
Secure Share

A framework for secure social interaction

Gabor Adam Toth

May 2012

ii

Abstract

The motivation of the work presented here is the need for social interactions
over the internet in a scalable and privacy protecting manner. We have
examined existing systems from this aspect and have come to the conclusion
that they do not provide enough privacy or do not scale well enough for
our requirements. We suggest a peer-to-peer (P2P) architecture for this use
and present a social network based on the GNUnet P2P framework – which
provides the lower layers of the network – extended with messaging and social
semantics by the PSYC protocol.

Components of the system we have implemented are a service for the GNUnet
framework providing social semantics and messaging functionality, a client
API enabling application developers to write applications for the network
with less effort, and client applications providing messaging, contact lists
and profiles.

The implementation is in a prototype stage, basic functionality, such as per-
son identities, friendship establishment and messaging in channels already
work, but further work is needed to enhance the functionality of the system
and improve the usability of the user interface.

iii

iv 0. Abstract

Contents

Abstract iii

1 Introduction 1

2 Requirements and Related Work 3
2.1 Privacy . 3
2.2 Scalability . 5
2.3 Peer-to-peer networks . 6

3 Architecture 7
3.1 P2P network architecture . 7
3.2 Structure of the network . 8
3.3 Software components . 9
3.4 Peer-to-peer framework . 9
3.5 Messaging daemon . 11
3.6 Functionality . 11

4 Implementation 15
4.1 Syntax . 15
4.2 Identifiers . 16
4.3 Circuits . 17
4.4 Contacting peers . 17
4.5 Entities . 18
4.6 Multicast contexts . 18
4.7 Distributed state . 19

4.7.1 Syntax changes . 21
4.7.2 List syntax . 21
4.7.3 Dictionary syntax . 22
4.7.4 Update syntax . 23

4.8 Storage . 24

5 Clients 25
5.1 Desktop clients . 25

v

vi
Contents

5.2 Web interface . 27
5.3 Mobile clients . 28
5.4 Extensibility . 28

5.4.1 Channel API . 28
5.4.2 Client API . 29

6 Conclusion and Future Work 31

Bibliography 33

Abbreviations 35

Appendix 1 - PSYC Syntax 37

List of Figures

3.1 Components and message flow in GNUnet 12

4.1 Multicast context distribution tree 19

5.1 irssyc, a text-based client . 26
5.2 secushare, a GUI client . 27

vii

viii List of Figures

1. Introduction

The Internet is getting more and more centralized with users’ personal data
hosted on servers of large service providers, which involves serious privacy
concerns. As in most cases these systems do not provide end-to-end confi-
dentiality, server operators have full access to user data and users are often
unaware of how much data is stored about them or with whom their data
is shared with. Such systems include email and instant messaging services
like GMail and GTalk, social network services like Facebook, Google+ and
Twitter, or file storage and sharing services like Dropbox.

It is possible to implement social sharing and messaging in a privacy protect-
ing way. Chapter 2 describes previous attempts at this by federated social
networks, problems with that approach and our requirements for secure com-
munication.

We suggest a peer-to-peer architecture as a better basis for a social network
system in Chapter 3. We show how social interactions would work in such a
network while maintaining privacy of users.

In Chapter 4 we introduce core concepts of PSYC and show how we integrated
it with P2P technology provided by the GNUnet framework, and tell more
about implementation details of the prototype of Secure Share.

Chapter 5 describes the clients we have implemented and shows extension
possibilities of Secure Share.

1

2 1. Introduction

2. Requirements and Related
Work

This chapter describes our requirements for a system that we can use to
build a secure social network and introduces currently available alternatives
to centralized social networks. This chapter is partly based on [8].

2.1 Privacy

Our goal is to provide a system for social interaction in a privacy-protecting
and scalable manner. A truly private communication system we’re aiming
for should have the following properties:

• End-to-end encryption: only the intended recipients can read the mes-
sages, no server or network operators along the way between the com-
municating parties. To ensure this, it is not enough to use link-level en-
cryption between a client and a server, end-to-end encryption is needed,
which means that every participant in the system has to manage their
own cryptographic keys on their own systems.

• Perfect forward secrecy: messages transmitted over the network can’t
be decrypted later if a user’s private key is compromised. To achieve
this, temporary session keys need to be used when encrypting messages.

• When logging a message to disk it should not contain a cryptographic
signature of the sender, so if someone gains access to the log, it does
not provide a proof that someone actually transmitted the messages.

• An observer cannot determine for sure when two parties are commu-
nicating and how much data they exchange with each other. This
requires a trade-off: while sending packets through other participants
in the network would ensure this, this also increases message delay.

3

4 2. Requirements and Related Work

• Padding of packets is necessary to prevent attacks based on statistical
analysis of packet lengths. This is absolutely necessary when send-
ing messages through multiple hops, otherwise it would be enough to
monitor packet lengths to determine where a packet is forwarded to.

• Delayed forwarding is also necessary to prevent correlation of received
and transmitted packets when forwarding. Sending multiple packets at
once at certain intervals would help to prevent this.

• Private contact list: only visible to whom it needs be – typically other
friends – not available publicly or managed on servers where server
operators have access to it.

• Every component of the system should be open source, so one can
ensure it really works as advertised. A closed component would be
a security risk, as it could leak information or otherwise weaken the
security of the system, which is harder to detect when no source code
is available. This can be enforced with a copyleft license, such as the
Affero General Public License (AGPL).

