
GNET

Christian Grothoff∗ Ioana Patrascu†

Krista Bennett‡ Tiberiu Stef § Tzvetan Horozov¶

Version 0.5.2
June 13, 2002

Abstract

This paper describes GNet, a reliable anonymous distributed backup
system with reasonable defenses against malicious hosts and low overhead
in traffic and CPU time. The system design is described and compared
to other publicly used services with similar goals. Additionally, the im-
plementation and the protocols of GNet are presented.

1 Introduction

GNet strives to provide a reliable anonymous distributed backup system.
It consists of several layers. The communication layer provides certain
guarantees for the higher protocols; it provides authentication of the par-
ticipating parties and confidentiality for the data (similar to SSH). On top
of this layer, a first simple service—distributed anonymous file sharing—is
implemented.

1.1 Design Goals

GNet central goals are anonymity for the users, deniability for all partic-
ipants and decentralization. In order to achieve this, GNet aims towards
maximal distribution of content. Efficiency is a secondary goal, which is
partially achieved by not specifying the exact behaviour of nodes. Instead,
the GNet protocols say what is allowed and the network rewards nodes
for successful behaviour. This way, optimizations in the routing of queries
can be performed in a host-specific way, without violating the network’s
protocols.

As the optimal solution may depend on the requirements of the higher-
level problem (e.g. anonymity may be improved using indirections), the
higher level protocols must be involved in routing decisions, the nodes

∗grothoff@cs.purdue.edu
†patrascu@cs.purdue.edu
‡klb@cs.purdue.edu
§tstef@cs.purdue.edu
¶horozov@cs.purdue.edu

1



must to some extend know what they are dealing with. Thus the pure
communication layer is extended by a layer that knows a little bit about
the data that it is handling. The higher level protocols should also be
able to detect misuse of GNet (attacks) and react, crediting hosts for
good behavior and limiting access for malicious nodes.

CPU time is a critical resource, especially on the busiest servers. Thus
GNet aims to reduce encryption overhead for the servers and intermedi-
aries. For clients executing the user-level part of the protocols, reasonable
amounts of CPU time should be available.

As available data usually exceeds available disk space, data must be
discarded somteimes. GNet should be capable of distinguishing important
(i.e. frequently accessed) data from garbage. Furthermore, data provided
by participating hosts should have a higher chance of survival than content
from non-contributing (potentially malicious) hosts.

If a host receives more queries than can be answered with available
bandwidth, it should drop the queries from hosts that have earned less
credit.

1.2 Outline of the paper

Related work is presented in section 2. In section 3 we describe the low-
level communication protocol and how identification and confidentiality
are achieved. Section 4 describes the high-level file sharing system. In
Section 5 we discuss rating of hosts and defenses against attacks. Section
6 describes the implementation. Section 7 gives details on the protocols
used in GNet. Section 8 gives some data gathered from initial test runs
of GNet and section 9 concludes the paper.

2 Related Work

Currently, three major systems are used on the Internet with similar func-
tionality to GNet. Napster [1] is a distributed file sharing system currently
limited to mp3 files where file distribution is coordinated through a central
server. Gnutella [2] is a file sharing system based on the HTTP proto-
col without a centralized lookup mechanism or support for encryption.
Freenet [5] is a distributed content sharing system that uses encryption
on the hosts to protect servers from deciphering which content they serve.
The remainder of this section discusses the technical issues in these im-
plementations.

2.1 Napster

Napster’s major drawback is that it is easy to find out everything about the
communication by simply sniffing the traffic. As Napster is centralized, it
is particulary easy to shut down the system or to disclose user information.
The limitation to mp3 files is just a corporate decision, not a technical issue.
Content does not automatically migrate in Napster; the receiver has to
add content manually to the export list.

2



The advantage of the Napster approach is the low overhead for the
protocol and distribution and the fast and reliable lookup.

Napster has been used mostly to facilitate violations of contemporary
copyright law by providing a service for users who want to share music.

2.2 Gnutella

Gnutella initially suffered from incompatible implementations and a small
user community. The lack of a centralized lookup mechanism and the
immense overhead to distribute queries is one of the main drawbacks of the
system. Furthermore, the communication is not anonymous. The protocol
leaks information on search queries and identifies the hosts providing the
content.

On the other hand, the lack of centralization can be an advantage of
Gnutella, which makes it harder to attack the network. As with Nap-
ster, content in Gnutella is explicitly provided by the participating hosts.
As such, content does not magically disappear from the network. Like
Napster, content does not automatically migrate in Gnutella.

Gnutella also has issues with ”freeloading”; that is, users can download
massive amounts of content without contributing any content of their own,
effectively depleting bandwidth and storage resources without compensa-
tion. This could lead to nodes with more resources essentially becoming
central servers, even though the network is ”decentralized”.

2.3 Freenet

Freenet does not suffer from the centralization issues associated with Nap-
ster. Additionally, the encryption scheme prevents individual servers from
identifying the actual content of the data stored or transmitted using
their resources. However, unlike Napster or Gnutella, it is possible for
files stored in Freenet to disappear in favour of other files without user-
intervention.

Freenet has the advantage that an individual server has no direct
knowledge of the actual content of the data it is storing and distributing.
This may shift some of the burden away from individual server owners in
terms of liability. Yet, GNet’s solution where a single host usually has no
means of reconstructing the whole file (even assuming the host can guess
the key) seems to be better. If the host would have to search the whole
network to complete the file (in addition to guessing the key), it should
be much harder to challenge the host operator for hosting small parts of
the content.

