1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
/*
This file is part of libmicrohttpd
Copyright (C) 2019-2022 Evgeny Grin (Karlson2k)
libmicrohttpd is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library.
If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file microhttpd/sha256.c
* @brief Calculation of SHA-256 digest as defined in FIPS PUB 180-4 (2015)
* @author Karlson2k (Evgeny Grin)
*/
#include "sha256.h"
#include <string.h>
#ifdef HAVE_MEMORY_H
#include <memory.h>
#endif /* HAVE_MEMORY_H */
#include "mhd_bithelpers.h"
#include "mhd_assert.h"
/**
* Initialise structure for SHA256 calculation.
*
* @param ctx must be a `struct Sha256Ctx *`
*/
void
MHD_SHA256_init (struct Sha256Ctx *ctx)
{
/* Initial hash values, see FIPS PUB 180-4 paragraph 5.3.3 */
/* First thirty-two bits of the fractional parts of the square
* roots of the first eight prime numbers: 2, 3, 5, 7, 11, 13,
* 17, 19." */
ctx->H[0] = UINT32_C (0x6a09e667);
ctx->H[1] = UINT32_C (0xbb67ae85);
ctx->H[2] = UINT32_C (0x3c6ef372);
ctx->H[3] = UINT32_C (0xa54ff53a);
ctx->H[4] = UINT32_C (0x510e527f);
ctx->H[5] = UINT32_C (0x9b05688c);
ctx->H[6] = UINT32_C (0x1f83d9ab);
ctx->H[7] = UINT32_C (0x5be0cd19);
/* Initialise number of bytes. */
ctx->count = 0;
}
/**
* Base of SHA-256 transformation.
* Gets full 64 bytes block of data and updates hash values;
* @param H hash values
* @param data data, must be exactly 64 bytes long
*/
static void
sha256_transform (uint32_t H[_SHA256_DIGEST_LENGTH],
const void *data)
{
/* Working variables,
see FIPS PUB 180-4 paragraph 6.2. */
uint32_t a = H[0];
uint32_t b = H[1];
uint32_t c = H[2];
uint32_t d = H[3];
uint32_t e = H[4];
uint32_t f = H[5];
uint32_t g = H[6];
uint32_t h = H[7];
/* Data buffer, used as cyclic buffer.
See FIPS PUB 180-4 paragraphs 5.2.1, 6.2. */
uint32_t W[16];
/* 'Ch' and 'Maj' macro functions are defined with
widely-used optimization.
See FIPS PUB 180-4 formulae 4.2, 4.3. */
#define Ch(x,y,z) ( (z) ^ ((x) & ((y) ^ (z))) )
#define Maj(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
/* Unoptimized (original) versions: */
/* #define Ch(x,y,z) ( ( (x) & (y) ) ^ ( ~(x) & (z) ) ) */
/* #define Maj(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */
/* Four 'Sigma' macro functions.
See FIPS PUB 180-4 formulae 4.4, 4.5, 4.6, 4.7. */
#define SIG0(x) (_MHD_ROTR32 ((x), 2) ^ _MHD_ROTR32 ((x), 13) ^ \
_MHD_ROTR32 ((x), 22) )
#define SIG1(x) (_MHD_ROTR32 ((x), 6) ^ _MHD_ROTR32 ((x), 11) ^ \
_MHD_ROTR32 ((x), 25) )
#define sig0(x) (_MHD_ROTR32 ((x), 7) ^ _MHD_ROTR32 ((x), 18) ^ \
((x) >> 3) )
#define sig1(x) (_MHD_ROTR32 ((x), 17) ^ _MHD_ROTR32 ((x),19) ^ \
((x) >> 10) )
/* Single step of SHA-256 computation,
see FIPS PUB 180-4 paragraph 6.2.2 step 3.
* Note: instead of reassigning all working variables on each step,
variables are rotated for each step:
SHA2STEP32(a, b, c, d, e, f, g, h, K[0], data[0]);
SHA2STEP32(h, a, b, c, d, e, f, g, K[1], data[1]);
so current 'vD' will be used as 'vE' on next step,
current 'vH' will be used as 'vA' on next step.
