
Introduction Architecture Clients Future work

Secure Share

Daniel Reusche and Gabor Toth

August 15, 2012



Introduction Architecture Clients Future work

Secure Share

A framework for secure and privacy-protecting social
interaction based on peer-to-peer technology



Introduction Architecture Clients Future work

Goals

arbitrary messanging
from one-to-one to many-to-many
status updates and messages

file transfer
sharing of pictures, music etc.
collaborative document editing



Introduction Architecture Clients Future work

Privacy

Privacy



Introduction Architecture Clients Future work

Ideal Case



Introduction Architecture Clients Future work

Centralized services



Introduction Architecture Clients Future work

Privacy requirements

end-to-end encryption
forward secrecy
padding of packets
delayed forwarding
private contact list
free and open source software



Introduction Architecture Clients Future work

Approach: federated systems

And why not to use them
personal data on servers
personal data shared with even more server operators
only link-level encryption
PGP, OTR not enough



Introduction Architecture Clients Future work

Scalability

Scalability



Introduction Architecture Clients Future work

Social interaction

one-to-many status updates
many-to-many group communication



Introduction Architecture Clients Future work

Multicast



Introduction Architecture Clients Future work

Architecture

Architecture



Introduction Architecture Clients Future work

Friend-to-friend architecture

connect to trusted nodes
prevents active attacks



Introduction Architecture Clients Future work

Personal devices

Software runs on personal devices
Data is stored on personal devices



Introduction Architecture Clients Future work

Personal devices

laptop, PC
plug computers, home routers, servers
smartphones



Introduction Architecture Clients Future work

Peer-to-peer framework requirements

free/libre/open-source software
multi-platform, lightweight, written in a compiled
language
provides API for essential P2P features

bootstrapping, addressing, routing, encryption, NAT
traversal



Introduction Architecture Clients Future work

GNUnet

written in C
multi-platform
modular framework
advanced NAT traversal



Introduction Architecture Clients Future work

GNUnet

multiple transport methods
TCP, UDP
HTTP, HTTPS
SMTP
ad-hoc WiFi



Introduction Architecture Clients Future work

GNUnet

distributed hash table (DHT)
file sharing

based on DHT and GAP
various routing schemes

fish-eye bounded distance vector protocol
gossiping in a limited neighborhood
improves connectivity
onion routing

mesh service
supports multicast
uses DHT for routing



Introduction Architecture Clients Future work

psycd

messaging protocol
manages connections, friendship between users
client interface



Introduction Architecture Clients Future work

GNUnet - components and message flow



Introduction Architecture Clients Future work

Implementation

Implementation



Introduction Architecture Clients Future work

Components

libpsyc
psycd
GNUnet libraries



Introduction Architecture Clients Future work

Identifiers

Federated PSYC

based on DNS

psyc://example.net/~alice#friends

P2P PSYC

based on public key

psyc://I0GC...L29G:g/#friends



Introduction Architecture Clients Future work

Contacting peers

initial contact: hello message

public key
current addresses

next time contact to same address
or find new address through other peers



Introduction Architecture Clients Future work

Circuits

GNUnet
TCP
UNIX domain sockets
TLS



Introduction Architecture Clients Future work

Entities

person
clients link to person entity
can subscribe other entities

place
group communication
news feeds



Introduction Architecture Clients Future work

Multicast contexts



Introduction Architecture Clients Future work

Distributed state

profile data, context membership
push changes once
synchronize after subscription
recover lost packets
syntax changes to support more complex data structures



Introduction Architecture Clients Future work

Storage

incoming and outgoing packets
state variables
SQLite database

multiplatform
lightweight
small memory footprint



Introduction Architecture Clients Future work

Clients

Clients



Introduction Architecture Clients Future work

Desktop clients

secushare
based on Qt/QML
multiplatform
touch UI

irssyc
based on irssi
intended for debugging and for advanced users



Introduction Architecture Clients Future work

Web interface

JavaScript
WebSocket



Introduction Architecture Clients Future work

Mobile clients

port GNUnet to mobile devices
or client only approach



Introduction Architecture Clients Future work

Extensibility

channel API
using a sandboxed QML or HTML view
JavaScript API
enables easy app development
access only channel data

client API
using libpsycclient
allows for developing full-fledged clients



Introduction Architecture Clients Future work

Future work

Future work



Introduction Architecture Clients Future work

Future work

routing layer - multicast
separate user and node identities
user interface

improvements on desktop
implement web UI
implement mobile UI

file transfers


	Introduction
	Secure Share
	Privacy
	Scalability

	Architecture
	Architecture
	Peer-to-Peer
	Implementation

	Clients
	Clients

	Future work
	Future work