Freenet encrypts the content using keys that identify the resource. If
the key is known, the associated file can be deciphered. Freenet has several
different types of keys. The different key types are used to allow additional
functionalities such as content signing, personal namespaces or splitting
of content. As the key-structure is exposed directly to the user, use of the
system requires a fair amount of knowledge. As far as we know, only the
simplest key types (i.e. an unsigned, global namespace) are widely used.
Recently, keys that allow content updating have been introduced.

3



Search queries in Freenet are serialized. Though this reduces the traffic
overhead, it increases the time for a search to complete. On the other
hand, content is propagated back on the search path. This increases the
anonymity of the participants; a single communication might simply be
a part of the search path with neither of the participants as the ultimate
sender or receiver. For long search paths, this content propagation may
dramatically increase the overall traffic on the network. Unlike GNet,
the content propagation path is fixed, individual nodes can not decide if
they should indirect the reply or short-cut the reply path. Thus Freenet
provides similar anonymity compared to GNet, but uses more bandwidth
to achieve this.

A significant disadvantage of the current implementation of Freenet is
that it does not allow direct sharing of files from the local drive without
encrypting and inserting them first. Thus, to ensure content preservation,
a node operator must keep a local copy of the unencrypted file in addition
to the encrypted content on the Freenet server. Allowing the Freenet server
to share local files directly may increase the stability and availablility of
content in Freenet dramatically, especially for content where the node
operator does not have to fear interference from outside authorities.1

Freenet is still under development. Recent versions had problems with
excessive CPU usage and failed to acknowledge disk quotas set by the
users (if not enforced by the operating system). One problem is that the
Freenet server is implemented in Java. This requires every node to run a
Java Virtual Machine (JVM) all the time. The memory requirements of
a JVM are often not tolerable for many potential nodes.

2.4 Mojo Nation

Mojo Nation is a distributed file sharing system where hosts need to pro-
vide bandwidth and drive space to earn Mojo, micro-credits. Mojo can
then be used to request services from other hosts. This protects the
network against freeloaders (people that use the network but do not con-
tribute). This approach is similar to GNet’s ranking, but it does not allow
using excess capacities for new users and does not provide anonymity.

Mojo Nation is, like Napster, a commercial product. The website does
not make any specific claims about how authentication is achieved.

2.5 Generic Problems

All three implementations suffer from the problem that a single file is
always stored as a whole in the network.2 This is a particular problem for
huge files which may require the server to provide excessive bandwidth on
a single client.

Furthermore, the distribution of search queries is a common problem.
Napster and Gnutella search for filenames, which might be not appropri-
ate. Freenet requires unique keys which might be non-trivial to guess.

1The content may still be valuable to the network as participants in other countries may
not be allowed to access it using common Internet technologies.

2Freenet allows splitting of files, but this feature seems to be rarely used.

4



The keyservers inside of Freenet try to solve this problem by providing
indices to all available keys. The disadvantage of the keyservers is that
they must be maintained; additionally, they often index content which
is no longer available. As far as we know, GNet is the first system that
allows boolean queries and provides anonymity.

Finally, neither of the networks can make any guarantees on how long
content will be available after the initial node which inserted the content
goes offline. For Napster and Gnutella, this usually means the end of the
content in the system. Even if the content has been migrated to other
servers in Freenet, the decision to delete the content may come at any time
since replacement of content follows the Least Recently Used algorithm.
GNet allows the nodes to operate slightly better as nodes are allowed to
try to be clever about which content they are hosting. As rare content
is usually more valuable, hosts could optimize their storage policies. Yet,
heuristics for this must still be developed.

Achieving guarantees on how long content is preserved has been ex-
ploited by other projects. For example, the Freehaven Project deploys a
Buddy system where content is split into two parts and each one checks
periodically that the other is still in the network. Still, no fully distributed
system can guarantee that content will never be lost.3

3 Distributed safe communication

The basic communication mechanism used in GNet is very similar to SSH.
2-key RSA encryption is used to exchange a session key between two
nodes. Each node in the network is identified by its public key (or as a
short handle for the public key; a hashcode of the public key is used).

The major difference between SSH and GNet’s lowest layer is the use
of UDP instead of TCP. TCP suffers from overhead introduced by the
initial handshake, guarantees of order of packets, and packet loss. GNet
does not make such guarantees; packets may be lost. This is because
most higher-level GNet protocols do not rely on these guarantees. When
a search-query is broadcast to 20 hosts, it does not matter if only 19 receive
it. When a reply does not arrive, one of the two things may happen. If the
host has already received the requested information from another host, it
will simply ignore the failed request. Otherwise, the host may re-issue the
query.

In GNet, the higher-level services have the responsibility to cope with
lost packets.

3.1 Issues

Man-in-the-middle

One of the main issues with SSH is the possibility of a man-in-the-middle
attack when the public keys are exchanged. Interestingly, this attack
should not have an impact on GNet. Hosts are identified by their secret
key, and that is all that matters. IP addresses, port numbers, locations,

3Actually, this probably also applies for centralized systems. Make your backup now. :-)

5



are all irrelevant properties. If Mallory intercepts the communication
between Alice and Bob, they will both exchange data with Mallory—and
judge him by his behavior (potentially affecting his reputation). If he
answers queries and behaves well, they will give Mallory credit for that.
If Mallory floods their nodes with requests, they will at some point refuse
to connect with him as his reputation will deteriorate.