Currently available alternatives to centralized social network services are in
most cases federated networks, which use a standardized protocol between
servers enabling many service providers to take part in the network and
communicate with each other. Examples for such systems include web-based
platforms like Diaspora or Friendica, and others using a messaging proto-
col extended with social network functionalities – friendship establishment,
status messages to friends – like OneSocialWeb, which is based on XMPP
(Extensible Messaging and Presence Protocol) or PSYC (Protocol for SYn-
chronous Conferencing).

These federated systems intend to offer more privacy than centralized sys-
tems, but they still not fulfill most of the requirements above, in most cases
they only provide link-level encryption. They still store personal data on
servers unencrypted, just like centralized systems. Users can have a server
themselves, but that requires server administration skills which average users
do not have, so we’ll end up with a few larger servers and several smaller
ones, just like in the case of email. Privacy is an even more serious issue
in this case as it’s no longer enough to trust one company, there are several
server operators in this architecture sharing personal data with each other –
users’ messages and profile data are transmitted to and stored unencrypted
on servers of their friends as well. Even if some users run their own server,
they would still communicate with people without their own server, exposing
personal data to even more server operators this way.

2.2. Scalability 5

It is possible to enhance privacy of these federated protocols by adding end-
to-end encryption on top of them, this is what PGP (Pretty Good Privacy)
does for e-mail and OTR (Off-The-Record Messaging) does for instant mes-
saging protocols. While this prevents servers from reading the content of
messages, they still know everything else about a message, e.g. its sender,
recipient, and size. There’s an additional overhead of base64 encoding, which
is needed because the underlying messaging protocols often do not support
binary data transfer. Furthermore PGP and OTR can only be used for
one-to-one messaging, one-to-many and many-to-many messaging are not
supported by them.

2.2 Scalability

Efficient message distribution is crucial in social networks, as one of their
most prevalent features is sending one-to-many status updates, but many-
to-many group messaging is frequently used as well. To deliver these mes-
sages most efficiently, multicast message distribution would be necessary. IP
multicast does not scale to a large number of channels, as multicast routing
tables would fill up very fast – at least one channel would be needed for a
user’s status updates, and similarly, at least one for each group – thus this
has to be implemented on the application layer to make it work.

XMPP has a simple distribution strategy, it sends one message per recipient
server, which is only efficient if there are many large sites. XMPP’s scalability
is also limited by the way it handles presence updates, the majority of inter-
server traffic in the XMPP network consists of this type of messages.

XMPP’s use of an XML stream as network protocol without any framing
makes it less efficient, as it complicates parsing and makes it impossible to
transport binary data without Base64 or similar encoding. Also, protocol
extensions described in XML add a large amount of unnecessary verbosity
to the protocol.

PSYC is another federated messaging protocol with a compact but extensible
syntax, which enables fast parsing and small bandwidth usage. It is a text-
based protocol with length prefixes for binary data. Benchmarks we made
show that it outperforms XMPP and JSON when it comes to parsing speed
[6].

PSYC sends out one message per recipient server when distributing messages,
but it also has manual multicast tree configuration.

6 2. Requirements and Related Work

2.3 Peer-to-peer networks

Peer-to-peer (P2P) networks come closer to fulfilling these privacy require-
ments, as in many cases they’re designed with security and privacy in mind
from the ground up.

Projects such as Tor and I2P aim to create an anonymous overlay network,
while Freenet and GNUnet focus on anonymous information storage and
retrieval. GNUnet also provides an extensive framework for writing P2P
applications, including packet-based communication over different transport
mechanisms.

In a P2P network every user of the network runs the P2P software on their
own computers (a computer in the P2P network is referred to as a node).
This allows for creating a network architecture where servers are not needed
to store and manage user data, every user can do so on their own node, giving
them more control over their data. High-capacity servers we had in federated
networks would be still useful in a P2P network, they can forward (and store
when needed) encrypted data without being able to decrypt them, this way
improving throughput, connectivity and stability of the network.

Combining peer-to-peer network technology with social network semantics
allows for creating a scalable, privacy-protecting social network based on
connections of trusted peers. The next section describes the architecture of
such a network.

3. Architecture

Secure Share intends to implement a scalable P2P social network enabling
real-time one-to-one, one-to-many and many-to-many message distribution
for applications using the network while fulfilling the privacy requirements
described in the previous chapter.

It provides private and group messaging, status updates and profiles in the
first prototype version, while keeping the protocol extensible allowing various
social applications to be built on top later.

By combining PSYC with a P2P network architecture we get an efficient and
extensible protocol provided by PSYC and security and privacy properties
provided by the underlying P2P network.

3.1 P2P network architecture

Many P2P networks use an architecture where nodes connect to arbitrary
peers, no trust relation exists between them. A problem with this approach is
that some nodes could use more resources of the network than they contribute
to it (freeloaders), which can be alleviated by applying an economic model
in the network. For instance GNUnet uses an excess-based economy: a node
when idle does favors for free, but when busy it only works for nodes it likes
and charges them for favors they request, which they can pay back by doing
a favor in return.

Another problem that could arise in this architecture are malicious nodes
who can perform various active attacks, including blocking access to parts
of the network, or returning false information to certain requests. These can
be avoided to some extent by randomized routing and by making it harder
to create new identities in the network.

