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Secure Share

A framework for secure and privacy-protecting social
interaction based on peer-to-peer technology
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Goals

arbitrary messanging
from one-to-one to many-to-many
status updates and messages

file transfer
sharing of pictures, music etc.
collaborative document editing
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Privacy

Privacy
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Ideal Case
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Centralized services
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Privacy requirements

end-to-end encryption
forward secrecy
padding of packets
delayed forwarding
private contact list
free and open source software
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Approach: federated systems

And why not to use them
personal data on servers
personal data shared with even more server operators
only link-level encryption
PGP, OTR not enough
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Scalability

Scalability
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Social interaction

one-to-many status updates
many-to-many group communication
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Multicast
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Architecture

Architecture
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Friend-to-friend architecture

connect to trusted nodes
prevents active attacks
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Personal devices

Software runs on personal devices
Data is stored on personal devices
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Personal devices

laptop, PC
plug computers, home routers, servers
smartphones
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Peer-to-peer framework requirements

free/libre/open-source software
multi-platform, lightweight, written in a compiled
language
provides API for essential P2P features

bootstrapping, addressing, routing, encryption, NAT
traversal
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GNUnet

written in C
multi-platform
modular framework
advanced NAT traversal
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GNUnet

multiple transport methods
TCP, UDP
HTTP, HTTPS
SMTP
ad-hoc WiFi
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GNUnet

distributed hash table (DHT)
file sharing

based on DHT and GAP
various routing schemes

fish-eye bounded distance vector protocol
gossiping in a limited neighborhood
improves connectivity
onion routing

mesh service
supports multicast
uses DHT for routing



Introduction Architecture Clients Future work

psycd

messaging protocol
manages connections, friendship between users
client interface
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GNUnet - components and message flow
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Implementation

Implementation
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Components

libpsyc
psycd
GNUnet libraries
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Identifiers

Federated PSYC

based on DNS

psyc://example.net/~alice#friends

P2P PSYC

based on public key

psyc://I0GC...L29G:g/#friends
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Contacting peers

initial contact: hello message

public key
current addresses

next time contact to same address
or find new address through other peers
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Circuits

GNUnet
TCP
UNIX domain sockets
TLS
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Entities

person
clients link to person entity
can subscribe other entities

place
group communication
news feeds
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Multicast contexts
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Distributed state

profile data, context membership
push changes once
synchronize after subscription
recover lost packets
syntax changes to support more complex data structures
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Storage

incoming and outgoing packets
state variables
SQLite database

multiplatform
lightweight
small memory footprint
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Clients

Clients
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Desktop clients

secushare
based on Qt/QML
multiplatform
touch UI

irssyc
based on irssi
intended for debugging and for advanced users
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Web interface

JavaScript
WebSocket
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Mobile clients

port GNUnet to mobile devices
or client only approach
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Extensibility

channel API
using a sandboxed QML or HTML view
JavaScript API
enables easy app development
access only channel data

client API
using libpsycclient
allows for developing full-fledged clients
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Future work

Future work
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Future work

routing layer - multicast
separate user and node identities
user interface

improvements on desktop
implement web UI
implement mobile UI

file transfers
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