As long as Alice and Bob just want to communicate with someone
(and get to know someone), Mallory cannot stop them. In GNet, nodes
never want to communicate with a specific host in the sense of an IP or
other network address. They only want to communicate with a node that
has a particular secret key, and these secret keys are learned over time.

3.1.1 UDP

Using TCP instead of UDP has the big advantage that feedback ciphers
can be used without problems. With UDP this is not practical, as packets
may be lost or arrive out-of-order. Thus, for each packet, a new initial
sequence number is chosen.

The lifetime of a session key is also well-defined for TCP: it lasts as
long as the connection lasts. For UDP, there is no connection. Thus,
session keys expire after a fixed amount of time. Distributing new keys
may be done at any time by either of the two hosts sharing a key. Of
course, this may lead to a few lost packets. For example, if one host sends
a new session key and the other host continues to use the old key, packets
sent by the second host will look like garbage until both hosts successfully
use the same session key. The same will happen if a packet with the new
session key is lost. As stated previously, however, there are no guaranteed
deliveries.

3.1.2 Dynamic IPs

GNet nodes may have a dialup connection and change their IPs rather
frequently. Thus, each GNet node must not only know the public key of
other nodes, but also their current IP and port. When a node (re-)joins
GNet, it sends a message to other known nodes containing its current IP
and port and a timestamp indicating how long this address will be valid.
This data is then signed with the private key of the joining node. This sig-
nature is required because otherwise an attack is possible where malicious
hosts send out incorrect sender-addresses and thus hinder communication
between well-behaved nodes.

3.2 Encryption primitives

GNet uses RSA for the asymmetric encryption and Blowfish for the symet-
ric exchange. RSA was chosen because it seems to be the most suitable
(i.e. difficult to break and patent-free) choice for our purposes. Blow-
fish was chosen because the protocol is intended for implementations in
software, it is freely available and is fast.

RIPE160 was chosen for the hash primitive because this is the longest
(in terms of the output) hash-function supported by OpenSSL. The 160

6



bits make collissions very unlikely, even with lots of content in the network.
CRC32 was chosen as a checksum for the data because there are exactly
32 bit left in the 1024 byte inodes if each inode stores 51 RIPE160 hashes.

3.3 Efficient communication

Since UDP is used, the delay of the network connection can not be mea-
sured by simply sending packets (especially as the receiver may not reply
instantly or at all). Thus, the best way to obtain routing information may
be to look at the IP addresses and assume that closer addresses are in fact
closer to the local node. The recent Code Red worm was fairly successful
using this technique.

Of course, this heuristic does not preclude better implementations
gathering further information, (e.g. by using ping (ICMP) or new GNet
subprotocols). It is the responsibility of every node to optimize its be-
havior. After all, each node is evaluated by other hosts’ perceptions of its
performance.

Each packet sent in GNet has a certain overhead. This includes en-
cryption and decryption, communication of the packet header and the
actual processing of the packet. In order to keep the number of packets
low, GNet buffers outputs for each target node, trying to achieve optimal
packet sizes. By default, the optimal packet size is 1472 bytes (the optimal
size for ethernet).

Buffering outgoing data per host is particulary useful for requests, as
the node can freely choose to whom to send the request. Good candidates
for requests are hosts with pending output requests that have not been
sent because the minimum packet size was not reached.

The heuristic used to decide whom to send data is open for improve-
ments. Changes to these implementation details in a node in order to
improve performance are not a violation of the GNet protocol.

3.4 Joining GNet

A node that wants to join GNet must know at least one other node. This
may be achieved by providing a list of initial nodes together with the
distribution or by publishing lists of known nodes in newsgroups or on
public webpages. GNet uses “HELO” messages to exchange information
about nodes.

As “HELO” messages contain the connection information (IP and
Port), these messges must be signed to avoid attacks by malicious hosts
that put fake sender addresses. As addresses may change (e.g. in case of
Dial-up connections), these signed “HELO” messages must also be times-
tamped with an expiration date. This prevents malicious hosts from for-
warding outdated “HELO”s.

After sending an initial “HELO” message to the known nodes, these
nodes will include the new node in their queries and eventually forward
other “HELO” messages. Forwarding “HELO” messages is performed ran-
domly (the node chooses randomly two hosts that it knows and forwards
one of them the address of the other).

7



4 Ranking

4.1 Malicious Host Detection

Any distributed network is potentially vulnerable to attacks by malicious
hosts that violate the protocols and rules set for the network. Malicious
behavior includes attacks against the content in the network as well as
against network resources, such as bandwidth.

In order to protect the network, malicious hosts must be detected and
their impact limited. As the network is distributed and hosts should be
able to join the network at any time without signing up with a central
authority, the detection of malicious hosts must also be decentralized.

As a first step, every node must evaluate the behavior of the other
nodes that it communicates with. New nodes that join the network start
as untrusted. Those nodes may send requests, but the established nodes
will only reply if they have excess bandwidth. Even if the old hosts do
not react to queries at all, a Denial-of-Service attack by an overwhelming
number of malicious hosts cannot be fought off if the malicious hosts have
more bandwidth.4 What can be done is to limit the ability of malicious
hosts to consume network bandwidth; these hosts should not be able to
produce additional traffic other than the traffic that originates from the
malicious hosts themselves.