A different approach we use is a friend-to-friend (F2F) architecture where

7

8 3. Architecture

nodes only connect to friendly peers whom they trust. This has the advantage
that it avoids many attacks involving malicious nodes in the network. An
attacker has to infiltrate a user’s social circle to perform a successful attack,
which is much harder. By adding a trust level metric to social connections we
can further differentiate between more and less trusted nodes in the network.

Also, a F2F architecture gives better incentives to participants in the net-
work: users help their friends by forwarding packets for them instead of
random strangers. Nodes with high bandwidth and no connection restric-
tions – e.g. server machines in data centers – can improve throughput and
connectivity in the network by serving their owner’s social circle.

Other systems based on a F2F architecture include Freenet [1], Drac [2],
Tonika, and GNUnet has a F2F mode as well.

3.2 Structure of the network

Another aspect of P2P networks is whether they’re structured or not. In
structured networks the structure of the network is predefined, the node
ID determines the position of the node in the network, this information is
enough to be able to route packets to their destination. Often a distributed
hash table (DHT) is used in structured P2P networks which provides hash
table functionality distributed over many nodes in the network.

A different approach is an unstructured network like the Internet, where
arbitrary nodes can connect, no structure is imposed upon the nodes. In this
case a routing table is needed to be able to route a packet to its destination.

A social network could be built purely using a DHT, LifeSocial [4] is an
example of such a network. In this case every shared status message, image
or document would become an entry in the DHT, and a profile consists of
a collection of links to other DHT entries. To ensure only the intended
recipients have access to private data, DHT entries are encrypted with a
symmetric key, which is attached to the entry encrypted with every user’s
public key who should have access to the entry. This means that there’s no
forward secrecy in this network, if a user’s private key is compromised all
these entries can still be decrypted with that key. Even if noticed in time,
re-encrypting all entries affected by a compromised key is quite a costly
operation when the number of entries become larger after using the system
over the years.

3.3. Software components 9

For our case either an unstructured network is suitable, or a structured net-
work where the structure is only used for routing, and not for storing user
data in a DHT. In our architecture data is pushed once to recipients who
store it locally as long as they need it, which means all profile data, messages
and received files are all available locally – even offline – and can be viewed
and searched using local tools on the personal device.

3.3 Software components

In a P2P network every user runs the P2P software on their devices, so it’s
important that it is multi-platform, lightweight, and written in a compiled
language, so we can easily run it on all popular desktop platforms and small
devices as well, including plug computers, home routers, and even smart-
phones.

In our case the P2P software runs as a daemon – a background process –
on the local machine or on another device on the network. Client applica-
tions connect to this daemon and integrate into the desktop or mobile GUI
environment running on the system.

Server machines, home routers and plug computers act as intermediary nodes
in the system, helping their owners’ social network by forwarding packets for
them.

Mobile phones require a different approach. Continuous network usage would
drain the battery quite fast, so we’ll have to minimize it by disabling packet
forwarding for mobile nodes and connecting only to a trusted node with good
connectivity – e.g. a server machine or a plug computer at home – which
would forward the necessary packets for the mobile node.

3.4 Peer-to-peer framework

We have examined various P2P systems looking for an implementation that
can serve as a basis for our social messaging platform. The criteria for a
suitable P2P framework was:

• Free/libre/open-source software.

• Multi-platform, lightweight and written in a compiled language.

10 3. Architecture

• Implements and provides an API for essential P2P features such as
bootstrapping, addressing, routing, encryption and NAT traversal.

We have found GNUnet to be the most promising implementation out there
satisfying these requirements. It is a modular P2P framework written in C,
providing an API for essential P2P functionalities. It supports advanced NAT
(Network Address Translation) traversal, which enables contacting nodes
without a public IP address typically found in home or corporate networks.
Furthermore it has several transport mechanisms with automatic transport
selection, including TCP, UDP, HTTP(S), SMTP and ad-hoc WiFi mesh
networks. It also provides various routing schemes and a distributed hash
table.

It has three operation modes: in P2P mode it makes connections with any
peer in the network, in friend-to-friend (F2F) mode only trusted nodes are
connected, and in mixed mode a minimum number of trusted nodes are
required to be connected at all times.

GNUnet currently has two options for routing packets in the network: the
distance vector and the mesh service.

The distance vector (DV) service uses a fish-eye bounded distance vector
protocol [3], which builds a routing table by gossiping about neighboring
peers within a limited number of hops distance. It is a link-state routing
protocol with improved efficiency: nodes only know about the state of a
local neighborhood, and link state of nodes close to each other are updated
more often than of nodes multiple hops away. The DV service also provides
onion routing of packets through multiple hops, which improves network
connectivity by connecting two peers behind NAT through an intermediary
hop, and makes it harder for an observer to determine who is talking to
whom.

The mesh service creates tunnels through several hops and supports multicast
as well. Initial routes to recipients are discovered using the DHT. It is still
being heavily worked on by the GNUnet team, for instance encryption is
missing and has to be implemented for the multicast groups in order to make
it useful for our purpose.

These routing methods only support delivery of packets to connected nodes,
in order to provide offline messaging, we’ll need a store-and-forward mecha-
nism in the network. This can be implemented by storing encrypted packets
on more stable nodes in the network, until the recipient comes back online.

