1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MHD_MD5Init, call MHD_MD5Update as
* needed on buffers full of bytes, and then call MHD_MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
/* Based on OpenBSD modifications.
* Optimized by Karlson2k (Evgeny Grin). */
#include "md5.h"
#include <string.h>
#ifdef HAVE_MEMORY_H
#include <memory.h>
#endif /* HAVE_MEMORY_H */
#include "mhd_bithelpers.h"
#include "mhd_assert.h"
/**
* Number of bytes in single MD5 word
* used to process data
*/
#define MD5_BYTES_IN_WORD (32 / 8)
/**
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*
* @param ctx_ must be a `struct MD5Context *`
*/
void
MHD_MD5Init (void *ctx_)
{
struct MD5Context *ctx = ctx_;
mhd_assert (ctx != NULL);
ctx->count = 0;
ctx->state[0] = UINT32_C (0x67452301);
ctx->state[1] = UINT32_C (0xefcdab89);
ctx->state[2] = UINT32_C (0x98badcfe);
ctx->state[3] = UINT32_C (0x10325476);
}
static void
MD5Transform (uint32_t state[4],
const uint8_t block[MD5_BLOCK_SIZE]);
/**
* Final wrapup--call MD5Pad, fill in digest and zero out ctx.
*
* @param ctx_ must be a `struct MD5Context *`
*/
void
MHD_MD5Final (void *ctx_,
uint8_t digest[MD5_DIGEST_SIZE])
{
struct MD5Context *ctx = ctx_;
uint64_t count_bits;
size_t have_bytes;
mhd_assert (ctx != NULL);
mhd_assert (digest != NULL);
/* Convert count to 8 bytes in little endian order. */
have_bytes = (ctx->count) & (MD5_BLOCK_SIZE - 1);
/* Pad data */
/* Buffer always have space for one byte or more. */
ctx->buffer[have_bytes++] = 0x80; /* First padding byte is 0x80 */
if (MD5_BLOCK_SIZE - have_bytes < 8)
{ /* Not enough space to put number of bits */
while (have_bytes < MD5_BLOCK_SIZE)
ctx->buffer[have_bytes++] = 0;
MD5Transform (ctx->state, ctx->buffer);
have_bytes = 0; /* Additional block */
}
/* Pad out to 56 */
memset (ctx->buffer + have_bytes, 0, MD5_BLOCK_SIZE - have_bytes - 8);
/* Put number of bits */
count_bits = ctx->count << 3;
_MHD_PUT_64BIT_LE_SAFE (ctx->buffer + 56, count_bits);
MD5Transform (ctx->state, ctx->buffer);
/* Put digest in LE mode */
#ifndef _MHD_PUT_32BIT_LE_UNALIGNED
if (0 != ((uintptr_t) digest) % _MHD_UINT32_ALIGN)
{
uint32_t alig_dgst[MD5_DIGEST_SIZE / MD5_BYTES_IN_WORD];
_MHD_PUT_32BIT_LE (alig_dgst + 0, ctx->state[0]);
_MHD_PUT_32BIT_LE (alig_dgst + 1, ctx->state[1]);
_MHD_PUT_32BIT_LE (alig_dgst + 2, ctx->state[2]);
_MHD_PUT_32BIT_LE (alig_dgst + 3, ctx->state[3]);
/* Copy result to unaligned destination address */
memcpy (digest, alig_dgst, MD5_DIGEST_SIZE);
}
else
#else /* _MHD_PUT_32BIT_LE_UNALIGNED */
if (1)
#endif /* _MHD_PUT_32BIT_LE_UNALIGNED */
{
_MHD_PUT_32BIT_LE (digest, ctx->state[0]);
_MHD_PUT_32BIT_LE (digest + 4, ctx->state[1]);
_MHD_PUT_32BIT_LE (digest + 8, ctx->state[2]);
_MHD_PUT_32BIT_LE (digest + 12, ctx->state[3]);
}
/* Erase buffer */
memset (ctx, 0, sizeof(*ctx));
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1 (z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
(w += f (x, y, z) + data, w = _MHD_ROTL32(w, s), w += x)
/**
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MHD_MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void
MD5Transform (uint32_t state[4],
const uint8_t block[MD5_BLOCK_SIZE])
{