* Note: first (vH += SIG1(vE) + Ch(vE,vF,vG) + kt + wt) equals T1 in FIPS PUB 180-4 paragraph 6.2.2 step 3.
second (vH += SIG0(vA) + Maj(vE,vF,vC) equals T1 + T2 in FIPS PUB 180-4 paragraph 6.2.2 step 3.
* Note: 'wt' must be used exactly one time in this macro as it change other data as well
every time when used. */
#define SHA2STEP32(vA,vB,vC,vD,vE,vF,vG,vH,kt,wt) do { \
(vD) += ((vH) += SIG1 ((vE)) + Ch ((vE),(vF),(vG)) + (kt) + (wt)); \
(vH) += SIG0 ((vA)) + Maj ((vA),(vB),(vC)); } while (0)
#ifndef _MHD_GET_32BIT_BE_UNALIGNED
if (0 != (((uintptr_t) data) % _MHD_UINT32_ALIGN))
{
/* Copy the unaligned input data to the aligned buffer */
memcpy (W, data, SHA256_BLOCK_SIZE);
/* The W[] buffer itself will be used as the source of the data,
* but data will be reloaded in correct bytes order during
* the next steps */
data = (const void *) W;
}
#endif /* _MHD_GET_32BIT_BE_UNALIGNED */
/* Get value of W(t) from input data buffer,
See FIPS PUB 180-4 paragraph 6.2.
Input data must be read in big-endian bytes order,
see FIPS PUB 180-4 paragraph 3.1.2. */
/* Use cast to (const void*) to mute compiler alignment warning,
* data was already aligned in previous step */
#define GET_W_FROM_DATA(buf,t) \
_MHD_GET_32BIT_BE ((const void*)(((const uint8_t*) (buf)) + \
(t) * SHA256_BYTES_IN_WORD))
/* During first 16 steps, before making any calculations on each step,
the W element is read from input data buffer as big-endian value and
stored in array of W elements. */
/* Note: instead of using K constants as array, all K values are specified
individually for each step, see FIPS PUB 180-4 paragraph 4.2.2 for K values. */
SHA2STEP32 (a, b, c, d, e, f, g, h, UINT32_C (0x428a2f98), W[0] = \
GET_W_FROM_DATA (data, 0));
SHA2STEP32 (h, a, b, c, d, e, f, g, UINT32_C (0x71374491), W[1] = \
GET_W_FROM_DATA (data, 1));
SHA2STEP32 (g, h, a, b, c, d, e, f, UINT32_C (0xb5c0fbcf), W[2] = \
GET_W_FROM_DATA (data, 2));
SHA2STEP32 (f, g, h, a, b, c, d, e, UINT32_C (0xe9b5dba5), W[3] = \
GET_W_FROM_DATA (data, 3));
SHA2STEP32 (e, f, g, h, a, b, c, d, UINT32_C (0x3956c25b), W[4] = \
GET_W_FROM_DATA (data, 4));
SHA2STEP32 (d, e, f, g, h, a, b, c, UINT32_C (0x59f111f1), W[5] = \
GET_W_FROM_DATA (data, 5));
SHA2STEP32 (c, d, e, f, g, h, a, b, UINT32_C (0x923f82a4), W[6] = \
GET_W_FROM_DATA (data, 6));
SHA2STEP32 (b, c, d, e, f, g, h, a, UINT32_C (0xab1c5ed5), W[7] = \
GET_W_FROM_DATA (data, 7));
SHA2STEP32 (a, b, c, d, e, f, g, h, UINT32_C (0xd807aa98), W[8] = \
GET_W_FROM_DATA (data, 8));
SHA2STEP32 (h, a, b, c, d, e, f, g, UINT32_C (0x12835b01), W[9] = \
GET_W_FROM_DATA (data, 9));
SHA2STEP32 (g, h, a, b, c, d, e, f, UINT32_C (0x243185be), W[10] = \
GET_W_FROM_DATA (data, 10));
SHA2STEP32 (f, g, h, a, b, c, d, e, UINT32_C (0x550c7dc3), W[11] = \
GET_W_FROM_DATA (data, 11));
SHA2STEP32 (e, f, g, h, a, b, c, d, UINT32_C (0x72be5d74), W[12] = \
GET_W_FROM_DATA (data, 12));
SHA2STEP32 (d, e, f, g, h, a, b, c, UINT32_C (0x80deb1fe), W[13] = \
GET_W_FROM_DATA (data, 13));
SHA2STEP32 (c, d, e, f, g, h, a, b, UINT32_C (0x9bdc06a7), W[14] = \
GET_W_FROM_DATA (data, 14));
SHA2STEP32 (b, c, d, e, f, g, h, a, UINT32_C (0xc19bf174), W[15] = \
GET_W_FROM_DATA (data, 15));
/* 'W' generation and assignment for 16 <= t <= 63.