3.5. Messaging daemon 11

GNUnet also has an anonymous file sharing component which uses a DHT
together with the GNUnet Anonymity Protocol (GAP). For our use case –
transferring files between friends – this is not needed, instead we transfer
files just like other messages, using PSYC’s multicast distribution channels.
As the PSYC packet syntax supports binary data without any encoding, this
causes no additional overhead. In order to transfer files, we would have to
split them up into smaller fragments, as the maximum packet size supported
by GNUnet is 64KB.

3.5 Messaging daemon

GNUnet’s modular architecture allows us to extend it with a service that
implements a messaging protocol, manages the connections between people,
and provides a local client interface. This service – called psycd – uses the
PSYC protocol for communication with both other peers and local clients.

Psycd sends messages through GNUnet core, which encrypts the message
and passes it to the modular transport system, sending packets through one
of its transport plugins.

In our prototype we use direct connections to peers. Users manually add
their friends by exchanging hello messages, which contain their public key
and current addresses. For the prototype version the focus was on the imple-
mentation of the messaging daemon, and we intend to work on the underlying
routing mechanism in future versions.

See figure 3.1 for an illustration of the components used in the system. Dotted
parts are not existing yet, only planned. The arrows depict the flow of
messages between components.

3.6 Functionality

One of the core concepts of PSYC is programmable channels with their own
subscription lists. Using this combined with custom user interfaces makes
it possible to implement the usual functionality found in centralized and
federated social networks, like private and group messages, status updates,
photo and link sharing, as well as features not found in those networks, like
sharing of files and custom content, or real-time notifications for custom
events.

12 3. Architecture

Figure 3.1: Components and message flow in GNUnet

3.6. Functionality 13

As Secure Share runs on the users’ own device and stores all incoming mes-
sages and data locally, this enables offline usage and local search in the data
received from subscribed friends or groups.

14 3. Architecture

4. Implementation

This chapter describes core concepts in PSYC, how they are applied in a
peer-to-peer context and what changes we had to make to the federated
PSYC [7] protocol to make it work in a peer-to-peer network.

Federated PSYC is the existing implementation of the PSYC protocol de-
signed for a federated architecture. It is implemented as a stand-alone dae-
mon process written in the LPC language.

P2P PSYC is the new implementation we have developed and the one we
use in Secure Share. The messaging daemon – called psycd – is implemented
in C as a service in the GNUnet framework. It uses GNUnet libraries for
communication with the rest of GNUnet, and libpsyc for the parsing and
rendering of PSYC packets. It stores data in an SQLite database.

4.1 Syntax

PSYC is a text-based protocol with length prefixes for binary data, which
makes it possible to transmit any kind of content in PSYC packets efficiently
while keeping the protocol extensible. Its syntax is described in Appendix 1.

An example packet looks like this:

:_context psyc :// J61VSCQA:g/#test
:_source_relay psyc :// I0GCD93U:g/
70
=_simple_var value
:_binary_var 5 value
_method_name
Packet
body
here.
|

15

16 4. Implementation

A packet contains a routing header, followed by the length of the rest of the
packet, context state modifiers, the method name and the packet body.

4.2 Identifiers

In federated PSYC a server is identified by its DNS domain name. A server
hosts person and group entities, each of which can manage several channels.
Uniforms serve as identifiers for entities or channels, described with a URI
(Uniform Resource Identifier) syntax:

psyc://host[:port[transport]][/[entity-type]entity[#channel]]
psyc://example.net/~alice#friends

In peer-to-peer PSYC DNS is not employed, a public key is used instead to
identify node, person or group. GNUnet uses a SHA-512 hash of the public
key as node identifiers, we use a similar method for identifying entities. The
ASCII-encoded version of this hash becomes the host part of the uniform,
with no port number and ‘g’ as transport identifier:

psyc://pubkey-hash:g[/[entity-type]entity[#channel]]
psyc://I0GC...L29G:g/#friends

As these identifiers are very long and not user-friendly, they can be aliased
to shorter nicknames. The aliases are only used in client applications, they
do not appear on the protocol level.

In the prototype version GNUnet’s host keys are used for identifying person
entities as well, this simplification allows only one person per node. A more
elaborate identification scheme is to be implemented later.

Each user will have a master key which serves as the identifier of the person,
its purpose is to sign subkeys used by various devices of the person. If a
subkey gets compromised, the master key can be used to prune messages
sent with the compromised key.

These subkeys are assigned to person entities. A GNUnet node can host one
or more entities. When using the distance vector transport, node and entity
IDs are added to the DV routing table, and nodes gossip about available
peers and entities in a local neighborhood up to a limited number of hops
away, in the social circle of users. When using the mesh service, user ID to
current node ID mappings are stored in the DHT.

4.3. Circuits 17

4.3 Circuits

A circuit is a virtual connection between two PSYC nodes, packets are sent
and received over circuits. When sending packets the circuit type is deter-
mined by the transport specified in the target uniform.

In federated PSYC we had TCP, UDP and TLS transports. In P2P PSYC
psycd implements two circuit types so far: TCP circuits for local clients and
GNUnet circuits for remote peers. Unix sockets, TLS and possibly UDP
circuits are planned for later.

4.4 Contacting peers

In federated PSYC it was enough to know the uniform of a person or group
to establish contact. The uniform contains the host name, port number and
transport method, which is all the information needed to establish connection
to the remote entity.