For example, in Gnutella any host can start a search query. Each
query multiplies in number as additional hosts are asked. In this way,
a few malicious hosts may be able to bring down the entire network by
making a large number of search queries. Thus, hosts that enter the
network must be limited in their actions as follows:

• their requests should have a lower priority than the requests of es-
tablished participating nodes

• content brought into the network by these hosts should be discarded
in favor of content from established hosts

• they should be given content to store that is not important

Once the new hosts are in the network for a while, the other nodes should
monitor their behavior:

• Did they keep the content they were given?

• What is the availability and bandwidth provided?

• Do they obey the protocols?

• Is the content they provide valuable?

For example, the neighbors in the network may give the new node some
files that are hardly ever requested. These established nodes keep copies
of the files. A few days later, they request the files from the new node. If
the node still has the files, its rank is increased. Next, parts of the files
may be dropped from the database of the established nodes. Only a few
pieces of the file are kept. If a few weeks later the new node still has these
pieces, its rank is increased again. Availability and bandwidth of a node

4This is a general problem with the current internet architecture.

8



should be kept as separate criteria for the node evaluation. GNet can use
these to decide where to store which content.

It is essential for GNet that it is possible to increase the ranking of well-
behaved hosts without decreasing the ranking of other hosts to the same
amount (no zero-sum of the rankings). Otherwise, all hosts would always
have credit “zero” as nobody has credit to start with. Still, any activity
that can be used for malicious behavior should decrease the ranking of
the host. The scoring system must be designed to make sure that for
malicious hosts the equation

contribution + ε ≥ damage− capacity (1)

is satisfied where ε > 0 should be small. capacity here is the bandwidth of
the malicious host—even ignored search queries will do this much damage
without contributing to the system. On the other hand, the ranking of
well-behaved, participating hosts must increase over time.

If ε is sufficiently small, this system will ensure that as long as a
sufficient majority of the hosts is not malicious, the network ”works”.

The current implementation

Hosts in GNet do not have a global credibility. Instead, each node in GNet
keeps track of its opinion about all the other nodes it has contact with,
based on their previous behavior.

When hosts perform queries, their ranking is decreased (they pay for
the query); if they send (valid) replies, their ranking is increased. The
amount of the increase/decrease depends on the priority of the query that
was asked (or answered). This basic scheme must be extended such that
new nodes can earn credit and participate; if one node must always pay as
much as another node receives, the system would be zero-sum and could
not work. The source of new credit is excess bandwidth.

If the node processing the query has excess bandwidth (and CPU
time), it may decide to not charge the sender of the query. After all,
the query did not cost it any performance. This is important because
it allows nodes to build up credit. The system will produce credibility,
and the nodes that provide more service than they use will rise in their
ranking (the ranking is still increased even if excess bandwidth is used).

If the node processing the query is very busy, it should discard queries
with low priorities (and charge the nodes for asking questions). Hosts
asking queries with a priority higher than their own ranking, the policy
decreases the ranking to the allowed ranking. Host rankings are kept for
each pair of nodes that know each other.

4.2 Content ranking

In order to prevent malicious hosts from inserting garbage into the net-
work (e.g. /dev/random), content must be ranked. The only way to
determine if the content was valuable is to ask the user. The nodes may
then decide to propagate the evaluation back on the path the data came
from. Of course, the back-propagation should be decided on the available
bandwidth, ranking of the hosts involved and the evaluation of the user.

9



Also, the user that ranked the content may be malicious. Thus, only
content rankings from trusted hosts should be considered.

Apart from user feedback, the number of requests for the content
should be considered. If several keys on a host match (e.g. because
the same key has been reused for different files), the hosts may want
to consider discarding content that—even if not ranked lowest—has low
feedback scores.

The initial ranking of content should be limited by the trust level of
the host inserting the content. Mind that any propagation of content from
one node to another cannot be distinguished from content insertion. The
user inserting the content into GNet should be able to tell the client how
important the content is for the user. The node can then ask other nodes
to copy the content—and copying should lower the rank of a node.5

Ranking Content

Content ranking is an important feature of GNet. It allows GNet to make
better decisions on which content to discard, even if there can still be
no strict guarantees that content will be preserved. As content with low
ranking is discarded, this content will have a high survival rate, regardless
of whether it is requested frequently or not.

Of course, over time, the content may still disappear. Other content
may achieve a higher ranking, either because it is frequently requested or
because hosts in the network insert content with an even higher ranking.
In any case, this development occurs slowly. The general scheme that
nodes are ranked will increase the interest of the node operators to keep
their nodes operational and the content intact.

Ranking of content occurs at two points. First, when the content
is inserted, the user can specify how important the content is. Other
nodes may acknowledge that priority (based on the question of whether
or not they trust the origin of the data) or decrease it. Later, local nodes
may decide to increase the ranking of content stored locally because it is
requested. Increasing the ranking of the content by the priority of the
request answered (and maybe some low value for requests answered with
priority zero) should give an acceptable heuristic.

4.3 Inserting Content

In order to distribute content on GNet, the first step is to provide a node
to the network. If the content is important, it is required that the node
stays active in the network for a while before distributing the content in
order to achieve a certain trust level.

Even with the lowest level of trust (i.e. host ranked as malicious),
the new node can ask other nodes to copy its content. Depending on
available bandwidth and disk storage, the other nodes may or may not do
so. Established nodes might want to take the content in order to maximize
the number of queries they can answer (since correct answers to queries

5exchanging content (trade) should not

10



increases their ranking). Still, they would probably rank the content at
the lowest end and discard it if it is not requested.