See FIPS PUB 180-4 paragraph 6.2.2.
As only last 16 'W' are used in calculations, it is possible to
use 16 elements array of W as cyclic buffer.
* Note: ((t-16)&0xf) have same value as (t&0xf) */
#define Wgen(w,t) ( (w)[(t - 16) & 0xf] + sig1 ((w)[((t) - 2) & 0xf]) \
+ (w)[((t) - 7) & 0xf] + sig0 ((w)[((t) - 15) & 0xf]) )
/* During last 48 steps, before making any calculations on each step,
current W element is generated from other W elements of the cyclic buffer
and the generated value is stored back in the cyclic buffer. */
/* Note: instead of using K constants as array, all K values are specified
individually for each step, see FIPS PUB 180-4 paragraph 4.2.2 for K values. */
SHA2STEP32 (a, b, c, d, e, f, g, h, UINT32_C (0xe49b69c1), W[16 & 0xf] = \
Wgen (W,16));
SHA2STEP32 (h, a, b, c, d, e, f, g, UINT32_C (0xefbe4786), W[17 & 0xf] = \
Wgen (W,17));
SHA2STEP32 (g, h, a, b, c, d, e, f, UINT32_C (0x0fc19dc6), W[18 & 0xf] = \
Wgen (W,18));
SHA2STEP32 (f, g, h, a, b, c, d, e, UINT32_C (0x240ca1cc), W[19 & 0xf] = \
Wgen (W,19));
SHA2STEP32 (e, f, g, h, a, b, c, d, UINT32_C (0x2de92c6f), W[20 & 0xf] = \
Wgen (W,20));
SHA2STEP32 (d, e, f, g, h, a, b, c, UINT32_C (0x4a7484aa), W[21 & 0xf] = \
Wgen (W,21));
SHA2STEP32 (c, d, e, f, g, h, a, b, UINT32_C (0x5cb0a9dc), W[22 & 0xf] = \
Wgen (W,22));
SHA2STEP32 (b, c, d, e, f, g, h, a, UINT32_C (0x76f988da), W[23 & 0xf] = \
Wgen (W,23));
SHA2STEP32 (a, b, c, d, e, f, g, h, UINT32_C (0x983e5152), W[24 & 0xf] = \
Wgen (W,24));
SHA2STEP32 (h, a, b, c, d, e, f, g, UINT32_C (0xa831c66d), W[25 & 0xf] = \
Wgen (W,25));
SHA2STEP32 (g, h, a, b, c, d, e, f, UINT32_C (0xb00327c8), W[26 & 0xf] = \
Wgen (W,26));
SHA2STEP32 (f, g, h, a, b, c, d, e, UINT32_C (0xbf597fc7), W[27 & 0xf] = \
Wgen (W,27));
SHA2STEP32 (e, f, g, h, a, b, c, d, UINT32_C (0xc6e00bf3), W[28 & 0xf] = \
Wgen (W,28));
SHA2STEP32 (d, e, f, g, h, a, b, c, UINT32_C (0xd5a79147), W[29 & 0xf] = \
Wgen (W,29));
SHA2STEP32 (c, d, e, f, g, h, a, b, UINT32_C (0x06ca6351), W[30 & 0xf] = \
Wgen (W,30));
SHA2STEP32 (b, c, d, e, f, g, h, a, UINT32_C (0x14292967), W[31 & 0xf] = \
Wgen (W,31));
SHA2STEP32 (a, b, c, d, e, f, g, h, UINT32_C (0x27b70a85), W[32 & 0xf] = \
Wgen (W,32));
SHA2STEP32 (h, a, b, c, d, e, f, g, UINT32_C (0x2e1b2138), W[33 & 0xf] = \
Wgen (W,33));
SHA2STEP32 (g, h, a, b, c, d, e, f, UINT32_C (0x4d2c6dfc), W[34 & 0xf] = \
Wgen (W,34));
SHA2STEP32 (f, g, h, a, b, c, d, e, UINT32_C (0x53380d13), W[35 & 0xf] = \
Wgen (W,35));