When using PSYC over P2P, two nodes have to know each other’s public key
and know how to reach the node associated with the public key. GNUnet in-
troduces nodes to each other using hello messages which contain a public key
and various transport methods and addresses which can be used to establish
contact with the node. In case of the DV transport a hello message contains
the identifier of another node through which it can be reached. The DV
routing protocol gossips about connected nodes and entities in the network
so they become reachable by their social network.

When two users want to talk to each other, they should have received a hello
message from the other party beforehand. When using the DV transport they
might already know about each other if they are connected through common
friends and received a gossip message about the other node. If they are on
the same network they would discover each other through IPv4 broadcast or
IPv6 multicast, or when using the WLAN transport a WiFi mesh network is
created from the present nodes. Otherwise a hello message can be exchanged
manually between users, using e.g. email or a USB stick. When sending a
hello message over an insecure channel it should be encrypted using a shared
secret in order to maintain confidentiality and integrity of the information
contained within. Usually it’s enough to exchange hello messages manually
once when establishing connection for the first time, after that more stable,
longer running nodes would be available to bootstrap a reconnecting node.

18 4. Implementation

When connection is established between two users, they set appropriate trust
levels for each other – which can be used in routing decisions in the network
– and they subscribe one or more channels of the other party.

4.5 Entities

Entities are addressable objects in the PSYC network. Entity types include
place entities which are used for group communication or news feeds, and
person entities which can make friendships between each other and subscribe
to other entities. Each entity manages one or more channels with different
subscription lists.

Psycd implements person entities enabling clients to link to their entity,
send and receive messages and manage membership of various channels. It
also has a simple implementation of place entities providing dedicated group
messaging.

4.6 Multicast contexts

PSYC uses multicast contexts for efficient distribution of messages. A con-
text is managed by the context master at the top of the distribution tree.
Context members send packets to the context master which distributes them
to context slaves on the next level in the multicast tree, which distribute
them further down the tree. Figure 4.1 shows such a tree.

Entities manage multiple channels, each of which is a separate multicast
context having different membership and multicast distribution tree. Social
interactions, such as status updates, group and private messaging can be
modeled using these channels. An entity manages membership of its chan-
nels, in case of a person entity this could be used to create different circles
of friends using a channel for each of them, or provide different channels
for various topics to which interested friends – or if desired anyone who can
contact the person – can subscribe to. Ad-hoc group and private chats with
friends can be modeled as well with channels of a person entity.

Federated PSYC only implemented manually configured multicast distribu-
tion trees so far, this should be made fully automatic in the peer-to-peer
version. When multicast routing is added, every node becomes a multicast
routing hop serving several multicast contexts. A node can join a multicast

4.7. Distributed state 19

Figure 4.1: Multicast context distribution tree

context at any other node already a member of that particular context. By
adding encryption to multicast contexts any node can help in the multicast
routing process without being able to decrypt message contents. This way
receiving packets for a multicast context does not necessarily mean that the
given node can decrypt the packets sent to it. In its simplest implementation
multicast encryption involves a symmetric key distributed by the context
master to all the members which has to be changed periodically, and when
a member joins or leaves.

In [5] Hordes, an anonymity protocol based on IP multicast is suggested.
While we’re not using IP multicast, part of their analysis could be applied
to application-level multicast implemented in a P2P network.

The prototype does not implement actual multicast yet, multicast contexts
are modeled but messages to contexts are distributed to each member by
unicast.

4.7 Distributed state

PSYC has the concept of distributed state, a set of key-value pairs – state
variables – are assigned to each multicast context and distributed to every
member. It is used to model profile data, context membership, or any other

20 4. Implementation

data related to a context. Advantage of this approach is that it avoids unnec-
essary request-response operations as members have an up-to-date version of
the state data most of the time, and allows local browsing of profiles of con-
tacts, even offline. We have implemented distributed state for P2P PSYC in
psycd – a feature federated PSYC has long planned for but still lacked.

Context state is kept in sync using state modifiers provided by the PSYC
syntax. A state modifier adds, removes or modifies a state variable. State
changes are distributed to context members only once, which means it is very
bandwidth efficient. Using state modifiers require reliable, in-order delivery
of packets. Packet loss can be detected with the help of a _counter variable
in the routing header of packets. As the name suggests, it is a counter incre-
mented by one for every packet sent to the context. When there’s a missed
packet, a node can re-request it from its parent node in the multicast distri-
bution tree. After a node has joined a context, a full state synchronization
is necessary to bring the node up-to-date.

Syntax of a state modifier in Augmented Backus-Naur Form (ABNF):
entity -modifier = operator variable entity -arg
entity -arg = simple -arg / binary -arg / LF

operator = "=" / ":" / "+" / "-" / "?" / "!" / "@"
variable = 1* kwchar
simple -arg = HTAB text -data LF
binary -arg = SP length HTAB binary -data LF
length = 1* DIGIT
binary -data = *OCTET

Operators:

• : (set) – set variable just for the current packet, state is not modified

• = (assign) – assign value to state variable

• + (augment) – concatenate string or add list/dictionary element, de-
pending on type

• - (diminish) – remove list or dictionary element

• @ (update) – update an item in a list or dictionary

• ? alone on a line: request state synchronization, all state variables are
returned in the response

• = alone on a line: reset state, i.e. remove all previously stored state
variables

4.7. Distributed state 21

• the rest of the operators are reserved for future use

4.7.1 Syntax changes

The state implementation involved some syntax changes: we have added a
dictionary type in order to be able to store key-value pairs in a state variable,
and modified the list syntax to make it consistent with the new dictionary
syntax, allowing us to specify types for list elements as well. We have also
added a new update modifier, which allows for updating individual list and
dictionary elements.