If the host where the content is inserted has a higher ranking, it may
be able to decide between asking other hosts to copy the content and
exchanging the content for different data instead. Exchanging content is
important in order to increase the entropy in the content distribution.
The more randomly the content is distributed, the harder it will be to
determine the original provider of the content.

Content with a poor rating may be discarded if a node runs out of
space and more promising content is offered. Nodes may keep track of
where the content they have originated from, of course, after a time, that
information may become irrelevant to judge the host that send the content
and then the information where the content came from may be discarded.

5 Anonymous file sharing

5.1 What is anonymity?

Anonymous communication is commonly perceived as communication for
which it is impossible for third parties to identify the participants involved.
For us, anonymous communication is supposed to guarantee that a data
transfer cannot be connected with the real sender or receiver but only with
the immediate hosts participating (which might just be intermediaries).
Furthermore, the communication should be confidential in the sense that
only the receiver knows the content of the message. The sender and the
intermediaries should not be able to determine the actual content. Also,
the original submitter of the content should be able to plausibly deny that
the content originated from him or her, even if all nodes (except for the
submitter’s node) that the content was going through were malicious and
kept records of all their transactions.

This anonymity requirement is difficult to achieve, especially if the
communicating parties are supposed to identify themselves for the lower-
level protocols that provide identification and confidentiality. This is par-
ticularly true when malicious hosts are involved that have the ability to
expose the packets that they can decrypt.

5.2 Encrypting Queries

GNet tries to achieve anonymity by making it nearly impossible for content
providers to identify what kind of content they are serving. Furthermore,
queries are encrypted by the client and can not be deciphered by the
intermediaries or the final server that hosts the data.

Making it impossible for intermediaries to decrypt the content is achieved
by hashing the query string using a one-way function [6] and using the
hashcode as an index for the requested file. In order to allow reasonable
search queries, hashcodes can be combined using the logical operators
and, or and not. This increases the searchability of GNet over systems
like Freenet. On the other hand, using a combination of short words makes

11



dictionary attacks much easier.6 Yet, the choice for the keywords is up
to the users; they must decide between usability (short keywords) and
security (long keywords).

5.3 Distributing the content

The data stored in GNet is split into small chunks which are individually
hashed. These hashcodes then serve as keys for the distributed parts of
the file. The hashcodes are grouped into indirection nodes, similar to
UNIX inodes. Generally speaking, since content is torn apart, no single
provider (except for the one inserting the content at the beginning) will
host files in their entirety. Furthermore, as indirection nodes and data
nodes are not easily distinguished, it is hard for the content provider to
determine if clients are requesting data or meta data.

Splitting the content into uniform pieces of 1k makes it also a lot easier
to exchange content. Unlike other systems where always whole files must
migrate (limiting the ability of large files to get moved) migrating parts
of a file in GNet takes just a single packet to be send.

In general, content should migrate towards requesting sites. Fre-
quently requested content should be stored on high-bandwidth servers,
while rarely accessed data should migrate to low-capacity hosts.7

Splitting up the data into small pieces also has the advantage that
downloading files from GNet actually makes use of the distribution; the
file can be downloaded in parallel from many hosts, incurring little cost to
each host (except for the receiver). The disadvantage is that content must
be multiplied as hosts may not be available (they may be offline). On the
other hand, this also helps to ensure that content is not immediately lost
when a node goes offline.

5.4 Content storage

Storing content in GNet must satisfy three basic requirements:

1. storage space should be kept small

2. hosts providing space should have no means to decrypt content ob-
tained from other hosts

3. content stored unencrypted locally should be accessible to GNet on
demand

The first requirement is obvious. If it takes 100 MB to store a 1k file,
the system is useless. The second requirement is supposed to protect
participants from being helt liable for content transmitted through their
nodes. The third requirement is supposed to address an entirely different
issue. In some cases, host operators may want to just share files that are on
their harddrives anyway, without need for protection against adversaries
that may obtain access to the host. For these cases, GNet should be able
to encrypt this data at the time where it is requested. This should of
course not be visible to other users, so they will still obtain small pieces

6Compare ”h(Marx) AND h(Kapital) AND h(Das)” against ”h(Marx: Das Kapital)”.
7Again, the should indicates that this is up to the nodes involved to decide.

12



of the file each time. As the file is stored in plaintext and encrypted only
for the transmission, the provider can use the unencrypted files and safe
storage space. Other systems, like Freenet would require a second copy of
the data. GNet only requires indexing of the data and can then encrypt
and serve the files on-demand.

To achieve the above goals, three modes of operations are planned. The
first mode, which is the default, provides a reasonable tradeoff between
the three goals and also serves as the basic model for the other modes.
As described in section 5.3, GNet splits the files into chunks of 1k. Each
of these chunks is than individually distributed.

In order to store a 1k block B, GNet first computes H(B) and H(H(B)).
The block is then encrypted (using a block-cipher) using H(B) as the key
(and another part of the hash as the initialization vector). The block
is then stored under a file with the name H(H(B)). In this form, the
data can be forwarded, but the local node (not knowing H(B)) can not
decrypt it. The only way to decrypt the file is by guessing H(B). This
way of encrypting the file also guarantees that if the same file is inserted
by multiple parties, they will yield the same encrypted files and thus just
increase the availability of the data.8

The indirection nodes (“inodes”) would then be

I = H(B1), . . . , H(B51), CRC32(B1, . . . , B51)

and I would be again treated as a normal block, that is encrypted with
H(I) and stored under H(H(I)). The root-node of the indirection tree
would then be encapsulated in a special node that is encrypted with the
hash of the keyword that was supplied by the user and stored under the
hash of the hash of that keyword. The root node can additionally contain
a description of the contents of the file, allowing users to decide between
multiple results for the same query depending on the description.

