data, &siz))
{
MHD_gnutls_assert ();
FREE_RSA_PRIVATE_PARAMS;
return GNUTLS_E_MPI_SCAN_FAILED;
}
siz = p->size;
if (MHD_gtls_mpi_scan_nz (&key->params[3], p->data, &siz))
{
MHD_gnutls_assert ();
FREE_RSA_PRIVATE_PARAMS;
return GNUTLS_E_MPI_SCAN_FAILED;
}
siz = q->size;
if (MHD_gtls_mpi_scan_nz (&key->params[4], q->data, &siz))
{
MHD_gnutls_assert ();
FREE_RSA_PRIVATE_PARAMS;
return GNUTLS_E_MPI_SCAN_FAILED;
}
#ifdef CALC_COEFF
key->params[5] =
MHD__gnutls_mpi_snew (MHD__gnutls_mpi_get_nbits (key->params[0]));
if (key->params[5] == NULL)
{
MHD_gnutls_assert ();
FREE_RSA_PRIVATE_PARAMS;
return GNUTLS_E_MEMORY_ERROR;
}
MHD__gnutls_mpi_invm (key->params[5], key->params[3], key->params[4]);
#else
siz = u->size;
if (MHD_gtls_mpi_scan_nz (&key->params[5], u->data, &siz))
{
MHD_gnutls_assert ();
FREE_RSA_PRIVATE_PARAMS;
return GNUTLS_E_MPI_SCAN_FAILED;
}
#endif
if (!key->crippled)
{
ret = MHD__gnutls_asn1_encode_rsa (&key->key, key->params);
if (ret < 0)
{
MHD_gnutls_assert ();
FREE_RSA_PRIVATE_PARAMS;
return ret;
}
}
key->params_size = RSA_PRIVATE_PARAMS;
key->pk_algorithm = MHD_GNUTLS_PK_RSA;
return 0;
}
/**
* MHD_gnutls_x509_privkey_get_pk_algorithm - This function returns the key's PublicKey algorithm
* @key: should contain a MHD_gnutls_x509_privkey_t structure
*
* This function will return the public key algorithm of a private
* key.
*
* Returns a member of the enum MHD_GNUTLS_PublicKeyAlgorithm enumeration on success,
* or a negative value on error.
*
**/
int
MHD_gnutls_x509_privkey_get_pk_algorithm (MHD_gnutls_x509_privkey_t key)
{
if (key == NULL)
{
MHD_gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
return key->pk_algorithm;
}
/* Encodes the RSA parameters into an ASN.1 RSA private key structure.
*/
static int
MHD__gnutls_asn1_encode_rsa (ASN1_TYPE * c2, mpi_t * params)
{
int result, i;
size_t size[8], total;
opaque *m_data, *pube_data, *prie_data;
opaque *p1_data, *p2_data, *u_data, *exp1_data, *exp2_data;
opaque *all_data = NULL, *p;
mpi_t exp1 = NULL, exp2 = NULL, q1 = NULL, p1 = NULL, u = NULL;
opaque null = '\0';
/* Read all the sizes */
total = 0;
for (i = 0; i < 5; i++)
{
MHD_gtls_mpi_print_lz (NULL, &size[i], params[i]);
total += size[i];
}
/* Now generate exp1 and exp2
*/
exp1 = MHD__gnutls_mpi_salloc_like (params[0]); /* like modulus */
if (exp1 == NULL)
{
MHD_gnutls_assert ();
result = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
exp2 = MHD__gnutls_mpi_salloc_like (params[0]);
if (exp2 == NULL)
{
MHD_gnutls_assert ();
result = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
q1 = MHD__gnutls_mpi_salloc_like (params[4]);
if (q1 == NULL)
{
MHD_gnutls_assert ();
result = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
p1 = MHD__gnutls_mpi_salloc_like (params[3]);
if (p1 == NULL)
{
MHD_gnutls_assert ();
result = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
u = MHD__gnutls_mpi_salloc_like (params[3]);
if (u == NULL)
{
MHD_gnutls_assert ();
result = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
MHD__gnutls_mpi_invm (u, params[4], params[3]);
/* inverse of q mod p */
MHD_gtls_mpi_print_lz (NULL, &size[5], u);
total += size[5];
MHD__gnutls_mpi_sub_ui (p1, params[3], 1);
MHD__gnutls_mpi_sub_ui (q1, params[4], 1);
MHD__gnutls_mpi_mod (exp1, params[2], p1);
MHD__gnutls_mpi_mod (exp2, params[2], q1);
/* calculate exp's size */
MHD_gtls_mpi_print_lz (NULL, &size[6], exp1);
total += size[6];
MHD_gtls_mpi_print_lz (NULL, &size[7], exp2);
total += size[7];
/* Encoding phase.