These syntax changes were necessary to represent more complex data struc-
tures, such as context members or alias mappings.

4.7.2 List syntax

A list is a list of ordered elements. Its syntax in ABNF is specified as the
following:

list = [default -type] *list -elem
list -sep = "|"
list -elem = list -sep ["=" type] [SP list -value]
list -elem =/ list -sep "=" type ":"] [length] [SP *OCTET]
list -value = %x00 -7B / %x7D -FF ; any byte except "|"

Examples:

=_list_one _type| elem1| elem2| elem3
=_list_two |= _type1 elem1|= _type2 elem2 |= _type3 elem3

Inserting list elements

For inserting values before a specified index the + operator is used. Index
of the first element is 1, index of the last is -1. 0 means the end of the list,
which is the default if the index is omitted.

Syntax of the value part:

list -insert = [list -index SP] list
list -index = "#" 1* DIGIT

22 4. Implementation

Example:
+_list_fruits | banana| mango
+_list_fruits #0 | banana| mango

Removing list elements

For removing elements the - operator is used. Parameters are the start
index which defaults to -1, and the amount of elements to be removed which
defaults to 1.

Syntax of the value part:
list -remove = (list -index SP uint | list -index | uint)

Example:
-_list_fruits #1
-_list_fruits #1 1

4.7.3 Dictionary syntax

A dictionary is a set of key-value pairs. Its syntax specified in ABNF is:
dict = [type] *dict -item
dict -item = dict -item -key dict -item -value
dict -item -key = "{" (dict -key / length SP *OCTET) "}"
dict -item -value = type [SP dict -value]
dict -item -value =/ [length] [":" type] [SP *OCTET]
dict -key = %x00 -7C / %x7E -FF ; any byte except "{"
dict -value = %x00 -7A / %x7C -FF ; any byte except "}"

type is the default type for elements which do not have a type specified.

Examples:
=_dict_one _type {4 key1}6 value1{key2} value2{key3}6 value3
=_dict_two {4 key1}= _type1 :6 val1{key2}= _type2 val2{key3}6 val3

=_dict_avatars _picture{alice }3 \o/{bob}7 \oXoXo/

The struct type can be used to define dictionary values with less repetition.
The structure is first defined once, then used for one or all elements. It works
like a C struct, a list of types are defined in a specific order, after that we
don’t have to specify the types again when specifying the values.

4.7. Distributed state 23

=_struct_member |=_nick|= _picture
=_dict_members _struct_member {13 psyc :// alice /}12 | alice| \o/
=_dict_members {psyc :// alice /}= _struct_member | alice| \o/

Adding dictionary entries

The + operator is used for adding entries to an existing dictionary. The
syntax is equivalent to the initial assignment of entries. If a key already
exists in the dictionary, its value is overwritten.

Removing entries from a dictionary

The - operator is used for removing entries, syntax is the same as assignment
but only the keys are listed.

Example, removing 2 entries:
-_dict_members {psyc :// alice /}{ psyc :// bob/}

4.7.4 Update syntax

For updating specific entries in a list or dictionary the @ operator is used. It
has the following syntax:
update = 1* index SP op [type] [":" length] [SP value]
index = (dict -item -key / index -list / index -struct)
index -list = "#" 1* DIGIT
index -struct = "." type

Examples:
@_list_gallery #-1 =_picture :7 \oXoXo/
@_list_gallery #-1 =:7 \oXoXo/
@_list_fruits #1 = pear
@_list_prices #2 =_int 1000

@_dict_gallery {alice} =_picture :7 \oXoXo/
@_dict_gallery {alice} =:7 \oXoXo/
@_dict_members {psyc :// alice /}. _nick = Alice
@_dict_members {psyc ://bob/}. _nick + Bob
@_dict_members {psyc ://foo/}. _int_score + 2

24 4. Implementation

4.8 Storage

Incoming and outgoing packets, state variables and channel configuration are
stored in an SQLite database. This allows for persistent storage of context
state as well, which is restored after a restart of the node. Packets are stored
for two purposes: it provides a message history for contexts and it can be
used later to resend lost packets to nodes requesting it.

SQLite is used mainly because of its efficient memory handling and wide
platform support.

The database consists of two tables with the following schema:

• contexts (uni blob primary key, state blob, config blob, created
timestamp default current_timestamp)

• packets (context blob, source blob, target blob, counter unsigned
int, fragment unsigned int, packet blob, created timestamp default
current_timestamp,
primary key (context, source, target, counter, fragment))

We store information about subscribed and hosted contexts in these tables.
The contexts table is used for storing configuration and state of contexts,
whereas the packets table is for storing packet history. All this information
is stored in PSYC packet format in the database.

5. Clients

Clients implement a user interface for interacting with the PSYC network.
They connect to the PSYC daemon and link with a person entity. After
successful linking they receive all the packets destined for that person and
can send packets originating from the person. In the current implementation
of psycd no authentication is required for linking, so it’s only suitable for
localhost use, later we’ll provide password authentication as well.