SHA2STEP32 (e, f, g, h, a, b, c, d, UINT32_C (0x650a7354), W[36 & 0xf] = \
Wgen (W,36));
SHA2STEP32 (d, e, f, g, h, a, b, c, UINT32_C (0x766a0abb), W[37 & 0xf] = \
Wgen (W,37));
SHA2STEP32 (c, d, e, f, g, h, a, b, UINT32_C (0x81c2c92e), W[38 & 0xf] = \
Wgen (W,38));
SHA2STEP32 (b, c, d, e, f, g, h, a, UINT32_C (0x92722c85), W[39 & 0xf] = \
Wgen (W,39));
SHA2STEP32 (a, b, c, d, e, f, g, h, UINT32_C (0xa2bfe8a1), W[40 & 0xf] = \
Wgen (W,40));
SHA2STEP32 (h, a, b, c, d, e, f, g, UINT32_C (0xa81a664b), W[41 & 0xf] = \
Wgen (W,41));
SHA2STEP32 (g, h, a, b, c, d, e, f, UINT32_C (0xc24b8b70), W[42 & 0xf] = \
Wgen (W,42));
SHA2STEP32 (f, g, h, a, b, c, d, e, UINT32_C (0xc76c51a3), W[43 & 0xf] = \
Wgen (W,43));
SHA2STEP32 (e, f, g, h, a, b, c, d, UINT32_C (0xd192e819), W[44 & 0xf] = \
Wgen (W,44));
SHA2STEP32 (d, e, f, g, h, a, b, c, UINT32_C (0xd6990624), W[45 & 0xf] = \
Wgen (W,45));
SHA2STEP32 (c, d, e, f, g, h, a, b, UINT32_C (0xf40e3585), W[46 & 0xf] = \
Wgen (W,46));
SHA2STEP32 (b, c, d, e, f, g, h, a, UINT32_C (0x106aa070), W[47 & 0xf] = \
Wgen (W,47));
SHA2STEP32 (a, b, c, d, e, f, g, h, UINT32_C (0x19a4c116), W[48 & 0xf] = \
Wgen (W,48));
SHA2STEP32 (h, a, b, c, d, e, f, g, UINT32_C (0x1e376c08), W[49 & 0xf] = \
Wgen (W,49));
SHA2STEP32 (g, h, a, b, c, d, e, f, UINT32_C (0x2748774c), W[50 & 0xf] = \
Wgen (W,50));
SHA2STEP32 (f, g, h, a, b, c, d, e, UINT32_C (0x34b0bcb5), W[51 & 0xf] = \
Wgen (W,51));
SHA2STEP32 (e, f, g, h, a, b, c, d, UINT32_C (0x391c0cb3), W[52 & 0xf] = \
Wgen (W,52));
SHA2STEP32 (d, e, f, g, h, a, b, c, UINT32_C (0x4ed8aa4a), W[53 & 0xf] = \
Wgen (W,53));
SHA2STEP32 (c, d, e, f, g, h, a, b, UINT32_C (0x5b9cca4f), W[54 & 0xf] = \
Wgen (W,54));
SHA2STEP32 (b, c, d, e, f, g, h, a, UINT32_C (0x682e6ff3), W[55 & 0xf] = \
Wgen (W,55));
SHA2STEP32 (a, b, c, d, e, f, g, h, UINT32_C (0x748f82ee), W[56 & 0xf] = \
Wgen (W,56));
SHA2STEP32 (h, a, b, c, d, e, f, g, UINT32_C (0x78a5636f), W[57 & 0xf] = \
Wgen (W,57));
SHA2STEP32 (g, h, a, b, c, d, e, f, UINT32_C (0x84c87814), W[58 & 0xf] = \
Wgen (W,58));
SHA2STEP32 (f, g, h, a, b, c, d, e, UINT32_C (0x8cc70208), W[59 & 0xf] = \
Wgen (W,59));
SHA2STEP32 (e, f, g, h, a, b, c, d, UINT32_C (0x90befffa), W[60 & 0xf] = \
Wgen (W,60));
SHA2STEP32 (d, e, f, g, h, a, b, c, UINT32_C (0xa4506ceb), W[61 & 0xf] = \
Wgen (W,61));
SHA2STEP32 (c, d, e, f, g, h, a, b, UINT32_C (0xbef9a3f7), W[62 & 0xf] = \
Wgen (W,62));
SHA2STEP32 (b, c, d, e, f, g, h, a, UINT32_C (0xc67178f2), W[63 & 0xf] = \
Wgen (W,63));
/* Compute intermediate hash.