This scheme requires storage space m that is only 2% above the size
of the initial file n:

m ≤ n + 1k ·
blog51d n

1k
ec∑

i=0

51i

≈ 1.02 · n

It yet provides security for the sender and receiver, as the encrypted con-
tent can not be decrypted by anybody but the receiver (assuming that
the hashcodes can not be guessed).

The second mode of operation is a simple extention to the first mode.
By computing the hashes of the 1k blocks, a file can be indexed.9 If an
incoming query matches the index, GNet can encrypt the local file on-the-
fly. Even better, GNet only needs to read and encrypt the matching 1k
block, the rest of the file (if not requested by other queries) is not required
for the encryption.

8The encryption scheme in Freenet would lead to duplication of the content. It would be
impossible to detect duplicates, storage space would be wasted.

9The inodes should be stored using the first mode, but their size is negligible.

13



Both, the first and the second mode have the advantage that the space
and communication overhead are fairly low. Yet, an attack is possible. If
the adversary can guess the exact (!) contents of the file, the adversary
can compute the encryption and find out that the host was storing that
file (or that the receiver was asking for that particular file). The user
has no means to protect himself against this kind of attack–as opposed to
the adversary guessing the keyword where the user may choose a stronger
keyword, the user may not have the choice to manipulate the content to
make it impossible for the adversary to find out about it.

Yet, this problem can be solved with the third mode. By xor-ing the
file that should be stored in GNet with a one-time-pad and then basically
storing the one-time-pad and the xor-ed file into GNet using the first or
second mode, this kind of attack is impossible. In this case, the root-node
contains two inodes, one for the one-time-pad and one for the xor-ed file.
The problem with this approach is that it at least doubles the storage
space required. If another user inserts the file, the duplicates can no
longer be detected and even more space is wasted. Also the amount of
network traffic is doubled. Thus this mode should only be used if this
level of security is really required.

Another way to increase security is to requiring multiple root-nodes
with different keywords to decode the actual file. This should not affect
the user if the query actually only matches an and-query. Except for
mode 2, the GNet-node is not concerned with these issues, as they are
only taking place in the gproxy-layer for anonymization.

5.5 More on queries

As mentioned before, the actual query for a datum matching Q could be
hidden by hashing Q first. As H(Q) is used as the key for the decryption
(as described in section 5.4), H(H(Q)) is the obvious choice for the query
published. Yet, this approach has a slight problem.

If N matches the query Q, the encoded node E(H(Q))(N) no longer
has hash Q. Thus intermediaries (that do not know H(Q)) can not verify
if this node matches the query at all. A malicious node could return
garbage to any query H(H(Q)), claiming that the garbage matches the
query. The receiver would then have to propagate back through the chain
that the original sender was malicious. As intermediaries can not keep
track of earlier connections for a long time, this feedback may not reach
the malicious node. Thus, the malicious node could actually earn credit
by sending out garbage to the network.

This can be prevented by using H(H(H(Q))) for the query. The sender
must then provide H(H(Q)) to demonstrate that the sender actually has
matching data. As the sender can not guess H(H(Q)) it can be assumed
that the sender had matching content at some point. This can of course
not prevent malicious hosts to create garbage in general. Malicious nodes
could guess that the keyword K is frequently used and just compute
H(H(K)) and H(H(H(K))) and return their garbage once a matching
query comes by. Yet, this is similar to inserting garbage under that key-
word into the network. As no software can distinguish valuable content
from garbage in general, this is not a design flaw. Yet, it demonstrates

14



that content moderation (feedback, ranking) is required. The triple-hash
scheme just makes it more difficult to insert garbage, it can not make it
impossible.

5.6 Query propagation

Query propagation must solve two issues. First of all, queries must be
forwarded in a manner such that they do not loop. Secondly, the routing of
queries should try to be efficient and should scale. Elaborate schemes have
been designed in routing content and queries in a way that lookup is fast.
A particularly interesting approach is chosen in Freenet, where similar
content (in terms of similarity the hashed key) is stored on topologically
close nodes. Thus nodes can guess in which area of the network content
may be stored. Currently, GNet does not attempt to use such advanced
schemes, but they may be implemented in the future. 10

In order to forward queries, three issues must be resolved:

1. selecting a subset of the known nodes as targets for forwarding

2. selecting the priority of the forwarded query

3. book-keeping of forwarded queries that are routed back through the
forwarding node

In GNet, each query has associated with it two integer values that help
the node decide each of these questions. The first integer value is the
priority of the request. It indicates how important the request is for the
node sending (or forwarding) the request. A value of zero indicates that
this request should only be honored if excess bandwidth is available.

As the first step of processing, the node that receives the request con-
siders the ranking of the node that sends the request and adjusts the
priority. If the priority was higher than the credit of the sender, the prior-
ity is reduced to the credit the sender had. Then, the credit of the sender
is decreased by the remaining priority of the query (charge for service) if
the bandwidth available at the moment is low.

