aboutsummaryrefslogtreecommitdiff
path: root/src/microhttpd/md5.c
blob: 6a8819c9ab5afe874ff1ada79fabb712dbef296c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.	This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */

/* Based on OpenBSD modifications */

#include "md5.h"
#include "mhd_byteorder.h"

#define PUT_64BIT_LE(cp, value) do {					\
	(cp)[7] = (uint8_t)((value) >> 56);				\
	(cp)[6] = (uint8_t)((value) >> 48);				\
	(cp)[5] = (uint8_t)((value) >> 40);				\
	(cp)[4] = (uint8_t)((value) >> 32);				\
	(cp)[3] = (uint8_t)((value) >> 24);				\
	(cp)[2] = (uint8_t)((value) >> 16);				\
	(cp)[1] = (uint8_t)((value) >> 8);				\
	(cp)[0] = (uint8_t)((value)); } while (0)

#define PUT_32BIT_LE(cp, value) do {					\
	(cp)[3] = (uint8_t)((value) >> 24);				\
	(cp)[2] = (uint8_t)((value) >> 16);				\
	(cp)[1] = (uint8_t)((value) >> 8);				\
	(cp)[0] = (uint8_t)((value)); } while (0)

static uint8_t PADDING[MD5_BLOCK_SIZE] = {
  0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};


/**
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 *
 * @param ctx must be a `struct MD5Context *`
 */
void
MD5Init (void *ctx_)
{
  struct MD5Context *ctx = ctx_;

  if (!ctx)
    return;
  ctx->count = 0;
  ctx->state[0] = 0x67452301;
  ctx->state[1] = 0xefcdab89;
  ctx->state[2] = 0x98badcfe;
  ctx->state[3] = 0x10325476;
}


/**
 * Pad pad to 64-byte boundary with the bit pattern
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
static void
MD5Pad (struct MD5Context *ctx)
{
  uint8_t count[8];
  size_t padlen;

  if (!ctx)
    return;

  /* Convert count to 8 bytes in little endian order. */
  PUT_64BIT_LE(count, ctx->count);

  /* Pad out to 56 mod 64. */
  padlen = MD5_BLOCK_SIZE -
    ((ctx->count >> 3) & (MD5_BLOCK_SIZE - 1));
  if (padlen < 1 + 8)
    padlen += MD5_BLOCK_SIZE;
  MD5Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */
  MD5Update(ctx, count, 8);
}


/**
 * Final wrapup--call MD5Pad, fill in digest and zero out ctx.
 *
 * @param ctx must be a `struct MD5Context *`
 */
void
MD5Final (void *ctx_,
          unsigned char digest[MD5_DIGEST_SIZE])
{
  struct MD5Context *ctx = ctx_;
  int i;

  if (!ctx || !digest)
    return;

  MD5Pad(ctx);
  for (i = 0; i < 4; i++)
    PUT_32BIT_LE(digest + i * 4, ctx->state[i]);

  memset(ctx, 0, sizeof(*ctx));
}


/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/**
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
static void
MD5Transform (uint32_t state[4],
              const uint8_t block[MD5_BLOCK_SIZE])
{
  uint32_t a, b, c, d, in[MD5_BLOCK_SIZE / 4];

#if _MHD_BYTE_ORDER == _MHD_LITTLE_ENDIAN
  memcpy(in, block, sizeof(in));
#else
  for (a = 0; a < MD5_BLOCK_SIZE / 4; a++)
  {
    in[a] = (uint32_t)(
      (uint32_t)(block[a * 4 + 0]) |
      (uint32_t)(block[a * 4 + 1]) << 8 |
      (uint32_t)(block[a * 4 + 2]) << 16 |
      (uint32_t)(block[a * 4 + 3]) << 24);
  }
#endif

  a = state[0];
  b = state[1];
  c = state[2];
  d = state[3];

  MD5STEP(F1, a, b, c, d, in[0]  + 0xd76aa478, 7);
  MD5STEP(F1, d, a, b, c, in[1]  + 0xe8c7b756, 12);
  MD5STEP(F1, c, d, a, b, in[2]  + 0x242070db, 17);
  MD5STEP(F1, b, c, d, a, in[3]  + 0xc1bdceee, 22);
  MD5STEP(F1, a, b, c, d, in[4]  + 0xf57c0faf, 7);
  MD5STEP(F1, d, a, b, c, in[5]  + 0x4787c62a, 12);
  MD5STEP(F1, c, d, a, b, in[6]  + 0xa8304613, 17);
  MD5STEP(F1, b, c, d, a, in[7]  + 0xfd469501, 22);
  MD5STEP(F1, a, b, c, d, in[8]  + 0x698098d8, 7);
  MD5STEP(F1, d, a, b, c, in[9]  + 0x8b44f7af, 12);
  MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

