
Byzantine Fault Tolerant Set Reconciliation

Abstract
This document contains a protocol specification for Byzantine fault-tolerant Set Reconciliation.

Workgroup: Independent Stream
Internet-Draft: draft-summermatter-set-union-01
Published: 10 June 2021
Intended Status: Informational
Expires: 12 December 2021
Authors: E. Summermatter

Seccom GmbH
C. Grothoff
Berner Fachhochschule

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current
Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 December 2021.

https://datatracker.ietf.org/drafts/current/

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Summermatter & Grothoff Expires 12 December 2021 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Background

2.1. Bloom Filters

2.2. Counting Bloom Filter

3. Invertible Bloom Filter

3.1. Structure

3.2. Operations

3.2.1. Insert Element

3.2.2. Remove Element

3.2.3. Decode IBF

3.2.4. Set Difference

3.3. Wire format

3.3.1. ID Calculation

3.3.2. Mapping Function

3.3.3. HASH calculation

4. Strata Estimator

4.1. Description

5. Mode of Operation

5.1. Full Synchronisation Mode

5.2. Differential Synchronisation Mode

5.3. Combined Mode

6. Messages

6.1. Operation Request

6.1.1. Description

6.1.2. Structure

6.2. IBF

6.2.1. Description

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 2

6.2.2. Structure

6.3. IBF Last

6.3.1. Description

6.4. Element

6.4.1. Description

6.4.2. Structure

6.5. Offer

6.5.1. Description

6.5.2. Structure

6.6. Inquiry

6.6.1. Description

6.6.2. Structure

6.7. Demand

6.7.1. Description

6.7.2. Structure

6.8. Done

6.8.1. Description

6.8.2. Structure

6.9. Full Done

6.9.1. Description

6.9.2. Structure

6.10. Request Full

6.10.1. Description

6.10.2. Structure

6.11. Send Full

6.11.1. Description

6.11.2. Structure

6.12. Strata Estimator

6.12.1. Description

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 3

6.12.2. Structure

6.13. Strata Estimator Compressed

6.13.1. Description

6.14. Full Element

6.14.1. Description

6.14.2. Structure

7. Performance Considerations

7.1. Formulas

7.1.1. Operation Mode

7.1.2. IBF Size

7.1.3. Number of Buckets an Element is Hashed into

7.2. Variable Counter Size

7.3. Multi Strata Estimators

8. Security Considerations

8.1. General Security Check

8.1.1. Byzantine Boundaries

8.1.2. Valid State

8.1.3. Message Flow Control

8.1.4. Limit Active/Passive Decoding changes

8.1.5. Full Synchronisation Plausibility Check

8.2. States

8.2.1. Expecting IBF

8.2.2. Full Sending

8.2.3. Expecting IBF Last

8.2.4. Active Decoding

8.2.5. Finish Closing

8.2.6. Finished

8.2.7. Expect SE

8.2.8. Full Receiving

8.2.9. Passive Decoding

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 4

8.2.10. Finish Waiting

9. Constants

10. GANA Considerations

11. Contributors

12. Normative References

Appendix A. Test Vectors

A.1. Map Function

A.2. ID Calculation Function

A.3. Counter Compression Function

Authors' Addresses

1. Introduction
This document describes a byzantine fault tolerant set reconciliation protocol used to efficient
and securely compute the union of two sets across a network.

This byzantine fault tolerant set reconciliation protocol can be used in a variety of applications.
Our primary envisioned application domain is the distribution of revocation messages in the
GNU Name System (GNS) . In GNS, key revocation messages are usually flooded
across the peer-to-peer overlay network to all connected peers whenever a key is revoked.
However, as peers may be offline or the network might have been partitioned, there is a need to
reconcile revocation lists whenever network partitions are healed or peers go online. The GNU
Name System uses the protocol described in this specification to efficiently distribute revocation
messages whenever network partitions are healed. Another application domain for the protocol
described in this specification are Byzantine fault-tolerant bulletin boards, like those required in
some secure multiparty computations. A well-known example for secure multiparty
computations are various E-voting protocols which use a
bulletin board to share the votes and intermediate computational results. We note that for such
systems, the set reconciliation protocol is merely a component of a multiparty consensus
protocol, such as the one described in F.Dold's "Byzantine set-union consensus using efficient set
reconciliation" .

The protocol described in this report is generic and suitable for a wide range of applications. As a
result, the internal structure of the elements in the sets MUST be defined and verified by the
application using the protocol. This document thus does not cover the element structure, except
for imposing a limit on the maximum size of an element.

[GNS][GNS]

[CryptographicallySecureVoting]

[ByzantineSetUnionConsensusUsingEfficientSetReconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 5

The protocol faces an inherent trade-off between minimizing the number of network round-trips
and the number of bytes sent over the network. Thus, for the protocol to choose the right
parameters for a given situation, applications using the protocol SHOULD provide a parameter
that specifies the cost-ratio of round-trips vs. bandwidth usage. Given this trade-off factor, the
protocol will then choose parameters that minimize the total execution costs. In particular, there
is one major choice to be made, namely between sending the complete set of elements, or sending
only the elements that differ. In the latter case, our design is basically a concrete implementation
of a proposal by Eppstein.

We say that our set reconciliation protocol is Byzantine fault-tolerant because it provides
cryptographic and probabilistic methods to discover if the other peer is dishonest or misbehaving.

The objective here is to limit resources wasted on malicious actors. Malicious actors could send
malformed messages, including malformed set elements, claim to have much larger numbers of
valid set elements than they actually hold, or request the retransmission of elements that they
have already received in previous interactions. Bounding resources consumed by malicous
actors is important to ensure that higher-level protocols can use set reconciliation and still meet
their resource targets. This can be particularly critical in multi-round synchronous consensus
protocols where peers that cannot answer in a timely fashion would have to be treated as failed
or malicious.

To defend against some of these attacks, applications need to remember the number of elements
previously shared with a peer, and provide a way to check that elements are well-formed.
Applications may also be able to provide an upper bound on the total number of valid elements
that may exist. For example, in E-voting, the number of eligible voters could be used to provide
such an upper bound.

Initially, this RFC was created as part of Elias Summermatter's bachelor thesis. Many of the
algorithms and parameters documented in this RFC are derived in detail in this thesis.

This document defines the normative wire format of resource records, resolution processes,
cryptographic routines and security considerations for use by implementors. SETU requires a
bidirectional secure communication channel between the two parties. Specification of the
communication channel is out of scope of this document.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in .

[Eppstein]

[byzantine_fault_tolerant_set_reconciliation]

[RFC2119]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 6

2. Background

2.1. Bloom Filters
A Bloom filter (BF) is a space-efficient datastructure to test if an element is part of a set of
elements. Elements are identified by an element ID. Since a BF is a probabilistic datastructure, it
is possible to have false-positives: when asked if an element is in the set, the answer from a BF is
either "no" or "maybe".

A BF consists of L buckets. Every bucket is a binary value that can be either 0 or 1. All buckets are
initialized to 0. A mapping function M is used to map each ID of each element from the set to a
subset of k buckets. M is non-injective and can thus map the same element multiple times to the
same bucket. The type of the mapping function can thus be described by the following
mathematical notation:

A typical mapping function is constructed by hashing the element, for example using the well-
known .

To add an element to the BF, the corresponding buckets under the map M are set to 1. To check if
an element may be in the set, one tests if all buckets under the map M are set to 1.

Further in this document a bitstream output by the mapping function is represented by a set of
numeric values for example (0101) = (2,4). In the BF the buckets are set to 1 if the corresponding
bit in the bitstream is 1. If there is a collision and a bucket is already set to 1, the bucket stays 1.

Figure 1

 # M: E->B^k

 # L = Number of buckets
 # B = 0,1,2,3,4,...L-1 (the buckets)
 # k = Number of buckets per element
 # E = Set of elements

 Example: L=256, k=3
 M('element-data') = {4,6,255}

Section 2 of HKDF construction [RFC5869]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 7

https://rfc-editor.org/rfc/rfc5869#section-2

In the following example the element M(element) = (1,3) has been added:

It is easy to see that the M(element) = (0,3) could be in the BF below and M(element) = (0,2) cannot
be in the BF below:

The parameters L and k depend on the set size and MUST be chosen carefully to ensure that the
BF does not return too many false-positives.

It is not possible to remove an element from the BF because buckets can only be set to 1 or 0.
Hence it is impossible to differentiate between buckets containing one or more elements. To
remove elements from the BF a Counting Bloom Filter is required.

Figure 2

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 | 0 | 1 | 0 | 1 |
 +-------------+-------------+-------------+-------------+

Figure 3

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 | 1 | 0 | 0 | 1 |
 +-------------+-------------+-------------+-------------+

2.2. Counting Bloom Filter
A Counting Bloom Filter (CBF) is an extension of the Bloom Filters. In the CBF, buckets are
unsigned numbers instead of binary values. This allows the removal of an element from the CBF.

Adding an element to the CBF is similar to the adding operation of the BF. However, instead of
setting the bucket on hit to 1 the numeric value stored in the bucket is increased by 1. For example
if two colliding elements M(element1) = (1,3) and M(element2) = (0,3) are added to the CBF, bucket
0 and 1 are set to 1 and bucket 3 (the colliding bucket) is set to 2:

The counter stored in the bucket is also called the order of the bucket.

To remove an element form the CBF the counters of all buckets the element is mapped to are
decreased by 1.

Figure 4

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 | 1 | 1 | 0 | 2 |
 +-------------+-------------+-------------+-------------+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 8

Removing M(element2) = (1,3) from the CBF above:

In practice, the number of bits available for the counters is usually finite. For example, given a 4-
bit counter, a CBF bucket would overflow 16 elements are mapped to the same bucket. To
efficiently handle this case, the maximum value (15 in our example) is considered to represent
"infinity". Once the order of a bucket reaches "infinity", it is no longer incremented or
decremented.

The parameters L and k and the number of bits allocated to the counters depend on the set size.
An IBF will degenerate when subjected to insert and remove iterations of different elements, and
eventually all buckets will reach "infinity". The speed of the degradation will depend on the choice
of L and k in relation to the number of elements stored in the IBF.

Figure 5

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 | 1 | 0 | 0 | 1 |
 +-------------+-------------+-------------+-------------+

3. Invertible Bloom Filter
An Invertible Bloom Filter (IBF) is a further extension of the Counting Bloom Filter. An IBF
extends the Counting Bloom Filter with two more operations: decode and set difference. This two
extra operations are useful to efficiently extract small differences between large sets.

3.1. Structure
An IBF consists of a mapping function M and L buckets that each store a signed counter and an
XHASH. An XHASH is the XOR of various hash values. As before, the values used for k, L and the
number of bits used for the signed counter and the XHASH depend on the set size and various
other trade-offs, including the CPU architecture.

If the IBF size is too small or the mapping function does not spread out the elements uniformly,
the signed counter can overflow or underflow. As with the CBF, the "maximum" value is thus used
to represent "infinite". As there is no need to distinguish between overflow and underflow, the

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 9

most canonical representation of "infinite" would be the minimum value of the counter in the
canonical 2-complement interpretation. For example, given a 4-bit counter a value of -8 would be
used to represent "infinity".

