re:claimID

Datenspuren 2019

Martin Schanzenbach 21.9.2019

Identity Provider Market:

Issues:

- 1. Privacy concerns:
 - Targeted advertisement, opinion shaping.
 - "Public safety": Mass surveillance and data collection.

Issues:

- 1. **Privacy** concerns:
 - Targeted advertisement, opinion shaping.
 - "Public safety": Mass surveillance and data collection.
- 2. Liability risks:
 - Data loss through leaks or hacks may result in existential legal implications (GDPR).

Issues:

- 1. Privacy concerns:
 - Targeted advertisement, opinion shaping.
 - "Public safety": Mass surveillance and data collection.
- 2. **Liability** risks:
 - Data loss through leaks or hacks may result in existential legal implications (GDPR).
- 3. Oligopoly:
 - "There can be only one (two)".
 - IdP market tends to degenerate.
 - Federation not widely used.

Primary objective: We must enable users to exercise their right to digital self-determination:

1. Avoid third party services for identity management and data sharing.

- 1. Avoid third party services for identity management and data sharing.
- 2. Open, free and decentralized service which is not under the control of a single organization, consortium or business.

- 1. Avoid third party services for identity management and data sharing.
- 2. Open, free and decentralized service which is not under the control of a single organization, consortium or business.
- 3. Free software.

- 1. Avoid third party services for identity management and data sharing.
- 2. Open, free and decentralized service which is not under the control of a single organization, consortium or business.
- 3. Free software.
- \Rightarrow Empower users to reclaim control over their digital identities.

What does an IdP do?

- 1. Identity provisioning and access control
 - Allow management of identities and personal data.
 - Facilitate sharing of identity data with third parties.
 - Provide up-to-date information accessible even if user is offline.
 - Enforce authorization decisions of user.

What does an IdP do?

- 1. Identity provisioning and access control
 - Allow management of identities and personal data.
 - Facilitate sharing of identity data with third parties.
 - Provide up-to-date information accessible even if user is offline.
 - Enforce authorization decisions of user.
- 2. Identity information verification and attestation:
 - "this is Alice's email address": Email provider.
 - "this person is living in Germany": Sovereign state.

What does an IdP do?

- 1. Identity provisioning and access control
 - Allow management of identities and personal data.
 - Facilitate sharing of identity data with third parties.
 - Provide up-to-date information accessible even if user is offline.
 - Enforce authorization decisions of user.
 - ⇒ re:claimID
- 2. Identity information verification and attestation:
 - "this is Alice's email address": Email provider.
 - "this person is living in Germany": Sovereign state.
 - ⇒ Not our department!*

^{*}We will revisit this further on.

Introducing re:claimID

- re:claimID is a **self-sovereign** personal data sharing system.
- Other self-sovereign identity systems you may have head about:
 - Sovrin (Hyperledger)
 - uPort (Ethereum)
 - NameID (Namecoin)

- re:claimID is a **self-sovereign** personal data sharing system.
- Other self-sovereign identity systems you may have head about:
 - Sovrin (Hyperledger) ← Permissioned blockchain
 - uPort (Ethereum)
 - NameID (Namecoin)

- re:claimID is a **self-sovereign** personal data sharing system.
- Other self-sovereign identity systems you may have head about:
 - Sovrin (Hyperledger) ← Permissioned blockchain
 - uPort (Ethereum) ← Data shared off-chain: If user is offline data not accessible.
 - NameID (Namecoin)

- re:claimID is a **self-sovereign** personal data sharing system.
- Other self-sovereign identity systems you may have head about:
 - Sovrin (Hyperledger) ← Permissioned blockchain
 - uPort (Ethereum)

 Data shared off-chain: If user is offline data not accessible.
 - NameID (Namecoin) ← Access control through central server (wat?)

- re:claimID is a **self-sovereign** personal data sharing system.
- Other self-sovereign identity systems you may have head about:
 - Sovrin (Hyperledger) ← Permissioned blockchain
 - uPort (Ethereum) ← Data shared off-chain: If user is offline data not accessible.
 - NameID (Namecoin) ← Access control through central server (wat?)
- ! re:claimID does **not** require a blockchain, is fully decentralized and allows asynchronuous data access.

In a nutshell

Decentralized directory service

+

Cryptographic access control

Directory services?