Now the node checks if the content is available in the local storage and
eventually sends a reply. If the node is busy and the priority is low, the
node may decide to not send a reply even if it has the data itself.

If the node does not have the content, it considers the second integer
that accompanies the request. This second integer gives the time-to-live
(TTL) for the request. The originating node may have set it arbitrarily
high, so the local node may first reduce it to a reasonable value. If the
TTL is zero, the request has expired and is dropped. If the TTL is greater
than zero, the node adds the query (sender, hashcode and time-to-live)
to its local query table. If a query with higher TTL already exists in the
table, the new query is added but not forwarded: a reply from that earlier
query may come in at any time—or the query has looped back to the local

10Storing content on topologically close nodes has a disadvantage, however; if topologically
close nodes are also geographically close, the network is then vulnerable to localized failures
(i.e. power surges, earthquakes, etc.). In GNet, this could be a particular problem, as portions
of files might become entirely unavailable if stored in a geographically centralized location.
This also makes it harder to infer which kind of content a node stores.

15



node. In general, the forwarding table is used to store information about
forwarded requests such that the node can forward replies later.11

Depending on the new priority of the request and the available band-
width, the node selects n random12 other hosts for forwarding. The node
than decreases the TTL by a reasonable amount (greater than the time
it expects for network delay and processing of requests). It decreases the
priority of the request to p

n+1
and forwards the query with the adjusted

TTL and priority to the n hosts.13 The number for n depends on the
current network load. If the load is high, the node may decide to forward
the query to fewer hosts.

The TTL of the packet is decremented over time on each node (e.g.
TTL − − every 30 s). Once the TTL reaches zero, the entry is removed
from the forwarding table (the query is considered unsuccessful).

5.7 Benefits of this approach

GNet allows applications that go far beyond the possibilities of Napster,
Gnutella or Freenet. The searchability allows large portions of the WWW
to migrate to GNet, corporations may decide to store important data de-
centralized in GNet and users will like the service because it offers privacy
that will otherwise be difficult to achieve given the current configuration
of the Internet.

WWW2

Why should Internet sites migrate to GNet? First of all, GNet will allow
them to distribute their content over the globe. There will be no need
for a central server that gets millions of hits in a short time. Instead the
content will be automatically distributed, reducing download times for
the users. Furthermore, for providing content that is frequently accessed,
the nodes of the content providers will earn credit in GNet.

Users will also appreciate the ability to retrieve Internet content with-
out concerns that third parties will build profiles of their browsing habits.
With the advent of targeted Internet advertising companies (e.g. Dou-
bleclick, Passport), consumers are increasingly concerned about the pri-
vacy of their personal data. GNet assures that the link between provider
and consumer is completely anonymous, thus severing the ability of mar-
keters to use private data for their own purposes without the explicit
consent of the user.

11If the node (depending on the available bandwidth decides not to indirect replies, it may
skip this step.

12Better strategies for selecting nodes may be used in the future.
13Dividing by n + 1 guarantees that forwarding nodes are not charged more than they

charged the node that send the query. It also guarantees that even n + 1 cooperating hosts
can not keep the node busy by indirecting queries via the node (DOS attack all against one)
because the local node makes p

n+1
profit in credit for each request.

16



Domain Name Service (DNS)

Small content providers currently face another issue: DNS. In order to
achieve visibility, they not only have to pay a fee to the DNS monopolies,
but must also face lawyers trying to sue them for the use of potentially
unknown trademarked names. Domain squatting is sometimes a nuisance
even for mid-sized companies. The site www.gatt.org is a great example. In
GNet, domain names are meaningless. The more often a site is requested,
the faster it will show up. Multiple results for the same query are possible.

ISPs

GNet credit could be traded—for money. For example ISPs may be ranked
according to their GNet ranking. As the servers of the ISPs will forward
queries from the ISPs clients with that ranking, the clients of the ISPs
will get service in accordance to the ranking of their ISP. ISPs will have to
ways to achieve higher rankings. Either by increasing their bandwidth or
storage space to directly earn credit from GNet or by trading credit (e.g.
with content providers or with other ISPs that decide that they have a
higher ranking than they need).

Backup

Companies could use GNet to backup important data. They profit from
the anonymity (Microsoft can not decide to delete data stored for IBM)
and the distribution: there is no single point of failure. Instead of building
redundant systems, the network will achieve distribution and redundancy
automatically.

This is particularly important since local redundancy does not always
help; considering the recent power surges in California, high availability
of content is best achieved on a global scale.

6 Implementation

A system like GNet must solve several implementation issues of varying
sizes. This section tries to address a few of them.

6.1 System architecture

In order to allow small machines to act as GNet nodes, the central server
process of GNet is a small C program. Its main functionality is match-
ing incoming requests (keys) with the local data, sending the data and
controlling limitations set by the user (bandwidth, memory, CPU). The
only encryption the server process is involved in is the identification of the
remote hosts and the encryption of the communication channels, similar
to SSH. Furthermore, the server should provide metadata of the commu-
nications to a control process. This control process should then rank the
content, detect malicious hosts, and then define the policies for the main
server process.

17



6.2 User interface

The user interface (UI) should be split into three parts. A simple text-
based UI should allow insertion of content into the local node. Another
text-based UI should allow content requests and ranking of the results.
Gproxy is a proxy that allows browsing GNet. Gproxy performs requests
and provides a WWW interface. Gproxy is responsible for the decryption
of content that is retrieved from the network.