Figure 6

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+-------
 count | COUNTER | COUNTER | COUNTER | COUNTER | C...
 +-------------+-------------+-------------+-------------+------
 idSum | IDSUM | IDSUM | IDSUM | IDSUM | I...
 +-------------+-------------+-------------+-------------+------
hashSum | HASHSUM | HASHSUM | HASHSUM | HASHSUM | H..
 +-------------+-------------+-------------+-------------+-------

3.2. Operations
When an IBF is created, all counters and IDSUM and HASHSUM values of all buckets are
initialized to zero.

3.2.1. Insert Element

To add an element to an IBF, the element is mapped to a subset of k buckets using the mapping
function M as described in the Bloom Filters section introducing BFs. For the buckets selected by
the mapping function, the counter is increased by one and the IDSUM field is set to the XOR of the
element ID and the previously stored IDSUM. Furthermore, the HASHSUM is set to the XOR of the
hash of the element ID and the previously stored HASHSUM.

In the following example, the insert operation is illustrated using an element with the ID 0x0102
and a hash of 0x4242, and a second element with the ID 0x0304 and a hash of 0x0101.

Empty IBF:

Figure 7

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 0 | 0 | 0 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0000 | 0x0000 | 0x0000 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x0000 | 0x0000 | 0x0000 |
 +-------------+-------------+-------------+-------------+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 10

Insert first element: [0101] with ID 0x0102 and hash 0x4242:

Insert second element: [1100] with ID 0x0304 and hash 0101:

Figure 8

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 1 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0102 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x4242 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Figure 9

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 2 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x0206 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x4343 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

3.2.2. Remove Element

To remove an element from the IBF the element is again mapped to a subset of the buckets using
M. Then all the counters of the buckets selected by M are reduced by one, the IDSUM is replaced
by the XOR of the old IDSUM and the ID of the element being removed, and the HASHSUM is
similarly replaced with the XOR of the old HASHSUM and the hash of the ID.

In the following example the remove operation for the element [1100] with the hash 0x0101 is
demonstrated.

IBF with encoded elements:

Figure 10

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 2 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x0206 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x4343 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 11

Remove element [1100] with ID 0x0304 and hash 0x0101 from the IBF:

Note that it is possible to "remove" elements from an IBF that were never present in the IBF in the
first place. A negative counter value is thus indicative of elements that were removed without
having been added. Note that an IBF bucket counter of zero no longer guarantees that an
element mapped to that bucket is not present in the set: a bucket with a counter of zero can be
the result of one element being added and a different element (mapped to the same bucket) being
removed. To check that an element is not present requires a counter of zero and an IDSUM and
HASHSUM of zero --- and some certainty that there was no collision due to the limited number of
bits in IDSUM and HASHSUM. Thus, IBFs are not suitable to replace BFs or IBFs.

Buckets in an IBF with a counter of 1 or -1 are crucial for decoding an IBF, as they might represent
only a single element, with the IDSUM being the ID of that element. Following Eppstein (CITE), we
will call buckets that only represent a single element pure buckets. Note that due to the possibility
of multiple insertion and removal operations affecting the same bucket, not all buckets with a
counter of 1 or -1 are actually pure buckets. Sometimes a counter can be 1 or -1 because N
elements mapped to that bucket were added while N-1 or N+1 different elements also mapped to
that bucket were removed.

Figure 11

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 1 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0102 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x4242 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

3.2.3. Decode IBF

Decoding an IBF yields the HASH of an element from the IBF, or failure.

A decode operation requires a pure bucket, that is a bucket to which M only mapped a single
element, to succeed. Thus, if there is no bucket with a counter of 1 or -1, decoding fails. However,
as a counter of 1 or -1 is not a guarantee that the bucket is pure, there is also a chance that the
decoder returns an IDSUM value that is actually the XOR of several IDSUMs. This is primarily
detected by checking that the HASHSUM is the hash of the IDSUM. Only if the HASHSUM also
matches, the bucket could be pure. Additionally, one MUST check that the IDSUM value actually
would be mapped by M to the respective bucket. If not, there was a hash collision.

The very rare case that after all these checks a bucket is still falsely identified as pure MUST be
detected (say by determining that extracted element IDs do not match any actual elements), and
addressed at a higher level in the protocol. As these failures are probabilistic and depend on
element IDs and the IBF construction, they can typically be avoided by retrying with different
parameters, such as a different way to assign element IDs to elements, using a larger value for L,

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 12

or a different mapping function M. A more common scenario (especially if L was too small) is
that IBF decoding fails because there is no pure bucket. In this case, the higher-level protocol
SHOULD also retry using different parameters.

Suppose the IBF contains a pure bucket. In this case, the IDSUM in the bucket identifies a single
element. Furthermore, it is then possible to remove that element from the IBF (by inserting it if
the counter was negative, and by removing it if the counter was positive). This is likely to cause
other buckets to become pure, allowing further elements to be decoded. Eventually, decoding
ought to succeed with all counters and IDSUM and HASHSUM values reach zero. However, it is
also possible that an IBF only partly decodes and then decoding fails after obtaining some
elements.

In the following example the successful decoding of an IBF containing the two elements
previously added in our running example.

IBF with the two encoded elements:

In the IBF are two pure buckets to decode (bit-1 and bit-4) we choose to start with decoding bucket
1, we decode the element with the hash 1010 and we see that there is a new pure bucket created
(bit-2)

Figure 12

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 2 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x0206 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x4343 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Figure 13

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 1 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0102 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x4242 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 13

In the IBF only pure buckets are left, we choose to continue decoding bucket 2 and decode
element with the hash 0x4242. Now the IBF is empty (all buckets have count 0) that means the IBF
has been successfully decoded.

Figure 14

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 0 | 0 | 0 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0000 | 0x0000 | 0x0000 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x0000 | 0x0000 | 0x0000 |
 +-------------+-------------+-------------+-------------+

3.2.4. Set Difference

Given addition and removal as defined above, it is possible to define an operation on IBFs that
computes an IBF representing the set difference. Suppose IBF1 represents set A, and IBF2
represents set B. Then this set difference operation will compute IBF3 which represents the set A -
B --- without having to transfer the elements from set A or B. To calculate the IBF representing this
set difference, both IBFs MUST have the same length L, the same number of buckets per element k
and use the same map M. Given this, one can compute the IBF representing the set difference by
taking the XOR of the IDSUM and HASHSUM values of the respective buckets and subtracting the
respective counters. Care MUST be taken to handle overflows and underflows by setting the
counter to "infinity" as necessary. The result is a new IBF with the same number of buckets
representing the set difference.

This new IBF can be decoded as described in section 3.2.3. The new IBF can have two types of pure
buckets with counter set to 1 or -1. If the counter is set to 1 the element is missing in the secondary
set, and if the counter is set to -1 the element is missing in the primary set.

To demonstrate the set difference operation we compare IBF-A with IBF-B and generate as
described IBF-AB

IBF-A containing elements with hashes 0x0101 and 0x4242:

Figure 15

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 2 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x0206 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x4343 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 14

IBF-B containing elements with hashes 0x4242 and 0x5050

IBF-AB XOR value and subtract count:

After calculating and decoding the IBF-AB shows clear that in IBF-A the element with the hash
0x5050 is missing (-1 in bit-3) while in IBF-B the element with the hash 0101 is missing (1 in bit-1
and bit-2). The element with hash 0x4242 is present in IBF-A and IBF-B and is removed by the set
difference operation (bit-4).

Figure 16

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 1 | 1 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0102 | 0x1345 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x4242 | 0x5050 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Figure 17

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 1 | -1 | 0 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x0304 | 0x1345 | 0x0000 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x0101 | 0x5050 | 0x0000 |
 +-------------+-------------+-------------+-------------+

3.3. Wire format
The counter size transmitted over the wire varies between 1 and 64 bit, depending on the
maximum counter in the IBF. This variable counter should cover most areas of application. The
bit length for the transmitted IBF is defined in the header of the IBF message in the "IMCS" field as
unsigned 8-bit integer. For implementation details see section Variable Counter Size.

For the "IDSUM", we always use a 64-bit representation. The IDSUM value MUST have sufficient
entropy for the mapping function M to yield reasonably random buckets even for very large
values of L. With a 32 bit value the chance that multiple elements may be mapped to the same ID
would be quite high, even for moderately large sets. Using more than 64 bits would at best make
sense for very large sets, but then it is likely always better to simply afford additional round trips
to handle the occasional collision. 64 bits are also a reasonable size for many CPU architectures.

For the "HASHSUM", we always use a 32-bit representation. Here, it is most important to avoid
collisions, where different elements are mapped to the same hash. However, we note that by
design only a few elements (certainly less than 127) should ever be mapped to the same bucket, a

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 15

small number of bits should suffice. Furthermore, our protocol is designed to handle occasional
collisions, so while with 32-bits there remains a chance of accidental collisions, at 32 bit the
chance is generally believed to be sufficiently small for the protocol to handle those cases
efficiently for a wide range of use-cases. Smaller hash values would safe bandwidth, but also
drastically increase the chance of collisions. 32 bits are also again a reasonable size for many CPU
architectures.

3.3.1. ID Calculation

The ID is generated as 64-bit output from a with HMAC-
SHA512 as XTR and HMAC-SHA256 as PRF and salt is set to the unsigned 64-bit equivalent of 0. The
output is then truncated to 64-bit. It is important that the elements can be redistributed over the
buckets in case the IBF does not decode. That is why the ID is salted with a random salt given in
the SALT field of this message. Salting is done by calculating a random salt modulo 64 (using only
the lowest 6-bits of the salt) and doing a bitwise right rotation of the output of KDF by the 6-bit
salts numeric representation.

Representation in pseudocode:

Section 2 of HKDF construction [RFC5869]

Figure 18

INPUTS:
key: Pre calculated and truncated key from id_calculation function
ibf_salt: Salt of the IBF
OUTPUT:
value: salted key
FUNCTION salt_key(key,ibf_salt):
 s = ibf_salt % 64;
 k = key

 /* rotate ibf key */
 k = (k >> s) | (k << (64 - k))
 return key

INPUTS:
element: Element to calculated id from.
salt: Salt of the IBF
OUTPUT:
value: the ID of the element

FUNCTION id_calculation (element,ibf_salt):
 salt = 0
 XTR=HMAC-SHA256
 PRF=HMAC-SHA256
 key = HKDF(XTR, PRF, salt, element)
 key = key modulo 2^64 // Truncate
 return salt_key(key,ibf_salt)

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 16

https://rfc-editor.org/rfc/rfc5869#section-2

3.3.2. Mapping Function

The mapping function M as described above in the figure Figure 1 decides in which buckets the ID
and HASH have to be binary XORed to. In practice the following algorithm is used:

The first index is simply the HASH modulo the IBF size. The second index is calculated by creating
a new 64-bit value by shifting the 32-bit value left and setting the lower 32-bit to the number of
indexes already processed. From the resulting 64-bit value a CRC32 checksum is created. The
second index is now the modulo of the CRC32 output, this is repeated until the predefined amount
of indexes is generated. In the case a index is hit twice, which would mean this bucket could not
get pure again, the second hit is just skipped and the next iteration is used.