In a nutshell

- Decentralized directory service
 - Secure name system with open name registration.
 - Idea "borrowed" from NameID.
 - Example: nslookup email.bob.org ⇒ "bob@example.com"
 - Our implementation uses the GNU Name System (GNS)

In a nutshell

- Decentralized directory service
 - Secure name system with open name registration.
 - Idea "borrowed" from NamelD.
 - Example: nslookup email.bob.org ⇒ "bob@example.com"
 - Our implementation uses the GNU Name System (GNS)
- Cryptographic access control layer
 - Provided by GNS through encrypted and signed resource records.
 - Protects identity data from unwanted disclosure and allows users to enforce access control.

How does it work

Managing and publishing identity information

- In GNS, a namespace is defined by a public/private EC key pair:
 - x: Private key
 - P: Public key
 - G: Generator of the curve
 - *n*: Group order

- In GNS, a namespace is defined by a public/private EC key pair:
 - x: Private key
 - *P*: Public key
 - G: Generator of the curve
 - *n*: Group order
- Records are encrypted and signed using keys derived from (x, P).

- In GNS, a namespace is defined by a public/private EC key pair:
 - x: Private key
 - P: Public key
 - G: Generator of the curve
 - *n*: Group order
- Records are encrypted and signed using keys derived from (x, P).
- Encrypted records are published in a distributed hash table (under key q).

- In GNS, a namespace is defined by a public/private EC key pair:
 - x: Private key
 - P: Public key
 - G: Generator of the curve
 - *n*: Group order
- Records are encrypted and signed using keys derived from (x, P).
- Encrypted records are published in a distributed hash table (under key q).
- Any peer is able to verify the signature as the corresponding derived public key is also published.

- In GNS, a namespace is defined by a public/private EC key pair:
 - x: Private key
 - P: Public key
 - G: Generator of the curve
 - *n*: Group order
- Records are encrypted and signed using keys derived from (x, P).
- Encrypted records are published in a distributed hash table (under key q).
- Any peer is able to verify the signature as the corresponding derived public key is also published.
- Records can only be resolved and decrypted if the true identity and the label is known.

- In GNS, a namespace is defined by a public/private EC key pair:
 - x: Private key
 - P: Public key
 - *G*: Generator of the curve
 - *n*: Group order
- Records are encrypted and signed using keys derived from (x, P).
- Encrypted records are published in a distributed hash table (under key q).
- Any peer is able to verify the signature as the corresponding derived public key is also published.
- Records can only be resolved and decrypted if the true identity and the label is known.
- ⇒ Namespaces cannot be enumerated and queries/responses cannot* be observed.

^{*}Unless label and identity are known.

Identity attributes in GNS

Users may create a namespace (x, P) and use it as a digital identity containing personal information:

Label	Record Type	Value
I _{email}	ATTR	"email=alice@example.com"
I _{name}	ATTR	"name=Alice Doe"
I_{dob}	ATTR	"dob=1.3.1987"

where the labels are random secret values with high entropy.

Publishing information

Given a namespace (x, P), we can treat labels as shared secrets in order to selectively disclose information.

$$h := \mathit{Hash}(\mathit{I}_{attr}, P)$$

Publishing information

Given a namespace (x, P), we can treat labels as shared secrets in order to selectively disclose information.

$$h := Hash(I_{attr}, P)$$

DHT key
$$\left\{ \qquad q := H(hP) \right.$$

Publishing information

Given a namespace (x, P), we can treat labels as shared secrets in order to selectively disclose information.

Publishing information

Given a namespace (x, P), we can treat labels as shared secrets in order to selectively disclose information.

$$h := Hash(I_{attr}, P)$$

DHT key $\left\{ \begin{array}{c} q := H(hP) \\ \\ k := HKDF(I_{attr}, P) \\ \\ Record := Enc_k(Data) \end{array} \right.$

Signature $\begin{cases} d := h \cdot x \mod n \\ Signature = Sig_d(Record) \end{cases}$

Authorizing access

Authorizing access

Label	Record Type	Value
I _{email}	ATTR	"email=alice@doe.com"
I_{name}	ATTR	"name=Alice Doe"
I_{dob}	ATTR	"dob=1.3.1987"

Authorizing access

Label	Record Type	Value
I _{email}	ATTR	"email=alice@doe.com"
I _{name}	ATTR	"name=Alice Doe"
I_{dob}	ATTR	"dob=1.3.1987"
l _{ticket}	$ATTR_{-}REF$	l _{email}
	ATTR_REF	I_{dob}

- For each authorized party, the user publishes reference records under the secret label l_{ticket}
- Iticket can be shared with a third party in order to authorize access to email and dob.
- Indirection enables us to revoke tickets.