We have developed a client library – called libpsycclient – providing a simple
API for clients. It implements the core logic used by clients to interact with
the PSYC network. It allows clients to establish a connection to psycd, so
they can send and receive packets for their person entity. Clients can define
callback functions for handling incoming packets and various events, e.g.
handling linking and unlinking or adding and removing aliases. The library
also provides various commands used in clients, such as entering and leaving
contexts, sending messages, setting aliases, or querying and manipulating the
context state.

By using the client library, implementing new clients is much simpler. With
the library providing all the underlying logic, client developers can focus on
the GUI, implementing message display and UI elements performing various
commands provided by the library.

5.1 Desktop clients

We have implemented two clients so far: a text-based client and one with a
graphical user interface (GUI).

The text-based client, irssyc (figure 5.1), is implemented in C as a module
for Irssi, a popular chat client. It is more suited for advanced users and for
development and testing purposes. It shows each subscribed channel in one

25

26 5. Clients

Figure 5.1: irssyc, a text-based client

of its windows and provides access to commands implemented by the client
library.

The GUI client, secushare (figure 5.2), is implemented using Qt in C++. It
uses Qt’s relatively new declarative user interface (UI) description language,
QML. The C++ part of the application implements data models used by
QML components to display data – such as the contact list or messages in
a channel – and provides access to the commands implemented by the client
library from QML.

The reasons for choosing Qt were its extensive platform support and its
declarative UI description language, QML, which makes it easier to accom-
plish a complex but still consistent user interface with good usability.

Qt supports most desktop operating systems – including Windows, Linux
and Mac OS X – and a couple of mobile platforms as well: Maemo, MeeGo,
Windows Mobile and Symbian. Recently it has been ported to Android as
well, and there’s an iOS port being developed, too.

5.2. Web interface 27

Figure 5.2: secushare, a GUI client

5.2 Web interface

We have plans for developing a web interface as well, which allows remote
access of a node installed on a plug computer or server machine. This is useful
in case the user does not have a device available that runs a full node with
the whole software stack. The web interface will be a PSYC client written
in JavaScript, communicating with psycd via WebSocket. This way we only
need minimal enhancements on the server side, as the client is pretty much
like a desktop client in this case, only the connection to psycd is implemented
differently. Now that JavaScript typed arrays are available in most modern
browsers, parsing of binary packets are possible now purely in JavaScript.

28 5. Clients

5.3 Mobile clients

As all components of GNUnet are written in C, it is possible to port it
to smartphone platforms. Problem with this approach, however, is that
continuous network traffic drains the battery really soon, so we’ll have to
take measures to reduce network traffic. If the mobile node connects only to
one trusted node – e.g. hosted on a server or plug computer in the user’s home
– which forwards the necessary packets for the mobile node, this significantly
reduces network traffic, as the mobile node does not have to take part in
any routing scheme, which usually means continuous traffic, even if it’s low
volume.

Another approach is to only implement a client application for mobile devices
which connects to a remote psycd on a trusted node over a TLS connection.
This, however, requires users to set up a server or a plug computer at home
and configure their firewall or NAT box to allow connections to the PSYC
daemon. Advantage of the full node approach is that GNUnet already takes
care of NAT traversal, it does not need to deal with (dynamic) DNS and
TLS certificates.

5.4 Extensibility

Extensibility via custom applications is an important aspect of the system.
We have two different approaches to achieve this.

5.4.1 Channel API

Channels can have an interface type defined in an _interface state variable.
The default view is a chat interface, and we’re planning to provide a few other
built-in types in the secushare GUI client, e.g. a microblogging interface with
status updates.

We intend to enable developers to write custom applications on top of chan-
nels, which will run in a sandboxed QML or HTML view inside the client,
using a JavaScript API for sending and receiving packets for the channel.
This approach does not expose any private user data to the applications, as
they only have access to the channel they’re running in, and nothing else.

5.4. Extensibility 29

5.4.2 Client API

For more complex tasks custom client applications have to be built using
the libpsycclient C library. This approach allows full access to user data
and messages for the application, thus users should be careful what client
applications they install on their machine.

30 5. Clients

6. Conclusion and Future Work

The implementation of Secure Share contributes to the efforts of creating a
privacy protecting peer-to-peer social network. The client API provided as
a library allows for creating various client applications right away, while the
lower layers of the system are worked out.

By implementing psycd as a service for the GNUnet framework, it allows
us to benefit from GNUnet’s modular architecture, which can be extended
with new or improved routing schemes in future versions. The DV and
mesh service are areas which need improvement. We need to have proper
multicast message distribution in the network, and the mesh service is a
promising candidate for that. It implements multicast groups, but group
encryption still has to be implemented for this service. Thus improvements
on the routing level are necessary to make the system really scalable and
privacy protecting.

As the implementation is still in a prototype stage, further work is needed
to enhance the functionality of the system. Areas that need more work are:

• improve the functionality and usability of the user interface, e.g. add
dialogs for friendship establishment, and add different interfaces for
different types of channels, e.g. status updates.