* allocate data enough to hold everything
*/
all_data = MHD_gnutls_secure_malloc (total);
if (all_data == NULL)
{
MHD_gnutls_assert ();
result = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
p = all_data;
m_data = p;
p += size[0];
pube_data = p;
p += size[1];
prie_data = p;
p += size[2];
p1_data = p;
p += size[3];
p2_data = p;
p += size[4];
u_data = p;
p += size[5];
exp1_data = p;
p += size[6];
exp2_data = p;
MHD_gtls_mpi_print_lz (m_data, &size[0], params[0]);
MHD_gtls_mpi_print_lz (pube_data, &size[1], params[1]);
MHD_gtls_mpi_print_lz (prie_data, &size[2], params[2]);
MHD_gtls_mpi_print_lz (p1_data, &size[3], params[3]);
MHD_gtls_mpi_print_lz (p2_data, &size[4], params[4]);
MHD_gtls_mpi_print_lz (u_data, &size[5], u);
MHD_gtls_mpi_print_lz (exp1_data, &size[6], exp1);
MHD_gtls_mpi_print_lz (exp2_data, &size[7], exp2);
/* Ok. Now we have the data. Create the asn1 structures
*/
if ((result =
MHD__asn1_create_element (MHD__gnutls_getMHD__gnutls_asn (),
"GNUTLS.RSAPrivateKey", c2)) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
/* Write PRIME
*/
if ((result = MHD__asn1_write_value (*c2, "modulus", m_data, size[0]))
!= ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result =
MHD__asn1_write_value (*c2, "publicExponent", pube_data,
size[1])) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result =
MHD__asn1_write_value (*c2, "privateExponent", prie_data,
size[2])) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result = MHD__asn1_write_value (*c2, "prime1", p1_data, size[3]))
!= ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result = MHD__asn1_write_value (*c2, "prime2", p2_data, size[4]))
!= ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result = MHD__asn1_write_value (*c2, "exponent1", exp1_data, size[6]))
!= ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result = MHD__asn1_write_value (*c2, "exponent2", exp2_data, size[7]))
!= ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result = MHD__asn1_write_value (*c2, "coefficient", u_data, size[5]))
!= ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
MHD_gtls_mpi_release (&exp1);
MHD_gtls_mpi_release (&exp2);
MHD_gtls_mpi_release (&q1);
MHD_gtls_mpi_release (&p1);
MHD_gtls_mpi_release (&u);
MHD_gnutls_free (all_data);
if ((result = MHD__asn1_write_value (*c2, "otherPrimeInfos",
NULL, 0)) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result =
MHD__asn1_write_value (*c2, "version", &null, 1)) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
return 0;
cleanup:MHD_gtls_mpi_release (&u);
MHD_gtls_mpi_release (&exp1);
MHD_gtls_mpi_release (&exp2);
MHD_gtls_mpi_release (&q1);
MHD_gtls_mpi_release (&p1);
MHD__asn1_delete_structure (c2);
MHD_gnutls_free (all_data);
return result;
}
/* Encodes the DSA parameters into an ASN.1 DSAPrivateKey structure.
*/
int
MHD__gnutls_asn1_encode_dsa (ASN1_TYPE * c2, mpi_t * params)
{
int result, i;
size_t size[DSA_PRIVATE_PARAMS], total;
opaque *p_data, *q_data, *g_data, *x_data, *y_data;
opaque *all_data = NULL, *p;
opaque null = '\0';
/* Read all the sizes */
total = 0;
for (i = 0; i < DSA_PRIVATE_PARAMS; i++)
{
MHD_gtls_mpi_print_lz (NULL, &size[i], params[i]);
total += size[i];
}
/* Encoding phase.
* allocate data enough to hold everything
*/
all_data = MHD_gnutls_secure_malloc (total);
if (all_data == NULL)
{
MHD_gnutls_assert ();
result = GNUTLS_E_MEMORY_ERROR;
goto cleanup;
}
p = all_data;
p_data = p;
p += size[0];
q_data = p;
p += size[1];
g_data = p;
p += size[2];
y_data = p;
p += size[3];
x_data = p;
MHD_gtls_mpi_print_lz (p_data, &size[0], params[0]);
MHD_gtls_mpi_print_lz (q_data, &size[1], params[1]);
MHD_gtls_mpi_print_lz (g_data, &size[2], params[2]);
MHD_gtls_mpi_print_lz (y_data, &size[3], params[3]);
MHD_gtls_mpi_print_lz (x_data, &size[4], params[4]);
/* Ok. Now we have the data. Create the asn1 structures
*/
if ((result =
MHD__asn1_create_element (MHD__gnutls_getMHD__gnutls_asn (),
"GNUTLS.DSAPrivateKey", c2)) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
/* Write PRIME
*/
if ((result =
MHD__asn1_write_value (*c2, "p", p_data, size[0])) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result =
MHD__asn1_write_value (*c2, "q", q_data, size[1])) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result =
MHD__asn1_write_value (*c2, "g", g_data, size[2])) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result =
MHD__asn1_write_value (*c2, "Y", y_data, size[3])) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
if ((result =
MHD__asn1_write_value (*c2, "priv", x_data, size[4])) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
MHD_gnutls_free (all_data);
if ((result =
MHD__asn1_write_value (*c2, "version", &null, 1)) != ASN1_SUCCESS)
{
MHD_gnutls_assert ();
result = MHD_gtls_asn2err (result);
goto cleanup;
}
return 0;
cleanup:MHD__asn1_delete_structure (c2);
MHD_gnutls_free (all_data);
return result;
}
|