Figure 19

INPUTS:
key: Is the ID of the element calculated in the id_calculation
function above.
number_of_buckets_per_element: Pre-defined numbers of buckets elements
are inserted into
ibf_size: the size of the ibf (count of buckets)
OUTPUT:
dst: Array with bucket IDs to insert ID and HASH

FUNCTION get_bucket_id (key, number_of_buckets_per_element, ibf_size)
 bucket = CRC32(key)

 i = 0
 filled = 0
 WHILE filled < number_of_buckets_per_element

 element_already_in_bucket = false
 j = 0
 WHILE j < filled
 IF dst[j] == bucket modulo ibf_size THEN
 element_already_in_bucket = true
 ENDIF
 j++
 ENDWHILE

 IF !element_already_in_bucket THEN
 dst[filled++] = bucket modulo ibf_size
 ENDIF

 x = (bucket << 32) | i
 bucket = CRC32(x)

 i++
 ENDWHILE
 return dst

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 17

3.3.3. HASH calculation

The HASH is calculated by calculating the CRC32 checksum of the 64-bit ID value which returns a
32-bit value.

4. Strata Estimator

4.1. Description
Strata Estimators help estimate the size of the set difference between two sets of elements. This is
necessary to efficiently determinate the tuning parameters for an IBF, in particular a good value
for L.

Basically a Strata Estimator (SE) is a series of IBFs (with a rather small value of L) in which
increasingly large subsets of the full set of elements are added to each IBF. For the n-th IBF, the
function selecting the subset of elements MUST sample to select (probabilistically) 1/(2^n) of all
elements. This can be done by counting the number of trailing bits set to "1" in an element ID, and
then inserting the element into the IBF identified by that counter. As a result, all elements will be
mapped to one IBF, with the n-th IBF being statistically expected to contain 1/(2^n) elements.

Given two SEs, the set size difference can be estimated by trying to decode all of the IBFs. Given
that L was set to a rather small value, IBFs containing large strata will likely fail to decode. For
those IBFs that failed to decode, one simply extrapolates the number of elements by scaling the
numbers obtained from the other IBFs that did decode. If none of the IBFs of the SE decoded
(which given a reasonable choice of L should be highly unlikely), one can retry using a different
mapping function M.

In addition, when decoding the IBFs in the strata estimator, it is possible to determine on which
side which part of the difference is. For this purpose, the pure buckets with counter 1 and -1 must
be distinguished and assigned to the respective side when decoding the IBFs.

5. Mode of Operation
The set union protocol uses IBFs and SEs as primitives. Depending on the state of the two sets
there are different strategies or operation modes how to efficiently determinate missing elements
between the two sets.

The simplest mode is the "full" synchronisation mode. The idea is that if the difference between
the sets of the two peers exceeds a certain threshold, the overhead to determine which elements
are different outweighs the overhead of sending the complete set. In this case, the most efficient
method can be just to exchange the full sets.

Link to the statemachine diagram

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 18

https://git.gnunet.org/lsd0003.git/plain/statemachine/full_state_machine.png

The second possibility is that the difference of the sets is small compared to the set size. In this
case, an efficient "differential" synchronisation mode is more efficient. These two possibilities
given, the first steps of the protocol are used to determine which mode MUST be used.

Thus, the set synchronisation protocol always begins with the following operation mode
independent steps.

The initiating peer begins in the Initiating Connection state and the receiving peer in the
Expecting Connection state. The first step for the initiating peer in the protocol is to send an
Operation Request to the receiving peer and transition into the Expect SE state. After receiving
the Operation Request the receiving peer transitions to the Expecting IBF state and answers with
the Strata Estimator message. When the initiating peer receives the Strata Estimator message, it
decides with some heuristics which operation mode is likely more suitable for the estimated set
difference and the application-provided latency-bandwidth tradeoff. The detailed tradeoff
between the Full Synchronisation Mode and the Differential Synchronisation Mode is explained
in the section Combined Mode.

Expecting IBF:

Full Sending:

Full Receiving:

5.1. Full Synchronisation Mode
When the initiating peer decides to use the full synchronisation mode and it is better that the
other peer sends his set first, the initiating peer sends a Request Full message, and transitions
from Expecting SE to the Full Receiving state. If it has been determined that it is better that the
initiating peer sends his set first, the initiating peer sends a Send Full message followed by all set
elements in Full Element messages to the other peer, followed by the Full Done message, and
transitions into the Full Sending state.

Link to the statemachine diagram

The behavior of the participants the different state is described below:

If a peer in the Expecting IBF state receives a Request Full message from the
other peer, the peer sends all the elements of his set followed by a Full Done message to the
other peer, and transitions to the Full Sending state. If the peer receives an Send Full
message followed by Full Element messages, the peer processes the element and transitions
to the Full Receiving state.

While a peer is in Full Sending state the peer expects to continuously receive
elements from the other peer. As soon as a the Full Done message is received, the peer
transitions into the Finished state.

While a peer is in the Full Receiving state, it expects to continuously receive
elements from the other peer. As soon as a the Full Done message is received, it sends the
remaining elements (those it did not receive) from his set to the other peer, followed by a
Full Done. After sending the last message, the peer transitions into the Finished state.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 19

https://git.gnunet.org/lsd0003.git/plain/statemachine/state_machine_full.png

Passive Decoding:

Inquiry message:

Demand message:

Offer message:

5.2. Differential Synchronisation Mode
When the initiating peer in the Expected SE state decides to use the differential synchronisation
mode, it sends a IBF to the receiving peer and transitions into the Passive Decoding state.

The receiving peer in the Expecting IBF state receives the IBF message from the initiating peer
and transitions into the Expecting IBF Last state when there are multiple IBF messages to sent,
when there is just a single IBF message the receiving peer transitions directly to the Active
Decoding state.

The peer that is in the Active Decoding, Finish Closing or in the Expecting IBF Last state is
called the active peer and the peer that is in either the Passive Decoding or the Finish Waiting
state is called the passive peer.

Link to the statemachine diagram

The behavior of the participants the different states is described below:

In the Passive Decoding state the passive peer reacts to requests from the
active peer. The action the passive peer executes depends on the message the passive peer
receives in the Passive Decoding state from the active peer and is described below on a
per message basis.

The Inquiry message is received if the active peer requests the SHA-512
hash of one or more elements (by sending the 64 bit element ID) that are missing
from the active peer's set. In this case the passive peer answers with Offer messages
which contain the SHA-512 hash of the requested element. If the passive peer does
not have an element with a matching element ID, it MUST ignore the inquiry. If
multiple elements match the 64 bit element ID, the passive peer MUST send offers for
all of the matching elements.

The Demand message is received if the active peer requests a complete
element that is missing in the active peers set. If the requested element is valid the
passive peer answers with an Element message which contains the full, application-
dependent data of the requested element. If the passive peer receives a demand for a
SHA-512 hash for which it has no element, a protocol violation is detected and the
protocol MUST be aborted. Implementations MAY strengthen this and forbid
demands without previous matching offers.

The Offer message is received if the active peer has decoded an element
that is present in the active peers set and may be missing in the set of the passive
peer. If the SHA-512 hash of the offer is indeed not a hash of any of the elements from
the set of the passive peer, the passive peer MUST answer with a Demand message for
that SHA-512 hash and remember that it issued this demand. The send demand need
to be added to a list with unsatisfied demands.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 20

https://git.gnunet.org/lsd0003.git/plain/statemachine/differential_state_machine.png

Element message:

IBF message:

IBF Last message:

Done message:

Active Decoding:

Offer message:

When a new Element message has been received the peer checks if a
corresponding Demand for the element has been sent and the demand is still
unsatisfied. If the element has been demanded the peer checks the element for
validity, removes it from the list of pending demands and then saves the element to
the set otherwise the peer rejects the element.

If an IBF message is received, this indicates that decoding of the IBF on the
active site has failed and roles will be swapped. The receiving passive peer
transitions into the Expecting IBF Last state, and waits for more IBF messages or
the final IBF Last message to be received.

If an IBF Last message is received this indicates that there is just one
IBF slice left and a direct state and role transition from Passive Decoding to Active
Decoding is initiated.

Receiving the Done message signals the passive peer that all demands of
the active peer have been satisfied. Alas, the active peer will continue to process
demands from the passive peer. Upon receiving this message, the passive peer
transitions into the Finish Waiting state.

In the Active Decoding state the active peer decodes the IBFs and evaluates
the set difference between the active and passive peer. Whenever an element ID is obtained
by decoding the IBF, the active peer sends either an offer or an inquiry to the passive peer,
depending on which site the decoded element is missing.

If the IBF decodes a positive (1) pure bucket, the element is missing on the passive peers
site. Thus the active peer sends an Offer to the passive peer. A negative (-1) pure bucket
indicates that an element is missing in the active peers set, so the active peer sends a
Inquiry to the passive peer.

In case the IBF does not successfully decode anymore, the active peer sends a new IBF to
the passive peer and changes into Passive Decoding state. This initiates a role swap. To
reduce overhead and prevent double transmission of offers and elements the new IBF is
created on the new complete set after all demands and inquiries have been satisfied.

As soon as the active peer successfully finished decoding the IBF, the active peer sends a
Done message to the passive peer.

All other actions taken by the active peer depend on the message the active peer receives
from the passive peer. The actions are described below on a per message basis:

The Offer message indicates that the passive peer received a Inquiry
message from the active peer. If a inquiry has been sent and the offered element is
missing in the active peers set, the active peer sends a Demand message to the
passive peer. The sent demand needs to be added to a list with unsatisfied demands.
In case the received offer is for an element that is already in the set of the peer the
offer is ignored.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 21

Demand message:

Element message:

Done message:

Expecing IBF Last

Finish Closing / Finish Waiting

The Demand message indicates that the passive peer received a Offer
from the active peer. The active peer satisfies the demand of the passive peer by
sending Element message if a offer request for the element has been sent. In case the
demanded element does not exist in the set, there was probably a bucket decoded
that was not pure. Potentially all Offer and Demand messages sent later are invalid.
In this case a role change active -> passive with a new IBF is easiest.

An element that is received is marked in the list of demanded elements
as satisfied, validated and saved and no further action is taken. Elements that are
not demanded or already known are discarded.

Receiving the message Done indicates that all demands of the passive peer
have been satisfied. The active peer then changes into the Finish Closing state. If the
IBF has not finished decoding and the Done is received, the other peer is not in
compliance with the protocol and the set reconciliation MUST be aborted.

In the Expecing IBF Last state the active peer continuously receives IBF
messages from the passive peer. When the last IBF Last message is received the active peer
changes into Active Decoding state.

In this states the peers are waiting for all demands to be
satisfied and for the synchronisation to be completed. When all demands are satisfied the
peer changes into Finishedstate.