uint32_t a, b, c, d;
uint32_t data_buf[MD5_BLOCK_SIZE / MD5_BYTES_IN_WORD];
const uint32_t *in;
#if (_MHD_BYTE_ORDER == _MHD_LITTLE_ENDIAN) || \
! defined (_MHD_GET_32BIT_LE_UNALIGNED)
if (0 != (((uintptr_t) block) % _MHD_UINT32_ALIGN))
{
/* Copy data to the aligned buffer */
memcpy (data_buf, block, MD5_BLOCK_SIZE);
in = data_buf;
}
else
in = (const uint32_t *) block;
#endif /* _MHD_BYTE_ORDER == _MHD_LITTLE_ENDIAN) || \
! _MHD_GET_32BIT_LE_UNALIGNED */
#if _MHD_BYTE_ORDER != _MHD_LITTLE_ENDIAN
data_buf[0] = _MHD_GET_32BIT_LE (in + 0);
data_buf[1] = _MHD_GET_32BIT_LE (in + 1);
data_buf[2] = _MHD_GET_32BIT_LE (in + 2);
data_buf[3] = _MHD_GET_32BIT_LE (in + 3);
data_buf[4] = _MHD_GET_32BIT_LE (in + 4);
data_buf[5] = _MHD_GET_32BIT_LE (in + 5);
data_buf[6] = _MHD_GET_32BIT_LE (in + 6);
data_buf[7] = _MHD_GET_32BIT_LE (in + 7);
data_buf[8] = _MHD_GET_32BIT_LE (in + 8);
data_buf[9] = _MHD_GET_32BIT_LE (in + 9);
data_buf[10] = _MHD_GET_32BIT_LE (in + 10);
data_buf[11] = _MHD_GET_32BIT_LE (in + 11);
data_buf[12] = _MHD_GET_32BIT_LE (in + 12);
data_buf[13] = _MHD_GET_32BIT_LE (in + 13);
data_buf[14] = _MHD_GET_32BIT_LE (in + 14);
data_buf[15] = _MHD_GET_32BIT_LE (in + 15);
in = data_buf;
#endif /* _MHD_BYTE_ORDER != _MHD_LITTLE_ENDIAN */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
MD5STEP (F1, a, b, c, d, in[0] + UINT32_C (0xd76aa478), 7);
MD5STEP (F1, d, a, b, c, in[1] + UINT32_C (0xe8c7b756), 12);
MD5STEP (F1, c, d, a, b, in[2] + UINT32_C (0x242070db), 17);
MD5STEP (F1, b, c, d, a, in[3] + UINT32_C (0xc1bdceee), 22);
MD5STEP (F1, a, b, c, d, in[4] + UINT32_C (0xf57c0faf), 7);
MD5STEP (F1, d, a, b, c, in[5] + UINT32_C (0x4787c62a), 12);
MD5STEP (F1, c, d, a, b, in[6] + UINT32_C (0xa8304613), 17);
MD5STEP (F1, b, c, d, a, in[7] + UINT32_C (0xfd469501), 22);
MD5STEP (F1, a, b, c, d, in[8] + UINT32_C (0x698098d8), 7);
MD5STEP (F1, d, a, b, c, in[9] + UINT32_C (0x8b44f7af), 12);
MD5STEP (F1, c, d, a, b, in[10] + UINT32_C (0xffff5bb1), 17);
MD5STEP (F1, b, c, d, a, in[11] + UINT32_C (0x895cd7be), 22);
MD5STEP (F1, a, b, c, d, in[12] + UINT32_C (0x6b901122), 7);
MD5STEP (F1, d, a, b, c, in[13] + UINT32_C (0xfd987193), 12);
MD5STEP (F1, c, d, a, b, in[14] + UINT32_C (0xa679438e), 17);
MD5STEP (F1, b, c, d, a, in[15] + UINT32_C (0x49b40821), 22);
MD5STEP (F2, a, b, c, d, in[1] + UINT32_C (0xf61e2562), 5);
MD5STEP (F2, d, a, b, c, in[6] + UINT32_C (0xc040b340), 9);
MD5STEP (F2, c, d, a, b, in[11] + UINT32_C (0x265e5a51), 14);
MD5STEP (F2, b, c, d, a, in[0] + UINT32_C (0xe9b6c7aa), 20);
MD5STEP (F2, a, b, c, d, in[5] + UINT32_C (0xd62f105d), 5);
MD5STEP (F2, d, a, b, c, in[10] + UINT32_C (0x02441453), 9);
MD5STEP (F2, c, d, a, b, in[15] + UINT32_C (0xd8a1e681), 14);
MD5STEP (F2, b, c, d, a, in[4] + UINT32_C (0xe7d3fbc8), 20);
MD5STEP (F2, a, b, c, d, in[9] + UINT32_C (0x21e1cde6), 5);
MD5STEP (F2, d, a, b, c, in[14] + UINT32_C (0xc33707d6), 9);
MD5STEP (F2, c, d, a, b, in[3] + UINT32_C (0xf4d50d87), 14);
MD5STEP (F2, b, c, d, a, in[8] + UINT32_C (0x455a14ed), 20);
MD5STEP (F2, a, b, c, d, in[13] + UINT32_C (0xa9e3e905), 5);
MD5STEP (F2, d, a, b, c, in[2] + UINT32_C (0xfcefa3f8), 9);
MD5STEP (F2, c, d, a, b, in[7] + UINT32_C (0x676f02d9), 14);