See FIPS PUB 180-4 paragraph 6.2.2 step 4. */
H[0] += a;
H[1] += b;
H[2] += c;
H[3] += d;
H[4] += e;
H[5] += f;
H[6] += g;
H[7] += h;
}
/**
* Process portion of bytes.
*
* @param ctx_ must be a `struct Sha256Ctx *`
* @param data bytes to add to hash
* @param length number of bytes in @a data
*/
void
MHD_SHA256_update (struct Sha256Ctx *ctx,
const uint8_t *data,
size_t length)
{
unsigned bytes_have; /**< Number of bytes in buffer */
mhd_assert ((data != NULL) || (length == 0));
if (0 == length)
return; /* Do nothing */
/* Note: (count & (SHA256_BLOCK_SIZE-1))
equals (count % SHA256_BLOCK_SIZE) for this block size. */
bytes_have = (unsigned) (ctx->count & (SHA256_BLOCK_SIZE - 1));
ctx->count += length;
if (0 != bytes_have)
{
unsigned bytes_left = SHA256_BLOCK_SIZE - bytes_have;
if (length >= bytes_left)
{ /* Combine new data with data in the buffer and
process full block. */
memcpy (((uint8_t *) ctx->buffer) + bytes_have,
data,
bytes_left);
data += bytes_left;
length -= bytes_left;
sha256_transform (ctx->H, ctx->buffer);
bytes_have = 0;
}
}
while (SHA256_BLOCK_SIZE <= length)
{ /* Process any full blocks of new data directly,
without copying to the buffer. */
sha256_transform (ctx->H, data);
data += SHA256_BLOCK_SIZE;
length -= SHA256_BLOCK_SIZE;
}
if (0 != length)
{ /* Copy incomplete block of new data (if any)
to the buffer. */
memcpy (((uint8_t *) ctx->buffer) + bytes_have, data, length);
}
}
/**
* Size of "length" padding addition in bytes.
* See FIPS PUB 180-4 paragraph 5.1.1.
*/
#define SHA256_SIZE_OF_LEN_ADD (64 / 8)
/**
* Finalise SHA256 calculation, return digest.
*
* @param ctx_ must be a `struct Sha256Ctx *`
* @param[out] digest set to the hash, must be #SHA256_DIGEST_SIZE bytes
*/
void
MHD_SHA256_finish (struct Sha256Ctx *ctx,
uint8_t digest[SHA256_DIGEST_SIZE])
{
uint64_t num_bits; /**< Number of processed bits */
unsigned bytes_have; /**< Number of bytes in buffer */
num_bits = ctx->count << 3;
/* Note: (count & (SHA256_BLOCK_SIZE-1))
equal (count % SHA256_BLOCK_SIZE) for this block size. */
bytes_have = (unsigned) (ctx->count & (SHA256_BLOCK_SIZE - 1));
/* Input data must be padded with a single bit "1", then with zeros and
the finally the length of data in bits must be added as the final bytes
of the last block.