5.3. Combined Mode
In the combined mode the Full Synchronisation Mode and the Differential Synchronisation Mode
are combined to minimize resource consumption.

The Differential Synchronisation Mode is only efficient on small set differences or if the byte-size
of the elements is large. If the set difference is estimated to be large the Full Synchronisation
Mode is more efficient. The exact heuristics and parameters on which the protocol decides which
mode MUST be used are described in the Performance Considerations section of this document.

There are two main cases when a Full Synchronisation Mode is always used. The first case is when
one of the peers announces having an empty set. This is announced by setting the SETSIZE field in
the Strata Estimator to 0. The second case is if the application requests full synchronisation
explicitly. This is useful for testing and MUST NOT be used in production.

Link to statemachine diagram

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 22

https://git.gnunet.org/lsd0003.git/plain/statemachine/full_state_machine.png

6. Messages

6.1. Operation Request
6.1.1. Description

This message is the first message of the protocol and it is sent to signal to the receiving peer that
the initiating peer wants to initialize a new connection.

This message is sent in the transition between the Initiating Connection state and the Expect SE
state.

If a peer receives this message and is willing to run the protocol, it answers by sending back a
Strata Estimator message. Otherwise it simply closes the connection.

MSG SIZE

MSG TYPE

ELEMENT COUNT

APX

6.1.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and header included.

the type of SETU_P2P_OPERATION_REQUEST as registered in GANA Considerations, in
network byte order.

is the number of the elements the requesting party has in its set, as a 32-bit
unsigned integer in network byte order.

is a SHA-512 hash that identifies the application.

Figure 20

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | ELEMENT COUNT |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | APX
 +-----+-----+-----+-----+-----+-----+-----+-----
+ /
 / /
 / /

6.2. IBF
6.2.1. Description

The IBF message contains a slice of the IBF.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 23

The IBF message is sent at the start of the protocol from the initiating peer in the transaction
between Expect SE -> Expecting IBF Last or when the IBF does not decode and there is a role
change in the transition between Active Decoding -> Expecting IBF Last. This message is only
sent if there are more than one IBF slice to be sent, in case there is just one slice the IBF Last
message is sent.

MSG SIZE

MSG TYPE

IBF SIZE

IMCS

OFFSET

SALT

IBF-SLICE

6.2.2. Structure

where:

is a 16-bit unsigned integer in network byte orderwhichdescribes the message size in
bytes and header included.

the type of SETU_P2P_REQUEST_IBF as registered in GANA Considerations in network
byte order.

is a 32-bit unsigned integer which signals the number of buckets in the IBF.

IBF max counter size is a 8-bit unsigned integer, which describes the number of bit that is
required to store a single counter. This is used for the unpacking function as described in
the Variable Counter Size section.

is a 32-bit unsigned integer which signals the offset to the following ibf slices in the
original.

is a 32-bit unsigned integer that contains the salt which was used to create the IBF.

are variable numbers of slices in an array. A single slice contains multiple 64-bit
IDSUMS, 32-bit HASHSUMS and 1-64bit COUNTERS of variable size. In the network order the
array of IDSUMS is first, followed by an array of HASHSUMS and ended with an array of
COUNTERS (details are described in section Section 7.2). Length of the array is defined by
MIN(SIZE - OFFSET, MAX_BUCKETS_PER_MESSAGE). MAX_BUCKETS_PER_MESSAGE is
defined as 32768 divided by the BUCKET_SIZE which is 13-byte (104-bit). The minimal
number of buckets in a single IBF is 79.

To get the IDSUM field, all IDs hitting a bucket are added up with a binary XOR operation.
See ID Calculation details about ID generation.

Figure 21

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | IBF SIZE |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 |IMCS | OFFSET | SALT |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IBF-SLICE
 +----- /
 / /
 / /

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 24

The calculation of the HASHSUM field is done accordingly to the calculation of the IDSUM
field: all HASHes are added up with a binary XOR operation. The HASH value is calculated
as described in detail in section HASH calculation.

The algorithm to find the correct bucket in which the ID and the HASH have to be added is
described in detail in section Mapping Function.

Test vectors for an implementation can be found in the Test Vectors section

Figure 22

 IBF-SLICE
 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IDSUMS |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IDSUMS |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | HASHSUMS | HASHSUMS |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | COUNTERS* | COUNTERS* |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /
* Counter size is variable. In this example the size is 32-bit (4-byte)

6.3. IBF Last
6.3.1. Description

This message indicates the remote peer that all slices of the bloom filter have been sent. The
binary structure is exactly the same as the Structure of the message IBF with a different "MSG
TYPE" which is defined in GANA Considerations "SETU_P2P_IBF_LAST".

Receiving this message initiates the state transmissions Expecting IBF Last -> Active Decoding,
Expecting IBF -> Active Decoding and Passive Decoding -> Active Decoding. This message can
initiate a peer the roll change from Active Decoding to Passive Decoding.

6.4. Element
6.4.1. Description

The Element message contains an element that is synchronized in the Differential
Synchronisation Mode and transmits a full element between the peers.

This message is sent in the state Active Decoding and Passive Decoding as answer to a Demand
message from the remote peer. The Element message can also be received in the Finish Closing or
Finish Waiting state after receiving a Done message from the remote peer, in this case the peer
changes to the Finished state as soon as all demands for elements have been satisfied.

This message is exclusively sent in the Differential Synchronisation Mode.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 25

MSG SIZE

MSG TYPE

E TYPE

PADDING

E SIZE

AE TYPE

DATA

6.4.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and header included.

the type of SETU_P2P_ELEMENTS as registered in GANA Considerations in network
byte order.

element type is a 16-bit unsigned integer which defines the element type for the
application.

is 16-bit always set to zero

element size is a 16-bit unsigned integer that signals the size of the elements data part.

application specific element type is a 16-bit unsigned integer that is needed to identify
the type of element that is in the data field

is a field with variable length that contains the data of the element.

Figure 23

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | E TYPE | PADDING |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | E SIZE | AE TYPE | DATA
 +-----+-----+-----+-----+ /
 / /
 / /

6.5. Offer
6.5.1. Description

The Offer message is an answer to an Inquiry message and transmits the full hash of an element
that has been requested by the other peer. This full hash enables the other peer to check if the
element is really missing in his set and eventually sends a Demand message for that element.

The offer is sent and received only in the Active Decoding and in the Passive Decoding state.

This message is exclusively sent in the Differential Synchronisation Mode.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 26

MSG SIZE

MSG TYPE

HASH

6.5.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes header included.

the type of SETU_P2P_OFFER as registered in GANA Considerations in network byte
order.

is a SHA 512-bit hash of the element that is requested with a Inquiry message.

Figure 24

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | HASH
 +-----+-----+-----+-----+
 / /
 / /

6.6. Inquiry
6.6.1. Description

The Inquiry message is exclusively sent by the active peer in Active Decoding state to request the
full hash of an element that is missing in the active peers set. This is normally answered by the
passive peer with Offer message.

This message is exclusively sent in the Differential Synchronisation Mode.

MSG SIZE

6.6.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and header included.

Figure 25

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | SALT |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IBF KEY |
 +-----+-----+-----+-----+-----+-----+-----+-----+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 27

MSG TYPE

IBF KEY

the type of SETU_P2P_INQUIRY as registered in GANA Considerations in network byte
order.

is a 64-bit unsigned integer that contains the key for which the inquiry is sent.

6.7. Demand
6.7.1. Description

The Demand message is sent in the Active Decoding and in the Passive Decoding state. It is an
answer to a received Offer message and is sent if the element described in the Offer message is
missing in the peers set. In the normal workflow the answer to the Demand message is an Element
message.

This message is exclusively sent in the Differential Synchronisation Mode.

MSG SIZE

MSG TYPE

HASH

6.7.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and the header is included.

the type of SETU_P2P_DEMAND as registered in GANA Considerations in network
byte order.

is a 512-bit Hash of the element that is demanded.

Figure 26

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | HASH
 +-----+-----+-----+-----+
 / /
 / /

6.8. Done
6.8.1. Description

The Done message is sent when all Demand messages have been successfully satisfied and the set
is complete synchronized.

This message is exclusively sent in the Differential Synchronisation Mode.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 28

MSG SIZE

MSG TYPE

6.8.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and header included.

the type of SETU_P2P_DONE as registered in GANA Considerations in network byte
order.

Figure 27

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE |
 +-----+-----+-----+-----+-----+-----+-----+-----+

6.9. Full Done
6.9.1. Description

The Full Done message is sent in the Full Synchronisation Mode to signal that all remaining
elements of the set have been sent. The message is received and sent in the Full Sending and in
the Full Receiving state. When the Full Done message is received in Full Sending state the peer
changes directly into Finished state. In Full Receiving state receiving a Full Done message
initiates the sending of the remaining elements that are missing in the set of the other peer.

MSG SIZE

MSG TYPE

6.9.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and header included.

the type of SETU_P2P_FULL_DONE as registered in GANA Considerations in network
byte order.

Figure 28

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE |
 +-----+-----+-----+-----+-----+-----+-----+-----+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 29

6.10. Request Full
6.10.1. Description

The Request Full message is sent by the initiating peer in Expect SE state to the receiving peer, if
the operation mode "Full Synchronisation Mode" is determined to be the superior Mode of
Operation and that it is the better choice that the other peer sends his elements first. The initiating
peer changes after sending the Request Full message into Full Receiving state.

The receiving peer receives the Request Full message in the Expecting IBF, afterwards the
receiving peer starts sending his complete set in Full Element messages to the initiating peer.

MSG SIZE

MSG TYPE

REMOTE SET DIFF

REMOTE SET SIZE

LOCAL SET DIFF

6.10.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and header included.

the type of SETU_P2P_REQUEST_FULL as registered in GANA Considerations in
network byte order.

is a 32-bit unsigned integer in network byte order, which represents the
remote (from the perspective of the sending peer) set difference calculated with strata
estimator.

is a 32-bit unsigned integer in network byte order, which represents the total
remote (from the perspective of the sending peer) set size.

is a 32-bit unsigned integer in network byte order, which represents the local
(from the perspective of the sending peer) set difference calculated with strata estimator.

Figure 29

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | REMOTE SET DIFF |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | REMOTE SET SIZE | LOCAL SET DIFF |
 +-----+-----+-----+-----+-----+-----+-----+-----+

6.11. Send Full
6.11.1. Description

The Send Full message is sent by the initiating peer in Expect SE state to the receiving peer if the
operation mode "Full Synchronisation Mode" is determined as superior Mode of Operation and
that it is the better choice that the peer sends his elements first. The initiating peer changes after
sending the Request Full message into Full Sending state.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 30

The receiving peer receives the Send Full message in the Expecting IBF state, afterwards the
receiving peer changes into Full Receiving state and expects to receive the set of the remote peer.