• implement dedicated groups independent of person entities

• user identities should be decoupled from node identities by assigning
separate keys to users, so they have a master key and subkeys for their
devices

• file transfer over PSYC, this requires splitting large packets into smaller
fragments and reassembling them when receiving

• add UNIX socket support to psycd, as currently only TCP sockets are
supported for clients

31

32 6. Conclusion and Future Work

• TLS sockets could be added later as well to enable secure connection
to a remote node in case a local installation is not available

• make the system work on mobile devices – this could be done either via
setting up a GNUnet node on the device or via establishing a TLS con-
nection to a remote node; this also requires developing a user interface
specifically designed for mobile devices

• implement a web interface

• implement testing using the GNUnet testing library

Bibliography

[1] Ian Clarke et al. Private Communication Through a Network of Trusted
Connections: The Dark Freenet. url: https://freenetproject.org/
papers/freenet-0.7.5-paper.pdf.

[2] George Danezis et al. “Drac: An architecture for anonymous low-volume
communications”. In: Privacy Enhancing Technologies, volume 6205 of
Lecture Notes in Computer Science. Springer, 2010, pp. 202–219.

[3] Nathan S. Evans. “Methods for Secure Decentralized Routing in Open
Networks”. PhD thesis. Garching bei München: Technische Universität
München, 2011, p. 234. isbn: 3-937201-26-2. url: https://gnunet.or
g/nate2011thesis.

[4] K. Graffi et al. “LifeSocial.KOM: A secure and P2P-based solution for
online social networks”. In: Consumer Communications and Networking
Conference (CCNC), 2011 IEEE. IEEE. 2011, pp. 554–558.

[5] Brian Neil Levine and Clay Shields. “Hordes –- A Multicast Based Pro-
tocol for Anonymity”. In: Journal of Computer Security 10.3 (2002),
213–240. issn: 0926-227X. url: http://portal.acm.org/citation.c
fm?id=603406.

[6] Libpsyc Performance Benchmarks. url: http://lib.psyc.eu/bench.
[7] Carlo v. Loesch. Protocol for Synchronous Conferencing. 2007. url: ht

tp://www.psyc.eu/whitepaper/white.en.html.
[8] Carlo v. Loesch, Gabor Adam Toth, and Mathias Baumann. “Scalability

& Paranoia in a Decentralized Social Network”. In: Federated Social Web
conference. Berlin, Germany, 2011. url: http://secushare.org/201
1-FSW-Scalability-Paranoia.

33

https://freenetproject.org/papers/freenet-0.7.5-paper.pdf
https://freenetproject.org/papers/freenet-0.7.5-paper.pdf
https://gnunet.org/nate2011thesis
https://gnunet.org/nate2011thesis
http://portal.acm.org/citation.cfm?id=603406
http://portal.acm.org/citation.cfm?id=603406
http://lib.psyc.eu/bench
http://www.psyc.eu/whitepaper/white.en.html
http://www.psyc.eu/whitepaper/white.en.html
http://secushare.org/2011-FSW-Scalability-Paranoia
http://secushare.org/2011-FSW-Scalability-Paranoia

34 Bibliography

Abbreviations

ABNF Augmented Backus-Naur Form
DHT Distributed Hash Table
DNS Domain Name System
DV Distance Vector (routing protocol)
F2F Friend-to-Friend (network architecture)
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
OTR Off-the-Record Messaging
P2P Peer-to-Peer (network architecture)
PGP Pretty Good Privacy
PSYC Protocol for SYnchronous Conferencing
QML Qt Modeling Language
SHA Secure Hash Algorithm
SMTP Simple Mail Transfer Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
UI User Interface
URI Uniform Resource Identifier
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

35

36 6. Abbreviations

Appendix 1 - PSYC Syntax

Syntaxes in this section are described in Augmented Backus-Naur Form
(ABNF).

PACKET SYNTAX

packet = routing -header [content -length content] "|" LF
; the length of content is either implicit
; (scan until LF "|" LF)
; or explicitly reported in content -length.

routing -header = *routing -modifier
entity -header = *sync -operation *entity -modifier
content = entity -header [body LF]
content -length = [length] LF

routing -modifier= operator variable (simple -arg / LF)
sync -operation = ("=" LF / "?" LF)
entity -modifier = operator variable entity -arg
entity -arg = simple -arg / binary -arg / LF

body = method [LF data]

operator = "=" / ":" / "+" / "-" / "?" / "!" / "@"
simple -arg = HTAB text -data LF
binary -arg = SP length HTAB binary -data LF

length = 1*DIGIT
binary -data = *OCTET

; a length byte long byte sequence

method = 1* kwchar
variable = 1* kwchar
text -data = *nonlchar

data = *OCTET
; amount of bytes as given by length or until
; an (LF "|" LF) sequence has been encountered

37

38 6. Appendix 1 - PSYC Syntax

nonlchar = %x00 -09 / %x0B -FF
; any byte except \n

kwchar = %x30 -39 / %x41 -5A / %x61 -7A / "_"
; alphanumeric or _

	Abstract
	Introduction
	Requirements and Related Work
	Privacy
	Scalability
	Peer-to-peer networks

	Architecture
	P2P network architecture
	Structure of the network
	Software components
	Peer-to-peer framework
	Messaging daemon
	Functionality

	Implementation
	Syntax
	Identifiers
	Circuits
	Contacting peers
	Entities
	Multicast contexts
	Distributed state
	Syntax changes
	List syntax
	Dictionary syntax
	Update syntax

	Storage

	Clients
	Desktop clients
	Web interface
	Mobile clients
	Extensibility
	Channel API
	Client API

	Conclusion and Future Work
	Bibliography
	Abbreviations
	Appendix 1 - PSYC Syntax