Retrieve and decrypt attributes

Retrieving information

Given an identity with public key P, we can retrieve references using I_{ticket} and subsequently identity info from GNS.

$$h := Hash(I_{ticket}, P)$$

Retrieving information

Given an identity with public key P, we can retrieve references using I_{ticket} and subsequently identity info from GNS.

$$h := Hash(I_{ticket}, P)$$

Retrieving information

Given an identity with public key P, we can retrieve references using I_{ticket} and subsequently identity info from GNS.

Integration

- re:claimID implements the OpenID Connect protocol.
- For websites, it is just like integrating any other IdP (e.g. Google)
- For users, the authorization flow looks just like with anny other OpenID Connect IdP.

Demo

Who sais that, anyway?

• Sometimes we need third party assurances to establish trust in identities.

- Sometimes we need third party assurances to establish trust in identities.
- Currently, IdPs such as Facebook/Google implicitly provide this assurance (i.e. vouch for the truthfulness and correctness).

- Sometimes we need third party assurances to establish trust in identities.
- Currently, IdPs such as Facebook/Google implicitly provide this assurance (i.e. vouch for the truthfulness and correctness).
- Claim: Those parties are not actually the authorities over (most of) your personal data! Examples:
 - Real name (State/Self-asserted/Other organization)
 - Phone number (Provider)
 - Address (State/Self-asserted)
 - Citizenship (State)
 - Age (State)
 - Email address (Mail provider)

• What users actually need is a collection of credentials.

- What users actually need is a collection of credentials.
- Those credentials are issued by a variety of different entities, including the user.

- What users actually need is a collection of credentials.
- Those credentials are issued by a variety of different entities, including the user.
- Credentials are ideally preserving the privacy of the individual, e.g. using zero-knowledge proofs.

- What users actually need is a collection of credentials.
- Those credentials are issued by a variety of different entities, including the user.
- Credentials are ideally preserving the privacy of the individual, e.g. using zero-knowledge proofs.
- Those ideas are already finding their way into standards:
 - W3C: "Verifiable Credentials"
 - OpenID Connect: "Aggregated Claims"

- What users actually need is a collection of credentials.
- Those credentials are issued by a variety of different entities, including the user.
- Credentials are ideally preserving the privacy of the individual, e.g. using zero-knowledge proofs.
- Those ideas are already finding their way into standards:
 - W3C: "Verifiable Credentials"
 - OpenID Connect: "Aggregated Claims" \leftarrow working on it.

Using re:claimID

Installing re:claimID

1. Install the webextension:

https://addons.mozilla.org/firefox/addon/reclaimid/

Installing re:claimID

1. Install the webextension:
 https://addons.mozilla.org/firefox/addon/reclaimid/

2. Install GNUnet >= 0.11.6

Installing re:claimID

Get help installing GNUnet and/or re:claimID at our workshop today!

• Right after this.

• Time: 12:15 PM - 15:00 PM

• Location: Seminarraum

Summary

Status

- Get it at https://reclaim-identity.io.
- Demo websites exist:
 - https://demo.reclaim-identity.io
 - https://eusec.clouditor.io
- Roadmap:
 - User-friendly packaging (of GNUnet)
 - Ship GNUnet inside browser plugin (yes, that might even work).
 - "1.0" by end of 2019

Questions?

https://reclaim-identity.io https://gnunet.org

schanzen@aisec.fraunhofer.de 6665 201E A925 7CC6 8FDE 77E8 8433 5131 EA3D ABFO - or schanzen@gnunet.org 3D11 063C 10F9 8D14 BD24 D147 0B09 98EF 86F5 9B6A

References

- Matthias Wachs, Martin Schanzenbach and Christian Grothoff. A Censorship-Resistant, Privacy-Enhancing and Fully Decentralized Name System. 13th Intern ational Conference on Cryptology and Network Security, 2014.
- Martin Schanzenbach, Georg Bramm, Julian Schütte. reclaimID: Secure, Self-Sovereign Identities Using Name Systems and Attribute-Based Encryption. 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications (TrustCom), 2018