MSG SIZE

MSG TYPE

REMOTE SET DIFF

REMOTE SET SIZE

LOCAL SET DIFF

6.11.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and header included.

the type of SETU_P2P_REQUEST_FULL as registered in GANA Considerations in
network byte order.

is a 32-bit unsigned integer in network byte order, which represents the
remote (from the perspective of the sending peer) set difference calculated with strata
estimator.

is a 32-bit unsigned integer in network byte order, which represents the total
remote (from the perspective of the sending peer) set size.

is a 32-bit unsigned integer in network byte order, which represents the local
(from the perspective of the sending peer) set difference calculated with strata estimator.

Figure 30

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | REMOTE SET DIFF |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | REMOTE SET SIZE | LOCAL SET DIFF |
 +-----+-----+-----+-----+-----+-----+-----+-----+

6.12. Strata Estimator
6.12.1. Description

The strata estimator is sent by the receiving peer at the start of the protocol, right after the
Operation Request message has been received.

The strata estimator is used to estimate the difference between the two sets as described in
section 4.

When the initiating peer receives the strata estimator, the peer decides which Mode of Operation
to use for the synchronisation. Depending on the size of the set difference and the Mode of
Operation the initiating peer changes into Full Sending, Full Receiving or Passive Decoding
state.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 31

The Strata Estimator message can contain one, two, four or eight strata estimators with different
salts, depending on the initial size of the sets. More details can be found in section Multi Strata
Estimators.

The IBFs in a strata estimator always have 79 buckets. The reason why can be found in
Summermatter's work. [byzantine_fault_tolerant_set_reconciliation]

MSG SIZE

MSG TYPE

SEC

SETSIZE

SE-SLICES

6.12.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and header included.

the type of SETU_P2P_SE as registered in GANA Considerations in network byte order.

is a 8-bit unsigned integer in networkf byte order, which indicates how many strata
estimators with different salts are attached to the message. Valid values are 1,2,4 or 8, more
details can be found in the section Multi Strata Estimators.

is a 64-bit unsigned integer that is defined by the size of the set the SE is

is variable in size and contains the same structure as the IBF-SLICES field in the IBF
message.

Figure 31

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | SEC | SETSIZE
 +-----+-----+-----+-----+-----+-----+-----+-----+
 SETSIZE | SE-SLICES
 +-----+-----+-----+-----+
 / /
 / /

6.13. Strata Estimator Compressed
6.13.1. Description

The Strata estimator can be compressed with gzip to improve performance. This can be
recognized by the different message type number from GANA Considerations.

Since the content of the message is the same as the uncompressed Strata Estimator, the details are
not repeated here. For details see section 6.12.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 32

6.14. Full Element
6.14.1. Description

The Full Element message is the equivalent of the Element message in the Full Synchronisation
Mode. It contains a complete element that is missing in the set of the peer that receives this
message.

The Full Element message is exclusively sent in the transitions Expecting IBF -> Full Receiving
and Full Receiving -> Finished. The message is only received in the Full Sending and Full
Receiving state.

After the last Full Element message has been sent, the Full Done message is sent to conclude the
full synchronisation of the element sending peer.

MSG SIZE

MSG TYPE

E TYPE

PADDING

E SIZE

AE TYPE

DATA

6.14.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and header included.

the type of SETU_P2P_REQUEST_FULL_ELEMENT as registered in GANA
Considerations in network byte order.

element type is a 16-bit unsigned integer which defines the element type for the
application.

is 16-bit always set to zero

element size is a 16-bit unsigned integer that signals the size of the elements data part.

application specific element type is a 16-bit unsigned integer that is needed to identify
the type of element that is in the data field

is a field with variable length that contains the data of the element.

Figure 32

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | E TYPE | PADDING |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | SIZE | AE TYPE | DATA
 +-----+-----+-----+-----+
 / /
 / /

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 33

7. Performance Considerations

7.1. Formulas
7.1.1. Operation Mode

The decision which Mode of Operation is used is described by the following code. The function is
complex. More detailed explanations can be found in the accompanying thesis.

The function takes as input the average element size, the local setsize, the remote setsize, the by
the strata estimator calculated difference for local and remote set and the bandwith/roundtrips
tradeoff. The function returns the exact Mode of Operation as output:
FULL_SYNC_REMOTE_SENDING_FIRST if it is optimal that the other peer transmits his elements
first, FULL_SYNC_LOCAL_SENDING_FIRST if it is optimal that the elements are transmitted to the
other peer directly and DIFFERENTIAL_SYNC if the differential synchronisation is optimal.

[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 34

The constant IBF_BUCKET_NUMBER_FACTOR is always 3 and IBF_MIN_SIZE is 37. The method for
deriving this can be found in Summermatter's work.
[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 35

CONSTANTS:
IBF_BUCKET_NUMBER_FACTOR = 2: The amount the IBF gets increased if
decoding fails
RTT_MIN_FULL = 2: Minimal round trips used for full syncronisation
(always 2 or 2.5)
IBF_MIN_SIZE = 37: The minimal size of an IBF
MAX_BUCKETS_PER_MESSAGE: Custom value depending on the underlying
protocol
INPUTS:
avg_element_size: The average element size
local_set_size: The initial local setsize
remote_set_size: The remote setsize
est_local_set_diff: the estimated local set difference calculated by
the strata estimator
est_remote_set_diff: the estimated remote set difference calculated by
the strata estimator
rtt_tradeoff: the tradeoff between round trips and bandwidth defined
by the use case
OUTPUTS:
returns: the decision (FULL_SYNC_REMOTE_SENDING_FIRST,
FULL_SYNC_LOCAL_SENDING_FIRST, DIFFERENTIAL_SYNC)

FUNCTION decide_operation_mode(avg_element_size,
 local_set_size,
 remote_set_size,
 est_local_set_diff
 est_remote_set_diff,
 rtt_tradeoff)
 IF (0 == local_set_size)
 RETURN FULL_SYNC_REMOTE_SENDING_FIRST
 IF END
 IF (0 == remote_set_size)
 RETURN FULL_SYNC_LOCAL_SENDING_FIRST
 IF END

 estimated_total_diff = est_set_diff_remote + est_local_set_diff

 total_elements_to_send_local_send_first = est_remote_set_diff +
local_set_size;

 total_bytes_full_local_send_first = (avg_element_size *
total_elements_to_send_local_send_first)
 +
(total_elements_to_send_local_send_first * sizeof(ELEMENT_MSG_HEADER))
 +
(sizeof(FULL_DONE_MSG_HEADER) * 2)
 + RTT_MIN_FULL *
rtt_tradeoff

 total_elements_to_send_remote_send_first = est_local_set_diff +
remote_set_size

 total_bytes_full_remote_send_first = (avg_element_size *
total_elements_to_send_remote_send_first)
 +
(total_elements_to_send_remote_send_first * sizeof(ELEMENT_MSG_HEADER))
 +

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 36

Figure 33

(sizeof(FULL_DONE_MSG_HEADER) * 2)
 + (RTT_MIN_FULL + 0.5) *
rtt_tradeoff
 +
sizeof(REQUEST_FULL_MSG)

 ibf_bucket_count = estimated_total_diff * IBF_BUCKET_NUMBER_FACTOR

 IF (ibf_bucket_count <= IBF_MIN_SIZE)
 ibf_bucket_count = IBF_MIN_SIZE
 END IF

 ibf_message_count = ceil (ibf_bucket_count /
MAX_BUCKETS_PER_MESSAGE);

 estimated_counter_size = MIN (
 2 * LOG2(local_set_size /
ibf_bucket_count),
 LOG2(local_set_size)
)
 counter_bytes = estimated_counter_size / 8

 ibf_bytes = sizeof(IBF_MESSAGE) * ibf_message_count * 1.2
 + ibf_bucket_count * sizeof(IBF_KEY) * 1.2
 + ibf_bucket_count * sizeof(IBF_KEYHASH) * 1.2
 + ibf_bucket_count * counter_bytes * 1.2

 element_size = (avg_element_size + sizeof(ELEMENT_MSG_HEADER)) *
estimated_total_diff
 done_size = sizeof(DONE_HEADER)
 inquery_size = (sizeof(IBF_KEY) + sizeof(INQUERY_MSG_HEADER)) *
estimated_total_diff
 demand_size = (sizeof(HASHCODE) + sizeof(DEMAND_MSG_HEADER)) *
estimated_total_diff;
 offer_size = (sizeof(HASHCODE) + sizeof(OFFER_MSG_HEADER)) *
estimated_total_diff;

 total_bytes_diff = (element_size + done_size + inquery_size
 + demand_size + offer_size + ibf_bytes)
 + DIFFERENTIAL_RTT_MEAN * rtt_tradeoff

 full_min = MIN (total_bytes_full_local_send_first,
 total_bytes_full_local_send_first)
 IF (full_min < total_bytes_diff)
 IF (total_bytes_full_remote_send_first >
total_bytes_full_local_send_first)
 RETURN FULL_SYNC_LOCAL_SENDING_FIRST
 ELSE
 RETURN FULL_SYNC_REMOTE_SENDING_FIRST
 END IF
 ELSE
 RETURN DIFFERENTIAL_SYNC
 IF END

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 37

7.1.2. IBF Size

The functions, described in this section, calculate the optimal initial size (initial_ibf_size) and in
case of decoding failure, the optimal next bigger IBF size (get_next_ibf_size).

These algorithms are described and justified in more details in the following work
.[byzantine_fault_tolerant_set_reconciliation]

Figure 34

CONSTANTS:
IBF_BUCKET_NUMBER_FACTOR = 2: The amount the IBF gets increased if
decoding fails
Inputs:
set_difference: Estimated set difference
Output:
next_size: Size of the initial IBF

FUNCTION initial_ibf_size(set_difference)
 return MAX(37, IBF_BUCKET_NUMBER_FACTOR * set_difference);
FUNCTION END

CONSTANTS:
IBF_BUCKET_NUMBER_FACTOR = 2: The amount the IBF gets increased if
decoding fails
Inputs:
decoded_elements: Number of elements that have been successfully
decoded
last_ibf_size: The number of buckets of the last IBF
Output:
next_size: Size of the next IBF

FUNCTION get_next_ibf_size(decoded_elements, last_ibf_size)
 next_size =(last_ibf_size * IBF_BUCKET_NUMBER_FACTOR) -
(IBF_BUCKET_NUMBER_FACTOR * decoded_elements)
 return MAX(37, next_size);
FUNCTION END

7.1.3. Number of Buckets an Element is Hashed into

The number of buckets an element is hashed to is hardcoded to 3. Reasoning and justification can
be found in the following work .[byzantine_fault_tolerant_set_reconciliation]

7.2. Variable Counter Size
Since the optimal number of bytes a counter in the IBF contains is very variable and varies due to
different parameters. Details are described in the BSC thesis by Summermatter

. Therefore a compression algorithm has been
implemented, which always creates the IBF counter in optimal size. and thus minimizes the
bandwidth needed to transmit the IBF.