  MD5STEP(F2, a, b, c, d, in[1]  + 0xf61e2562, 5);
  MD5STEP(F2, d, a, b, c, in[6]  + 0xc040b340, 9);
  MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  MD5STEP(F2, b, c, d, a, in[0]  + 0xe9b6c7aa, 20);
  MD5STEP(F2, a, b, c, d, in[5]  + 0xd62f105d, 5);
  MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  MD5STEP(F2, b, c, d, a, in[4]  + 0xe7d3fbc8, 20);
  MD5STEP(F2, a, b, c, d, in[9]  + 0x21e1cde6, 5);
  MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  MD5STEP(F2, c, d, a, b, in[3]  + 0xf4d50d87, 14);
  MD5STEP(F2, b, c, d, a, in[8]  + 0x455a14ed, 20);
  MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  MD5STEP(F2, d, a, b, c, in[2]  + 0xfcefa3f8, 9);
  MD5STEP(F2, c, d, a, b, in[7]  + 0x676f02d9, 14);
  MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

  MD5STEP(F3, a, b, c, d, in[5]  + 0xfffa3942, 4);
  MD5STEP(F3, d, a, b, c, in[8]  + 0x8771f681, 11);
  MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  MD5STEP(F3, a, b, c, d, in[1]  + 0xa4beea44, 4);
  MD5STEP(F3, d, a, b, c, in[4]  + 0x4bdecfa9, 11);
  MD5STEP(F3, c, d, a, b, in[7]  + 0xf6bb4b60, 16);
  MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  MD5STEP(F3, d, a, b, c, in[0]  + 0xeaa127fa, 11);
  MD5STEP(F3, c, d, a, b, in[3]  + 0xd4ef3085, 16);
  MD5STEP(F3, b, c, d, a, in[6]  + 0x04881d05, 23);
  MD5STEP(F3, a, b, c, d, in[9]  + 0xd9d4d039, 4);
  MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  MD5STEP(F3, b, c, d, a, in[2]  + 0xc4ac5665, 23);

  MD5STEP(F4, a, b, c, d, in[0]  + 0xf4292244, 6);
  MD5STEP(F4, d, a, b, c, in[7]  + 0x432aff97, 10);
  MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  MD5STEP(F4, b, c, d, a, in[5]  + 0xfc93a039, 21);
  MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  MD5STEP(F4, d, a, b, c, in[3]  + 0x8f0ccc92, 10);
  MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  MD5STEP(F4, b, c, d, a, in[1]  + 0x85845dd1, 21);
  MD5STEP(F4, a, b, c, d, in[8]  + 0x6fa87e4f, 6);
  MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  MD5STEP(F4, c, d, a, b, in[6]  + 0xa3014314, 15);
  MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  MD5STEP(F4, a, b, c, d, in[4]  + 0xf7537e82, 6);
  MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  MD5STEP(F4, c, d, a, b, in[2]  + 0x2ad7d2bb, 15);
  MD5STEP(F4, b, c, d, a, in[9]  + 0xeb86d391, 21);

  state[0] += a;
  state[1] += b;
  state[2] += c;
  state[3] += d;
}


/**
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void
MD5Update (void *ctx_,
           const uint8_t *input,
           size_t len)
{
  struct MD5Context *ctx = ctx_;
  size_t have, need;

  if (!ctx || !input)
    return;

  /* Check how many bytes we already have and how many more we need. */
  have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_SIZE - 1));
  need = MD5_BLOCK_SIZE - have;

  /* Update bitcount */
  ctx->count += (uint64_t)len << 3;

  if (len >= need)
  {
    if (have != 0)
    {
      memcpy (ctx->buffer + have,
              input,
              need);
      MD5Transform(ctx->state, ctx->buffer);
      input += need;
      len -= need;
      have = 0;
    }

    /* Process data in MD5_BLOCK_SIZE-byte chunks. */
    while (len >= MD5_BLOCK_SIZE)
    {
      MD5Transform (ctx->state,
                    (const unsigned char *) input);
      input += MD5_BLOCK_SIZE;
      len -= MD5_BLOCK_SIZE;
    }
  }

  /* Handle any remaining bytes of data. */
  if (0 != len)
    memcpy (ctx->buffer + have,
            input,
            len);
}



/* end of md5.c */