6.3 Protocol tunnels

In order to avoid GNet becoming a victim of modern firewalls, GNet hosts
should be able to tunnel their communications in protocols that are un-
likely to be abandoned by the Internet community. Examples for these
protocols are HTTP, SMTP, and FTP. If GNet nodes can substitute the
underlying UDP protocol layer and communicate through these common
channels, firewalls and other restrictions may be rendered useless.

The first generation implementation of GNet will not incorporate these
features, but programmers are asked to keep them in mind when designing
the system.

7 GNet Protocols

This section describes the protocols used by GNet. As a general rule for
inter-nodal communication, any node may refuse to reply at any point.
This may be because packages were lost, because the node is busy, or
because the node refuses to answer because of distrust (or any combination
of these).

The underlying assertions for the protocols are as follows:

• All nodes have a synchronized time (UTC), but small time-differences
must be tolerated (up to a few minutes). GNet does not provide
means for time-synchronization.

• Any node may be malicious and fail at any time; the network is not
reliable and does not provide any authentication.

• The private hostkeys are always secret and the implementation of
the cryptographic primitives is sound.

7.1 UDP layer: confidentiality and authentica-
tion protocols

This section describes the HELO and SKEY messages of the GNet pro-
tocol. They are supposed to establish a confidential and authenticated
communication channel.

HELO

This protocol describes how a new node joins GNet. It is assumed that
the node knows as least one other participating node of the network. This

18



is achieved by giving the node the IP and portnumber of an existing node
in its data files. A is the new node, B is an existing node in GNet.

1. A → B: EB(A, SA(@A, t)) where A is A’s public key, SA is the
message signed with A’s private key, @A is the current network
address of A and t is the time for which this address is valid. EB is
encryption with B’s public key, B is known in advance.

Cryptographic primitive: public key crypto, 2048 bits, RSA, same
key for signing and encryption.

2. B verifies the signature and adds A to his list of known hosts, to-
gether with A’s address, the timestamp and the signature.

Later, B can decide to tell another node C about A. The timestamp t
that A used in the original message limits the timeframe in which these
propagations are allowed (A may want to change @A).

3. B → C: EC(A, SA(@A, t)).

SKEY

After A and B have exchanged their public keys using the HELO protocol,
they can exchange session keys K. This may be initiated by either A or
B:

1. B → A: B, EA(K), t, SB(H(EA(K), t)) where K is session key that
was chosen by B and that was created at time t.

2. A → B: EK(H(K)) (acknowledgement)

A and B store K in their current connection table. Further communica-
tion is encrypted with K:

1. A → B: EK(M, t).

2. B → A: EK(M, t).

Each message contains a timestamp t that describes how long this message
is supposed to be valid. This way, an attacker can not do much harm with
replay-attacks.

7.2 GProxy

GProxy is a service on top of the basic GNet layer. GProxy allows users
to share files. The central goals of GProxy’s design are:

• anonymity: neither the sender nor the intermediaries should be able
to find out what the receiver is looking for (except if they can guess
it).

• distribution: no single host should be forced to share the whole file,
small (1k) pieces must be enough.

• security: the host storing the data should have no way to decrypt
the data and thus be able to deny knowledge of the contents.

• efficiency: even if encrypted, the same content (eventually inserted
independently by two parties under different keys) should yield the
same filenames with the same content, reducing storage require-
ments.

19



• on-the-fly encryption: it must be possible to share parts of unen-
crypted files directly from the local disk, without having to encrypt
the whole file each time.14

Inserting content

Content insertion describes the steps it takes to initially insert content
into a local node. It does not describe steps to distribute the content over
the network or how to retrieve the content.

1. The user gives the local proxy the content C, a list of keywords K,
and a description D (and optionally the pseudonym P ) to use.

2. The proxy splits C into blocks Bi, each of size 1k, and computes the
hash values Hi = H(Bi) and H2

i = H(H(Bi)). Random padding is
added if required.

3. Then it encrypts each block (1-key crypto) yielding Ei = EHi(Bi).

4. The proxy stores Ei under the name H2
i .

5. If there is more than one Hi, the proxy groups 51 Hi values together
with a CRC32 of the original data to a new block of 1k. Random
padding is added if required. All the 1k blocks obtained this way
are than treated as under 2.

6. If there is only one hashcode H1, the proxy builds a root-node, con-
taining H1, the description D, the original length of C, a CRC check-
sum and optionally P and a signature. All this must be less than 1k
in size (the length of the description may be shortened as needed).
The resulting root-node R is padded and encrypted for each keyword
K yielding RK = EH(K)(R).

7. Finally, for each K, the result RK is stored under H(H(K)).

Retrieving content

Invert “Inserting content”.

8 Benchmarks

Encoding a 30 MB file for GNet takes about 5-10 minutes on a modern
machine, the encoding time is dominated by the symmetric cipher used.

References

[1] Napster, http://www.napster.com/

[2] Gnutella, http://gnutella.wego.com/

[3] Mojo Nation, http://www.mojonation.com/

[4] OpenSSL, http://www.openssl.org/

14This is not possible in Freenet. If the provider of the content keeps a local copy, the file
will be stored twice, encrypted for Freenet and unencrypted for normal use.

20



[5] Clarke, Sandberg, Wiley, Hong: Freenet: A Distributed
Anonymous Information Storage and Retrieval System.,
http://www.freenetproject.org/

[6] RIPEMD160

21