See FIPS PUB 180-4 paragraph 5.1.1. */
/* Data is always processed in form of bytes (not by individual bits),
therefore position of first padding bit in byte is always
predefined (0x80). */
/* Buffer always have space at least for one byte (as full buffers are
processed immediately). */
((uint8_t *) ctx->buffer)[bytes_have++] = 0x80;
if (SHA256_BLOCK_SIZE - bytes_have < SHA256_SIZE_OF_LEN_ADD)
{ /* No space in current block to put total length of message.
Pad current block with zeros and process it. */
if (bytes_have < SHA256_BLOCK_SIZE)
memset (((uint8_t *) ctx->buffer) + bytes_have, 0,
SHA256_BLOCK_SIZE - bytes_have);
/* Process full block. */
sha256_transform (ctx->H, ctx->buffer);
/* Start new block. */
bytes_have = 0;
}
/* Pad the rest of the buffer with zeros. */
memset (((uint8_t *) ctx->buffer) + bytes_have, 0,
SHA256_BLOCK_SIZE - SHA256_SIZE_OF_LEN_ADD - bytes_have);
/* Put the number of bits in processed message as big-endian value. */
_MHD_PUT_64BIT_BE_SAFE (ctx->buffer + SHA256_BLOCK_SIZE_WORDS - 2, num_bits);
/* Process full final block. */
sha256_transform (ctx->H, ctx->buffer);
/* Put final hash/digest in BE mode */
#ifndef _MHD_PUT_32BIT_BE_UNALIGNED
if (0 != ((uintptr_t) digest) % _MHD_UINT32_ALIGN)
{
uint32_t alig_dgst[_SHA256_DIGEST_LENGTH];
_MHD_PUT_32BIT_BE (alig_dgst + 0, ctx->H[0]);
_MHD_PUT_32BIT_BE (alig_dgst + 1, ctx->H[1]);
_MHD_PUT_32BIT_BE (alig_dgst + 2, ctx->H[2]);
_MHD_PUT_32BIT_BE (alig_dgst + 3, ctx->H[3]);
_MHD_PUT_32BIT_BE (alig_dgst + 4, ctx->H[4]);
_MHD_PUT_32BIT_BE (alig_dgst + 5, ctx->H[5]);
_MHD_PUT_32BIT_BE (alig_dgst + 6, ctx->H[6]);
_MHD_PUT_32BIT_BE (alig_dgst + 7, ctx->H[7]);
/* Copy result to unaligned destination address */
memcpy (digest, alig_dgst, SHA256_DIGEST_SIZE);
}
else
#endif /* ! _MHD_PUT_32BIT_BE_UNALIGNED */
if (1)
{
/* Use cast to (void*) here to mute compiler alignment warnings.
* Compilers are not smart enough to see that alignment has been checked. */
_MHD_PUT_32BIT_BE ((void *) (digest + 0 * SHA256_BYTES_IN_WORD), ctx->H[0]);
_MHD_PUT_32BIT_BE ((void *) (digest + 1 * SHA256_BYTES_IN_WORD), ctx->H[1]);
_MHD_PUT_32BIT_BE ((void *) (digest + 2 * SHA256_BYTES_IN_WORD), ctx->H[2]);
_MHD_PUT_32BIT_BE ((void *) (digest + 3 * SHA256_BYTES_IN_WORD), ctx->H[3]);
_MHD_PUT_32BIT_BE ((void *) (digest + 4 * SHA256_BYTES_IN_WORD), ctx->H[4]);
_MHD_PUT_32BIT_BE ((void *) (digest + 5 * SHA256_BYTES_IN_WORD), ctx->H[5]);
_MHD_PUT_32BIT_BE ((void *) (digest + 6 * SHA256_BYTES_IN_WORD), ctx->H[6]);
_MHD_PUT_32BIT_BE ((void *) (digest + 7 * SHA256_BYTES_IN_WORD), ctx->H[7]);
}
/* Erase potentially sensitive data. */
memset (ctx, 0, sizeof(struct Sha256Ctx));
}
|