A Public Key Infrastructure for Social Movements in the Age of Universal Surveillance

Christian Grothoff

Technische Universität München

24.01.2014

Where We Are

Where We Are

Not Just Monitoring

- Centralized Internet infrastructure is easily controlled:
 - Number resources (IANA)
 - ▶ Domain Name System (Root zone)
 - DNSSEC root certificate
 - X.509 CAs (HTTPS certificates)
 - Major browser vendors (CA root stores!)
- Encryption does not help if PKI is compromised!

The GNU Name System¹

Properties of GNS

- ▶ Decentralized name system with secure memorable names
- Delegation used to achieve transitivity
- Achieves query and response privacy
- Provides alternative public key infrastructure
- Interoperable with DNS

¹Joint work with Martin Schanzenbach and Matthias Wachs

Zone Management: like in DNS

Name resolution in GNS

▶ Bob can locally reach his webserver via www.gnu

Secure introduction

▶ Bob gives his public key to his **friends**, possibly via QR code

Delegation

- ► Alice learns Bob's public key
- ▶ Alice creates delegation to zone K_{pub}^{Bob} under label **bob**
- ► Alice can reach Bob's webserver via www.bob.gnu

GNS as PKI (via DANE/TLSA)

A Unix-like operating system is a <u>software collection</u> of applications, libraries, and developer tools, plus a program to allocate resources and talk to the hardware, known as a kernel.

The Hurd, GNU's own kernel, is some way from being ready for daily use. Thus, GNU is typically used today with a kernel called Linux. This combination is the GNUILinux operating system. GNUILinux is used by millions, though many call it "Linux" by mistake.

Privacy Issue: DHT

Query Privacy: Terminology

```
G generator in ECC curve, a point
   n size of ECC group, n := |G|, n prime
   x private ECC key of zone (x \in \mathbb{Z}_n)
  P public key of zone, a point P := xG
   I label for record in a zone (I \in \mathbb{Z}_n)
R_{P,I} set of records for label I in zone P
q<sub>P,I</sub> query hash (hash code for DHT lookup)
B_{P,I} block with encrypted information for label I
     in zone P published in the DHT under q_{P,I}
```

Query Privacy: Cryptography

Publishing records $R_{P,I}$ as $B_{P,I}$ under key $q_{P,I}$

$$h := H(I, P)$$
 (1)
 $d := h \cdot x \mod n$ (2)
 $B_{P,I} := S_d(E_{HKDF(I,P)}(R_{P,I})), dG$ (3)
 $q_{P,I} := H(dG)$ (4)

Query Privacy: Cryptography

Publishing records $R_{P,I}$ as $B_{P,I}$ under key $q_{P,I}$

$$h:=H(I,P) \tag{1}$$

$$d:=h\cdot x \mod n \tag{2}$$

$$B_{P,I} := S_d(E_{HKDF(I,P)}(R_{P,I})), dG$$
 (3)

$$q_{P,l}:=H(dG) \tag{4}$$

Searching for records under label *I* in zone *P*

$$h:=H(I,P) \tag{5}$$

$$q_{P,l} := H(hP) = H(hxG) = H(dG) \Rightarrow \text{obtain } B_{P,l}$$
 (6)

$$R_{P,I} = D_{HKDF(I,P)}(B_{P,I}) \tag{7}$$

Conclusion

- Decentralization is necessary
- Decentralization creates challenges for research:
 - Privacy-enhancing network protocol design
 - Secure software implementations
 - Software engineering and system architecture
 - Programming languages and tool support

Conclusion

- Decentralization is necessary
- Decentralization creates challenges for research:
 - Privacy-enhancing network protocol design
 - Secure software implementations
 - Software engineering and system architecture
 - Programming languages and tool support

We must decentralize or accept authocracy.

Do you have any questions?

References:

- Nathan Evans and Christian Grothoff. R5N. Randomized Recursive Routing for Restricted-Route Networks. 5th International Conference on Network and System Security, 2011.
- Matthias Wachs, Martin Schanzenbach and Christian Grothoff. On the Feasibility of a Censorship Resistant Decentralized Name System. 6th International Symposium on Foundations & Practice of Security, 2013.
- M. Schanzenbach Design and Implementation of a Censorship Resistant and Fully Decentralized Name System. Master's Thesis (TUM), 2012.