[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 38

A simple algorithm is used for the compression. In a first step it is determined, which is the largest
counter and how many bits are needed to store it. In a second step for every counter of every
bucket, the counter is stored in the bit length, determined in the first step and these are
concatenated.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 39

Three individual functions are used for this purpose. The first one is a function that iterates over
each bucket of the IBF to get the maximum counter in the IBF. As second it needs a function that
compresses the counter of the IBF and thirdly a function that decompresses the counter.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 40

INPUTS:
ibf: The IBF
OUTPUTS:
returns: Minimal amount of bytes required to store the counter

FUNCTION ibf_get_max_counter(ibf)
 max_counter=0
 FOR bucket IN ibf
 IF bucket.counter > max_counter
 max_counter = bucket.counter

 RETURN CEILING(log2 (max_counter)) # next bigger discrete number
of the binary logarithm of the max counter

INPUTS:
ibf: The IBF
offset: The offset which defines the starting point from which bucket
the compress operation starts
count: The number of buckets in the array that will be compressed
OUTPUTS:
returns: A byte array of compressed counters to send over the network

FUNCTION pack_counter(ibf, offset, count)
 counter_bytes = ibf_get_max_counter(ibf)
 store = 0
 store_bits = 0
 byte_ctr = 0
 buffer=[]

 FOR bucket IN ibf[offset] to ibf[count]
 byte_len = counter_bytes
 counter = bucket.counter

 WHILE byte_len > 0
 byte_to_write = 0

 IF counter_bytes + store_bits >= 8
 bit_to_shift=0

 IF store_bits > 0 OR counter_bytes > 8
 bit_free = 8 - store_bits
 bit_to_shift = counter_bytes - bit_free
 store = store << bit_free

 byte_to_write = ((counter >> bit_to_shift) | store) &
0xFF
 bit_to_shift -= 8 - store_bits
 counter = counter & ((1 << counter_bytes) - 1)
 store = 0
 store_bits = 0

 ELSE
 IF 0 == store_bits
 store = counter
 ELSE
 store = (store << counter_bytes) | counter

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 41

 store_bits = store_bits + byte_len
 byte_len = 0
 BREAK

 buffer[byte_ctr] = byte_to_write
 byte_ctr++
 NEXT_BUCKET

 # Write the last partial compressed byte to the buffer
 buffer[byte_ctr] = store << (8 - store_bits)
 byte_ctr++

 RETURN buffer

INPUTS:
ibf: The IBF
offset: The offset which defines the starting point from which bucket
the compress operation starts
count: The number of buckets in the array that will be compressed
counter_bit_length: The bit length of the counter can be found in the
ibf message in the ibf_counter_bit_length field
packed_data: A byte array which contains the data packed with the
pack_counter function
OUTPUTS:
returns: Nothing because the unpacked counter is saved directly into
the IBF

FUNCTION unpack_counter(ibf, offset, count, counter_bit_length,
packed_data)
 store = 0
 store_bits = 0
 byte_ctr = 0
 ibf_bucket_ctr = 0

 number_bytes_read = CEILING((count * counter_bit_length) / 8)

 WHILE ibf_bucket_ctr <= (count -1)
 byte_to_read = packed_data[byte_ctr]
 byte_ctr++
 bit_to_pack_left = 8

 WHILE bit_to_pack_left >= 0

 # Prevent packet from reading more than required
 IF ibf_bucket_ctr > (count -1)
 return

 IF (store_bits + bit_to_pack_left) >= counter_bit_length
 bit_use = counter_bit_length - store_bits

 IF store_bits > 0
 store = store << bit_use

 bytes_to_shift = bit_to_pack_left - bit_use
 counter_partial = byte_to_read >> bytes_to_shift
 store = store | counter_partial
 ibf.counter[ibf_bucket_ctr] = store

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 42

Figure 35

 byte_to_read = byte_to_read & ((1 << bytes_to_shift) -
1)

 bit_to_pack_left -= bit_use
 ibf_bucket_ctr++
 store = 0
 store_bits = 0

 ELSE
 store_bits += bit_to_pack_left

 IF 0 == store_bits
 store = byte_to_read
 ELSE
 store = store << bit_to_pack_left
 store = store | byte_to_read
 BREAK

SEs

1

2

4

8

7.3. Multi Strata Estimators
In order to improve the precision of the estimates not only one strata estimator is transmitted for
larger sets. One, two, four or eight strata estimators can be transferred. Transmitting multiple
strata estimators has the disadvantage that additional bandwidth will be used, so despite the
higher precision, it is not always optimal to transmit eight strata estimators. Therefore, the
following rules are used, which are based on the average element size multiplied by the number of
elements in the set. This value is denoted as "b" in the table:

Rule

b < 68kb

b > 68kb

b > 269kb

b > 1'077kb

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 43

When creating multiple strata estimators, it is important to salt the keys for the IBFs in the strata
estimators differently, using the following bit rotation based salting method:

Performance study and details about the reasoning for the used methods can be found in the
work of Summermatter.

Figure 36

Inputs:
value: Input value to salt (needs to be 64 bit unsigned)
salt: Salt to salt value with; Should always be ascending and start at
zero
 i.e. SE1 = Salt 0; SE2 = Salt 1 etc.
Output:
Returns: Salted value

FUNCTION se_key_salting(value, salt)
 s=(salt * 7) % 64
 return (value >> s) | (value << (64 - s))

[byzantine_fault_tolerant_set_reconciliation]

8. Security Considerations
The security considerations in this document focus mainly on the security goal of availability. The
primary goal of the protocol is to prevent an attacker from wasting cpu and network resources of
the attacked peer.

To prevent denial of service attacks, it is vital to check that peers can only reconcile a set once in
a predefined time span. This is a predefined value and needs to be adapted per use basis. To
enhance reliability and to allow failed decoding attempts in the protocol, it is possible to
introduce a threshold for max failed reconciliation ties.

The formal format of all messages needs to be properly validated. This is important to prevent
many attacks on the code. The application data MUST be validated by the application using the
protocol not by the implementation of the protocol. In case the format validation fails the set
operation MUST be terminated.

To prevent an attacker from sending a peer into an endless loop between active and passive
decoding, a limitation for active/passive roll switches is required. This can be implemented by a
simple counter which terminates the operation after a predefined number of switches. The
number of switches needs to be defined in such a way that it is very unprobable that more
switches are required an the malicious intend of the other peer can be assumed.

It is important to close and purge connections after a given timeout to prevent draining attacks.

8.1. General Security Check
In this section general checks are described which should be applied to multiple states.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 44

8.1.1. Byzantine Boundaries

To restrict an attacker there should be an upper and lower bound defined and checked at the
beginning of the protocol, based on prior knowledge, for the number of elements. The lower
byzantine bound can be, for example, the number of elements the other peer had in his set at the
last contact. The upper byzantine bound can be a practical maximum e.g. the number of e-voting
votes, in Switzerland.

For the byzantine upper bound checks to function flawlessly, it needs to be ensured that the
estimates of the set size difference added together never exceed the set byzantine upper bound.
This could for example happen if the strata estimator overestimates the set difference.

Figure 37

Input:
rec: Number of elements in remote set
rsd: Number of elements differ in remote set
lec: Number of elements in local set
lsd: Number of elements differ in local set
UPPER_BOUND: Given byzantine upper bound
LOWER_BOUND: Given byzantine lower bound
Output:
returns TRUE if parameters in byzantine bounds otherwise returns FALSE
FUNCTION check_byzantine_bounds (rec,rsd,lec,lsd)
 IF (rec + rsd > UPPER_BOUND)
 RETURN FALSE
 IF END
 IF (lec + lsd > UPPER_BOUND)
 RETURN FALSE
 IF END
 IF (rec < LOWER_BOUND)
 RETURN FALSE
 IF END
 RETURN TRUE
FUNCTION END

8.1.2. Valid State

To harden the protocol against attacks, controls were introduced in the improved
implementation that check for each message whether the message was received in the correct
state. This is central so that an attacker finds as little attack surface as possible and makes it
more difficult for the attacker to send the protocol into an endless loop, for example.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 45

The following function is executed every time a message is processed. The array allowed_state,
which contains a list of allowed messages for the current state of the application.

Figure 38

Input:
allowed_states: A array containing all states in which the message can
be received
state: The state in which the protocol is in
Output:
Returns TRUE if message is valid in state and FALSE if not

FUNCTION check_valid_state (allowed_states, state)
 FOR (allowed_state in allowed_states)
 IF (allowed_state == state)
 RETURN TRUE
 END IF
 FOR END
 RETURN FALSE
FUNCTION END

8.1.3. Message Flow Control

For most messages received and sent there needs to be a check in place that checks that a
message is not received multiple times. This is solved with a global store (message) and the
following code

The sequence in which messages are received and sent is arranged in a chain. The messages are
dependent on each other. There are dependencies that are mandatory, e.g. for a sent "Demand"
message, an "Element" message must always be received. But there are also messages for which a
response is not mandatory, e.g. the Inquiry message is only followed by an "Offer" message, if the
corresponding element is in the set. Due to this fact, checks can be installed to verify compliance
with the following chain.

Figure 39

Chain for elements +---------+ +---------+ +---------
+ +---------+
NOT in IBF decoding | INQUIRY | ---> | OFFER | ===> | DEMAND |
===> | ELEMENT |
peers set +---------+ +---------+ +---------
+ +---------+

Chain for elements +---------+ +---------+ +---------+
in IBF decoding | OFFER | ---> | DEMAND | ===> | ELEMENT |
peers set +---------+ +---------+ +---------+
 --->: Answer not mandatory
 ===>: Always answer needed.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 46

A possible implementation of the check in pseudocode could look as follows:

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 47

ValidStates:
The following message states are used to track the message flow.
- NOT_INITIALIZED: Fresh initialized value
- SENT: Element has been sent
- EXPECTED: Element is expected
- RECEIVED: Element is received

Function to initialize new store
Output:
Returns empty store
FUNCTION initialize_store()
 RETURN {}
FUNCTION END

Function to initialize a store element
Output:
Returns an empty element for the store
FUNCTION initialize_element()
 RETURN {
 INQUIRY: NOT_INITIALIZED,
 OFFER: NOT_INITIALIZED,
 DEMAND: NOT_INITIALIZED,
 ELEMENT: NOT_INITIALIZED
 }
FUNCTION END

Function called every time a new message is transmitted to other peer
Input:
store: Store created by the initialize_store() function
message_type: The message that was sent type e.g. INQUIRY or DEMAND
hash: The hash of the element which is sent
Output:
Returns TRUE if the message flow was followed, otherwise FALSE
FUNCTION send(store, message_type, hash)

 IF NOT store.contains(hash)
 store_element = initialize_element()
 ELSE
 store_element = store.get(hash)
 END IF

 CASE based on message_type
 CASE INQUIRY
 IF store_element.INQUIRY == NOT_INITIALIZED
 store_element.INQUIRY = SENT
 ELSE
 RETURN FALSE
 END IF
 CASE OFFER
 IF store_element.OFFER == NOT_INITIALIZED
 store_element.OFFER = SENT
 store_element.DEMAND = EXPECTED
 ELSE
 RETURN FALSE
 END IF
 CASE DEMAND
 IF store_element.DEMAND == NOT_INITIALIZED AND