MD5STEP (F2, b, c, d, a, in[12] + UINT32_C (0x8d2a4c8a), 20);
MD5STEP (F3, a, b, c, d, in[5] + UINT32_C (0xfffa3942), 4);
MD5STEP (F3, d, a, b, c, in[8] + UINT32_C (0x8771f681), 11);
MD5STEP (F3, c, d, a, b, in[11] + UINT32_C (0x6d9d6122), 16);
MD5STEP (F3, b, c, d, a, in[14] + UINT32_C (0xfde5380c), 23);
MD5STEP (F3, a, b, c, d, in[1] + UINT32_C (0xa4beea44), 4);
MD5STEP (F3, d, a, b, c, in[4] + UINT32_C (0x4bdecfa9), 11);
MD5STEP (F3, c, d, a, b, in[7] + UINT32_C (0xf6bb4b60), 16);
MD5STEP (F3, b, c, d, a, in[10] + UINT32_C (0xbebfbc70), 23);
MD5STEP (F3, a, b, c, d, in[13] + UINT32_C (0x289b7ec6), 4);
MD5STEP (F3, d, a, b, c, in[0] + UINT32_C (0xeaa127fa), 11);
MD5STEP (F3, c, d, a, b, in[3] + UINT32_C (0xd4ef3085), 16);
MD5STEP (F3, b, c, d, a, in[6] + UINT32_C (0x04881d05), 23);
MD5STEP (F3, a, b, c, d, in[9] + UINT32_C (0xd9d4d039), 4);
MD5STEP (F3, d, a, b, c, in[12] + UINT32_C (0xe6db99e5), 11);
MD5STEP (F3, c, d, a, b, in[15] + UINT32_C (0x1fa27cf8), 16);
MD5STEP (F3, b, c, d, a, in[2] + UINT32_C (0xc4ac5665), 23);
MD5STEP (F4, a, b, c, d, in[0] + UINT32_C (0xf4292244), 6);
MD5STEP (F4, d, a, b, c, in[7] + UINT32_C (0x432aff97), 10);
MD5STEP (F4, c, d, a, b, in[14] + UINT32_C (0xab9423a7), 15);
MD5STEP (F4, b, c, d, a, in[5] + UINT32_C (0xfc93a039), 21);
MD5STEP (F4, a, b, c, d, in[12] + UINT32_C (0x655b59c3), 6);
MD5STEP (F4, d, a, b, c, in[3] + UINT32_C (0x8f0ccc92), 10);
MD5STEP (F4, c, d, a, b, in[10] + UINT32_C (0xffeff47d), 15);
MD5STEP (F4, b, c, d, a, in[1] + UINT32_C (0x85845dd1), 21);
MD5STEP (F4, a, b, c, d, in[8] + UINT32_C (0x6fa87e4f), 6);
MD5STEP (F4, d, a, b, c, in[15] + UINT32_C (0xfe2ce6e0), 10);
MD5STEP (F4, c, d, a, b, in[6] + UINT32_C (0xa3014314), 15);
MD5STEP (F4, b, c, d, a, in[13] + UINT32_C (0x4e0811a1), 21);
MD5STEP (F4, a, b, c, d, in[4] + UINT32_C (0xf7537e82), 6);
MD5STEP (F4, d, a, b, c, in[11] + UINT32_C (0xbd3af235), 10);
MD5STEP (F4, c, d, a, b, in[2] + UINT32_C (0x2ad7d2bb), 15);
MD5STEP (F4, b, c, d, a, in[9] + UINT32_C (0xeb86d391), 21);
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}
/**
* Update context to reflect the concatenation of another buffer full
* of bytes.
*
* @param ctx_ must be a `struct MD5Context *`
* @param input bytes to add to hash
* @param len the number of bytes in @a data
*/
void
MHD_MD5Update (void *ctx_,
const uint8_t *input,
size_t len)
{
struct MD5Context *ctx = ctx_;
size_t have, need;
mhd_assert (ctx != NULL);
mhd_assert ((ctx != NULL) || (len == 0));
/* Check how many bytes we already have and how many more we need. */
have = (size_t) ((ctx->count) & (MD5_BLOCK_SIZE - 1));
need = MD5_BLOCK_SIZE - have;
/* Update bytecount */
ctx->count += (uint64_t) len;
if (len >= need)
{
if (have != 0)
{
memcpy (ctx->buffer + have,
input,
need);
MD5Transform (ctx->state, ctx->buffer);
input += need;
len -= need;
have = 0;
}
/* Process data in MD5_BLOCK_SIZE-byte chunks. */
while (len >= MD5_BLOCK_SIZE)
{
MD5Transform (ctx->state,
(const unsigned char *) input);
input += MD5_BLOCK_SIZE;
len -= MD5_BLOCK_SIZE;
}
}
/* Handle any remaining bytes of data. */
if (0 != len)
memcpy (ctx->buffer + have,
input,
len);
}
/* end of md5.c */
|