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 48

 (store_element.INQUIRY == SENT OR
 store_element.INQUIRY == NOT_INITIALIZED)
 store_element.DEMAND = SENT
 store_element.ELEMENT = EXPECTED
 ELSE
 RETURN FALSE
 END IF
 CASE ELEMENT
 IF store_element.ELEMENT == NOT_INITIALIZED AND
 store_element.OFFER == SENT
 store_element.ELEMENT = SENT
 ELSE
 RETURN FALSE
 END IF
 DEFAULT
 RETURN FALSE
 CASE END
 store.put(hash,store_element)
 RETURN TRUE
FUNCTION END

Function called every time a new message is received from the other
peer
Input:
store: Store created by the initialize_store() function
message_type: The message that was received type e.g. INQUIRY or DEMAND
hash: The hash of the element which is received
Output:
Returns TRUE if the message flow was followed, otherwise FALSE
FUNCTION receive (store, message_type, hash)
 IF NOT store.contains(hash)
 store_element = initialize_element()
 ELSE
 store_element = store.get(hash)
 END IF

 CASE based on message_type
 CASE INQUIRY
 IF store_element.INQUIRY == NOT_INITIALIZED
 store_element.INQUIRY = RECEIVED
 ELSE
 RETURN FALSE
 END IF
 CASE OFFER
 IF store_element.OFFER == NOT_INITIALIZED
 store_element.OFFER = RECEIVED
 ELSE
 RETURN FALSE
 END IF
 CASE DEMAND
 IF store_element.DEMAND == EXPECTED AND
 store_element.OFFER == SENT
 store_element.DEMAND = RECEIVED
 ELSE
 RETURN FALSE
 END IF
 CASE ELEMENT
 IF store_element.ELEMENT == EXPECTED AND

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 49

This is based on the work of Summermatter. More details can be found in his thesis
.

Figure 40

 store_element.DEMAND == SENT
 store_element.ELEMENT = RECEIVED
 ELSE
 RETURN FALSE
 END IF
 DEFAULT
 RETURN FALSE
 CASE END
 store.put(hash,store_element)
 RETURN TRUE
FUNCTION END

Function called when the union operation is finished to ensure that
all demands have
been fulfilled
Input:
store: Store created by the initialize_store() function
Output:
Returns TRUE if all demands have been fulfilled otherwise FALSE
FUNCTION check_if_synchronisation_is_complete(store):
 FOR element in store.getAll()
 IF element.ELEMENT == EXPECTED OR
 element.DEMAND == EXPECTED
 RETURN FALSE
 IF END
 FOR END
 RETURN TRUE
FUNCTION END

[byzantine_fault_tolerant_set_reconciliation]

8.1.4. Limit Active/Passive Decoding changes

The limitation of the maximum allowed active/passive changes during differential
synchronisation is key to security. By limiting the maximum rounds in differential
synchronisation an attacker can not waste unlimited amount of resources by just pretending an
IBF does not decode.

The question after how many active/passive switches it can be assumed that the other peer is not
honest, depends on many factors and can only be solved probabilistically. In the work of
Summermatter this is described in detail. From this
work it is concluded that the probability of decoding failure is about 15% for each round. The
probability that there will be n active/passive changes is given by 0.15^{round number}. Which
means that after about 30 active/passive switches it can be said with a certainty of 2^80 that one
of the peers is not following the protocol. It is reasonable that a maximum of 30 active/passive
changes should be set.

[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 50

8.1.5. Full Synchronisation Plausibility Check

An attacker can try to use up a peer's bandwidth by pretending that the peer needs full
synchronisation, even if the set difference is very small and the attacker only has a few (or even
zero) elements that are not already synchronised. In such a case, it would be ideal, if the
plausibility could already be checked during full synchronisation as to whether the other peer
was honest or not with regard to the estimation of the set size difference and thus the choice of
mode of operation.

In order to calculate this plausibility, in Summmermatters paper
 a formula was developed, which depicts the

probability with which one can calculate the corresponding plausibility based on the number of
new and repeated elements after each received element.

Besides this approach from probability theory, there is an additional check that can be made.
After the entire set has been transferred to the other peer, no known elements may be returned by
the second peer, since the second peer should only return the elements that are missing from the
initial peer's set.

[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 51

This two approaches are implemented in the following pseudocode:

Figure 41

Input:
SECURITY_LEVEL: The security level used e.g. 2^80
state: The statemachine state
rs: Estimated remote set difference
lis: Number of elements in set
rd: Number of duplicated elements received
rf: Number of fresh elements received
Output:
Returns TRUE if full syncronisation is plausible and FALSE otherwise

FUNCTION full_sync_plausibility_check (state,rs,lis,rd,rf)
 security_level_lb = 1 / SECURITY_LEVEL

 IF (FULL_SENDING == state)
 IF (rd > 0)
 RETURN FALSE
 IF END
 IF END

 IF (FULL_RECEIVING == state)
 IF (0 <= rs)
 rs = 1
 IF END
 base = (1 - (rs / (lis + rs)))
 exponent = (rd - (rf * (lis/rs)))
 value = POWER(base, exponent)
 IF ((value < security_level_lb) || (value > SECURITY_LEVEL)
 RETURN FALSE
 IF END
 IF END
 RETURN TRUE
FUNCTION END

8.2. States
In this section the security considerations for each valid message in all states is described, if any
other message is received the peer MUST terminate the operation.

Request Full

IBF

8.2.1. Expecting IBF

Security considerations for received messages:

It needs to be checked that the full synchronisation mode with receiving peer
sending first is plausible according to the algorithm deciding which operation mode is
applicable as described in Section 7.1.1.

It needs to be checked that the differential synchronisation mode is plausible according to
the algorithm deciding which operation mode is applicable as described in Section 7.1.1.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 52

Send Full It needs to be checked that the full synchronisation mode with initiating peer sending
first is plausible according to the algorithm deciding which operation mode is applicable as
described in Section 7.1.1.

Full Element

Full Done

8.2.2. Full Sending

Security considerations for received messages:

When receiving full elements there needs to be checked, that every element is a
valid element, that no element has been received more than once and not more or less
elements are received, as the other peer has committed to in the beginning of the
operation. The plausibility should also be checked with an algorithm as described in Section
8.1.5.

When receiving the Full Done message, it is important to check that not less elements
are received as the other peer has committed to send. If the sets differ, a resynchronisation
is required. The number of possible resynchronisation MUST be limited, to prevent
resource exhaustion attacks.

IBF

8.2.3. Expecting IBF Last

Security considerations for received messages:

No special safety measures are necessary in this state. The maximum of IBF messages
should be limited to a reasonable amount.

Offer

8.2.4. Active Decoding

In the Active Decoding state it is important to prevent an attacker from generating and passing
an unlimited amount of IBFs, that do not decode or even worse, generate an IBF constructed to
send the peers in an endless loop. To prevent an endless loop in decoding, a loop detection should
be implemented. The simplest solution would be to prevent decoding of more than a given
amount of elements. A more robust solution is to implement a algorithm that detects a loop by
analyzing past partially decoded IBFs. This can be achieved by saving the hash of all prior partly
decoded IBFs hashes in a hashmap and check for every inserted hash, if it is already in the
hashmap.

If the IBF decodes more or less elements than are plausible, the operation MUST be terminated.
The upper and lower threshold for the decoded elements can be calculated with the peers set sizes
and the other peer committed set sizes from the Expecting IBF state.

Security considerations for received messages:

If an offer for an element, that never has been requested by an inquiry or if an offer is
received twice, the operation MUST be terminated. This requirement can be fulfilled by
saving lists that keep track of the state of all sent inquiries and offers. When answering

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 53

Element

Demand

Done

offers these lists MUST be checked. The sending and receiving of Offer messages should
always be protected with an Message Flow Control to secure the protocol against missing,
doubled, not in order or unexpected messages.

If an element that never has been requested by a demand or is received double, the
operation MUST be terminated. The sending and receiving of Element messages should
always be protected with an Message Flow Control to secure the protocol against missing,
doubled, not in order or unexpected messages.

For every received demand an offer has to be sent in advance. If a demand for an
element is received, that never has been offered or the offer already has been answered
with a demand, the operation MUST be terminated. It is required to implement a list which
keeps track of the state of all sent offers and received demands. The sending and receiving
of Demand messages should always be protected with an Message Flow Control to secure
the protocol against missing, doubled, not in order or unexpected messages.

The Done message is only received, if the IBF has been finished decoding and all offers
have been sent. If the Done message is received before the decoding of the IBF is finished or
all open offers and demands have been answered, the operation MUST be terminated. If
the sets differ, a resynchronisation is required. The number of possible resynchronisation
MUST be limited to prevent resource exhaustion attacks.

When a Done message is received the "check_if_synchronisation_is_complete()" function
from the Message Flow Control is required to ensure that all demands have been satisfied
successfully.

Element

8.2.5. Finish Closing

In the Finish Closing state the protocol waits for all sent demands to be fulfilled.

In case not all sent demands have been answered in time, the operation has failed and MUST be
terminated.

Security considerations for received messages:

When receiving Element messages it is important to always check the Message Flow
Control to secure the protocol against missing, doubled, not in order or unexpected
messages.

8.2.6. Finished

In this state the connection is terminated, so no security considerations are needed.

Strata Estimator

8.2.7. Expect SE

Security considerations for received messages:

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 54

In case the strata estimator does not decode, the operation MUST be terminated to prevent
to get to an unresolvable state. The set difference calculated from the strata estimator
needs to be plausible, which means within the byzantine boundaries described in section
Byzantine Boundaries.

In case of compressed strata estimators the decompression algorithm needs to be
protected against decompression memory corruption (memory overflow).

Full Element

Full Done

8.2.8. Full Receiving

Security considerations for received messages:

When receiving full elements there needs to be checked, that every element is a
valid element, no element has been received more than once and not more or less
elements are received, as the other peer has committed to in the beginning of the
operation. The plausibility should also be checked with an algorithm as described in Section
8.1.5.

When the Full Done message is received from the remote peer, all elements, that the
remote peer has committed to, need to be received, otherwise the operation MUST be
terminated. After receiving the Full Done message, future elements MUST NOT be accepted.
If the sets differ, a resynchronisation is required. The number of possible resynchronisation
MUST be limited to prevent resource exhaustion attacks.

IBF

Inquiry

Demand

Offer

Done

Element

8.2.9. Passive Decoding

Security considerations for received messages:

In case an IBF message is received by the peer a active/passive role switch is initiated by
the active decoding remote peer. In this moment the peer MUST wait for all open offers and
demands to be fulfilled, to prevent retransmission before switching into active decoding
operation mode. A switch into active decoding mode MUST only be permitted for a
predefined number of times as described in Section 8.1.4

A check needs to be in place that prevents receiving an inquiry for an element multiple
times or more inquiries than are plausible. The sending and receiving of Inquiry messages
should always be protected with an Message Flow Control to secure the protocol against
missing, doubled, not in order or unexpected messages.

Same action as described for Demand message in section Active Decoding.

Same action as described for Offer message in section Active Decoding.

Same action as described for Done message in section Active Decoding.

Same action as described for Element message in section Active Decoding.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 55

Element

8.2.10. Finish Waiting

In the Finish Waiting state the protocol waits for all sent demands to be fulfilled.

In case not all sent demands have been answered in time, the operation has failed and MUST be
terminated.

Security considerations for received messages:

When receiving Element messages it is important to always check the Message Flow
Control to secure the protocol against missing, doubled, not in order or unexpected
messages.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 56

9. Constants
The following table contains constants used by the protocol. The constants marked with a * are
validated through experiments in Summermatter's work

.[byzantine_fault_tolerant_set_reconciliation]

Figure 42

Name | Value | Description
----------------------------+------------+--------------------------
SE_STRATA_COUNT | 32 | Number of IBFs in a strata
estimator
IBF_HASH_NUM* | 3 | Number of times an element is
hashed to an IBF
IBF_FACTOR* | 2 | The factor by which the size
of the IBF is increased
 in case of decoding failure
or initially from the
 set difference
MAX_BUCKETS_PER_MESSAGE | 1120 | Maximum bucket of an IBF that
are transmitted in single message
IBF_MIN_SIZE* | 37 | Minimal number of buckets in
an IBF
DIFFERENTIAL_RTT_MEAN* | 3.65145 | The average RTT that is
needed for a differential synchronisation
SECURITY_LEVEL* | 2^80 | Security level for
probabilistic security algorithms
PROBABILITY_FOR_NEW_ROUND* | 0.15 | The probability for a IBF
decoding failure in the differential
 synchronisation mode
DIFFERENTIAL_RTT_MEAN* | 3.65145 | The average RTT that is
needed for a differential synchronisation
MAX_IBF_SIZE | 1048576 | Maximal number of buckets in
an IBF
AVG_BYTE_SIZE_SE* | 4221 | Average byte size of a single
strata estimator
VALID_NUMBER_SE* | [1,2,4,8] | Valid number of SE in

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 57

[RFC5869]

12. Normative References
,

, , , May 2010,
.

10. GANA Considerations
GANA is requested to amend the "GNUnet Message Type" registry as follows:[GANA]

Figure 43

Type | Name | References | Description
--------+----------------------------+------------
+--------------------------
 559 | SETU_P2P_REQUEST_FULL | [This.I-D] | Request the full set
of the other peer
 710 | SETU_P2P_SEND_FULL | [This.I-D] | Signals to send the
full set to the other peer
 560 | SETU_P2P_DEMAND | [This.I-D] | Demand the whole
element from the other peer, given only the hash code.
 561 | SETU_P2P_INQUIRY | [This.I-D] | Tell the other peer
to send a list of hashes that match an IBF key.
 562 | SETU_P2P_OFFER | [This.I-D] | Tell the other peer
which hashes match a given IBF key.
 563 | SETU_P2P_OPERATION_REQUEST | [This.I-D] | Request a set union
operation from a remote peer.
 564 | SETU_P2P_SE | [This.I-D] | Strata Estimator
uncompressed
 565 | SETU_P2P_IBF | [This.I-D] | Invertible Bloom
Filter slices.
 566 | SETU_P2P_ELEMENTS | [This.I-D] | Actual set elements.
 567 | SETU_P2P_IBF_LAST | [This.I-D] | Invertible Bloom
Filter Last Slice.
 568 | SETU_P2P_DONE | [This.I-D] | Set operation is
done.
 569 | SETU_P2P_SEC | [This.I-D] | Strata Estimator
compressed
 570 | SETU_P2P_FULL_DONE | [This.I-D] | All elements in full
synchronisation mode have been sent is done.
 571 | SETU_P2P_FULL_ELEMENT | [This.I-D] | Send an actual
element in full synchronisation mode.

11. Contributors
The original GNUnet implementation of the byzantine fault tolerant set reconciliation protocol
has mainly been written by Florian Dold and Christian Grothoff.

Krawczyk, H. and P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-
editor.org/info/rfc5869>

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 58

https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869

[RFC2119]

[byzantine_fault_tolerant_set_reconciliation]

[GANA]

[CryptographicallySecureVoting]

[ByzantineSetUnionConsensusUsingEfficientSetReconciliation]

[Eppstein]

[GNS]

, , ,
, , March 1997,
.

,
, 2021,

.

, , April 2020,
.

,
,

.

,
,

.

,
,

.

,
, 2014,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Summermatter, E. "Byzantine Fault Tolerant
Set Reconciliation" <https://summermatter.net/byzantine-fault-tolerant-
set-reconciliation-summermatter.pdf>

GNUnet e.V. "GNUnet Assigned Numbers Authority (GANA)" <https://
gana.gnunet.org/>

Dold, F. "Cryptographically Secure, Distributed Electronic
Voting" <https://git.gnunet.org/bibliography.git/plain/docs/
ba_dold_voting_24aug2014.pdf>

Dold, F. and C. Grothoff
"Byzantine set-union consensus using efficient set reconciliation" <https://
doi.org/10.1186/s13635-017-0066-3>

Eppstein, D., Goodrich, M., Uyeda, F., and G. Varghese "What's the Difference?
Efficient Set Reconciliation without Prior Context" <https://doi.org/
10.1145/2018436.2018462>

Wachs, M., Schanzenbach, M., and C. Grothoff "A Censorship-Resistant, Privacy-
Enhancing and Fully Decentralized Name System" <https://doi.org/
10.1007/978-3-319-12280-9_9>

Appendix A. Test Vectors

A.1. Map Function
INPUTS:

Figure 44

number_of_buckets_per_element: 3
ibf_size: 300

key1: 0xFFFFFFFFFFFFFFFF (64-bit)
key2: 0x0000000000000000 (64-bit)
key3: 0x00000000FFFFFFFF (64-bit)
key4: 0xC662B6298512A22D (64-bit)
key5: 0xF20fA7C0AA0585BE (64-bit)

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 59

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://summermatter.net/byzantine-fault-tolerant-set-reconciliation-summermatter.pdf
https://summermatter.net/byzantine-fault-tolerant-set-reconciliation-summermatter.pdf
https://gana.gnunet.org/
https://gana.gnunet.org/
https://git.gnunet.org/bibliography.git/plain/docs/ba_dold_voting_24aug2014.pdf
https://git.gnunet.org/bibliography.git/plain/docs/ba_dold_voting_24aug2014.pdf
https://doi.org/10.1186/s13635-017-0066-3
https://doi.org/10.1186/s13635-017-0066-3
https://doi.org/10.1145/2018436.2018462
https://doi.org/10.1145/2018436.2018462
https://doi.org/10.1007/978-3-319-12280-9_9
https://doi.org/10.1007/978-3-319-12280-9_9

OUTPUT:

Figure 45

key1: ["122","157","192"]
key2: ["85","243","126"]
key3: ["208","101","222"]
key4: ["239","269","56"]
key5: ["150","104","33"]

A.2. ID Calculation Function
INPUTS:

OUTPUT:

Figure 46

element 1: 0xFFFFFFFFFFFFFFFF (64-bit)
element 2: 0x0000000000000000 (64-bit)
element 3: 0x00000000FFFFFFFF (64-bit)
element 4: 0xC662B6298512A22D (64-bit)
element 5: 0xF20fA7C0AA0585BE (64-bit)

Figure 47

element 1: 0x5AFB177B
element 2: 0x64AB557C
element 3: 0xCB5DB740
element 4: 0x8C6A2BB2
element 5: 0x7EC42981

A.3. Counter Compression Function
INPUTS:

Figure 48

counter serie 1: [1,8,10,6,2] (min bytes 4)
counter serie 2: [26,17,19,15,2,8] (min bytes 5)
counter serie 3: [4,2,0,1,3] (min bytes 3)

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 60

OUTPUT:

Figure 49

counter serie 1: 0x18A62
counter serie 2: 0x3519BC48
counter serie 3: 0x440B

Authors' Addresses
Elias Summermatter
Seccom GmbH
Brunnmattstrasse 44
CH- 3007 Bern
Switzerland

 elias.summermatter@seccom.ch Email:

Christian Grothoff
Berner Fachhochschule
Hoeheweg 80
CH- 2501 Biel/Bienne
Switzerland

 grothoff@gnunet.org Email:

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 12 December 2021 Page 61

mailto:elias.summermatter@seccom.ch
mailto:grothoff@gnunet.org

	Byzantine Fault Tolerant Set Reconciliation
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Background
	2.1. Bloom Filters
	2.2. Counting Bloom Filter

	3. Invertible Bloom Filter
	3.1. Structure
	3.2. Operations
	3.2.1. Insert Element
	3.2.2. Remove Element
	3.2.3. Decode IBF
	3.2.4. Set Difference

	3.3. Wire format
	3.3.1. ID Calculation
	3.3.2. Mapping Function
	3.3.3. HASH calculation

	4. Strata Estimator
	4.1. Description

	5. Mode of Operation
	5.1. Full Synchronisation Mode
	5.2. Differential Synchronisation Mode
	5.3. Combined Mode

	6. Messages
	6.1. Operation Request
	6.1.1. Description
	6.1.2. Structure

	6.2. IBF
	6.2.1. Description
	6.2.2. Structure

	6.3. IBF Last
	6.3.1. Description

	6.4. Element
	6.4.1. Description
	6.4.2. Structure

	6.5. Offer
	6.5.1. Description
	6.5.2. Structure

	6.6. Inquiry
	6.6.1. Description
	6.6.2. Structure

	6.7. Demand
	6.7.1. Description
	6.7.2. Structure

	6.8. Done
	6.8.1. Description
	6.8.2. Structure

	6.9. Full Done
	6.9.1. Description
	6.9.2. Structure

	6.10. Request Full
	6.10.1. Description
	6.10.2. Structure

	6.11. Send Full
	6.11.1. Description
	6.11.2. Structure

	6.12. Strata Estimator
	6.12.1. Description
	6.12.2. Structure

	6.13. Strata Estimator Compressed
	6.13.1. Description

	6.14. Full Element
	6.14.1. Description
	6.14.2. Structure

	7. Performance Considerations
	7.1. Formulas
	7.1.1. Operation Mode
	7.1.2. IBF Size
	7.1.3. Number of Buckets an Element is Hashed into

	7.2. Variable Counter Size
	7.3. Multi Strata Estimators

	8. Security Considerations
	8.1. General Security Check
	8.1.1. Byzantine Boundaries
	8.1.2. Valid State
	8.1.3. Message Flow Control
	8.1.4. Limit Active/Passive Decoding changes
	8.1.5. Full Synchronisation Plausibility Check

	8.2. States
	8.2.1. Expecting IBF
	8.2.2. Full Sending
	8.2.3. Expecting IBF Last
	8.2.4. Active Decoding
	8.2.5. Finish Closing
	8.2.6. Finished
	8.2.7. Expect SE
	8.2.8. Full Receiving
	8.2.9. Passive Decoding
	8.2.10. Finish Waiting

	9. Constants
	10. GANA Considerations
	11. Contributors
	12. Normative References
	Appendix A. Test Vectors
	A.1. Map Function
	A.2. ID Calculation Function
	A.3. Counter Compression Function
	Authors' Addresses

