gnunet-android

GNUnet for Android
Log | Files | Refs | README

aead.h (22675B)


      1 // Copyright 2014 The BoringSSL Authors
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 //     https://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASIS,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 
     15 #ifndef OPENSSL_HEADER_AEAD_H
     16 #define OPENSSL_HEADER_AEAD_H
     17 
     18 #include <openssl/base.h>   // IWYU pragma: export
     19 
     20 #if defined(__cplusplus)
     21 extern "C" {
     22 #endif
     23 
     24 
     25 // Authenticated Encryption with Additional Data.
     26 //
     27 // AEAD couples confidentiality and integrity in a single primitive. AEAD
     28 // algorithms take a key and then can seal and open individual messages. Each
     29 // message has a unique, per-message nonce and, optionally, additional data
     30 // which is authenticated but not included in the ciphertext.
     31 //
     32 // The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
     33 // performs any precomputation needed to use |aead| with |key|. The length of
     34 // the key, |key_len|, is given in bytes.
     35 //
     36 // The |tag_len| argument contains the length of the tags, in bytes, and allows
     37 // for the processing of truncated authenticators. A zero value indicates that
     38 // the default tag length should be used and this is defined as
     39 // |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
     40 // truncated tags increases an attacker's chance of creating a valid forgery.
     41 // Be aware that the attacker's chance may increase more than exponentially as
     42 // would naively be expected.
     43 //
     44 // When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
     45 // passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
     46 //
     47 // With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
     48 // operations are intended to meet the standard notions of privacy and
     49 // authenticity for authenticated encryption. For formal definitions see
     50 // Bellare and Namprempre, "Authenticated encryption: relations among notions
     51 // and analysis of the generic composition paradigm," Lecture Notes in Computer
     52 // Science B<1976> (2000), 531–545,
     53 // http://www-cse.ucsd.edu/~mihir/papers/oem.html.
     54 //
     55 // When sealing messages, a nonce must be given. The length of the nonce is
     56 // fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
     57 // nonce must be unique for all messages with the same key*. This is critically
     58 // important - nonce reuse may completely undermine the security of the AEAD.
     59 // Nonces may be predictable and public, so long as they are unique. Uniqueness
     60 // may be achieved with a simple counter or, if large enough, may be generated
     61 // randomly. The nonce must be passed into the "open" operation by the receiver
     62 // so must either be implicit (e.g. a counter), or must be transmitted along
     63 // with the sealed message.
     64 //
     65 // The "seal" and "open" operations are atomic - an entire message must be
     66 // encrypted or decrypted in a single call. Large messages may have to be split
     67 // up in order to accommodate this. When doing so, be mindful of the need not to
     68 // repeat nonces and the possibility that an attacker could duplicate, reorder
     69 // or drop message chunks. For example, using a single key for a given (large)
     70 // message and sealing chunks with nonces counting from zero would be secure as
     71 // long as the number of chunks was securely transmitted. (Otherwise an
     72 // attacker could truncate the message by dropping chunks from the end.)
     73 //
     74 // The number of chunks could be transmitted by prefixing it to the plaintext,
     75 // for example. This also assumes that no other message would ever use the same
     76 // key otherwise the rule that nonces must be unique for a given key would be
     77 // violated.
     78 //
     79 // The "seal" and "open" operations also permit additional data to be
     80 // authenticated via the |ad| parameter. This data is not included in the
     81 // ciphertext and must be identical for both the "seal" and "open" call. This
     82 // permits implicit context to be authenticated but may be empty if not needed.
     83 //
     84 // The "seal" and "open" operations may work in-place if the |out| and |in|
     85 // arguments are equal. Otherwise, if |out| and |in| alias, input data may be
     86 // overwritten before it is read. This situation will cause an error.
     87 //
     88 // The "seal" and "open" operations return one on success and zero on error.
     89 
     90 
     91 // AEAD algorithms.
     92 
     93 // EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode.
     94 //
     95 // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
     96 // is specified to take a variable-length nonce, nonces with other lengths are
     97 // effectively randomized, which means one must consider collisions. Unless
     98 // implementing an existing protocol which has already specified incorrect
     99 // parameters, only use 12-byte nonces.
    100 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void);
    101 
    102 // EVP_aead_aes_192_gcm is AES-192 in Galois Counter Mode.
    103 //
    104 // WARNING: AES-192 is superfluous and shouldn't exist. NIST should never have
    105 // defined it. Use only when interop with another system requires it, never
    106 // de novo.
    107 //
    108 // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
    109 // is specified to take a variable-length nonce, nonces with other lengths are
    110 // effectively randomized, which means one must consider collisions. Unless
    111 // implementing an existing protocol which has already specified incorrect
    112 // parameters, only use 12-byte nonces.
    113 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_192_gcm(void);
    114 
    115 // EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode.
    116 //
    117 // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
    118 // is specified to take a variable-length nonce, nonces with other lengths are
    119 // effectively randomized, which means one must consider collisions. Unless
    120 // implementing an existing protocol which has already specified incorrect
    121 // parameters, only use 12-byte nonces.
    122 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void);
    123 
    124 // EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
    125 // Poly1305 as described in RFC 8439.
    126 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void);
    127 
    128 // EVP_aead_xchacha20_poly1305 is ChaCha20-Poly1305 with an extended nonce that
    129 // makes random generation of nonces safe.
    130 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_xchacha20_poly1305(void);
    131 
    132 // EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
    133 // authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
    134 // block counter, thus the maximum plaintext size is 64GB.
    135 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void);
    136 
    137 // EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
    138 // authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details.
    139 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void);
    140 
    141 // EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See RFC 8452.
    142 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void);
    143 
    144 // EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See RFC 8452.
    145 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void);
    146 
    147 // EVP_aead_aes_128_gcm_randnonce is AES-128 in Galois Counter Mode with
    148 // internal nonce generation. The 12-byte nonce is appended to the tag
    149 // and is generated internally. The "tag", for the purpurses of the API, is thus
    150 // 12 bytes larger. The nonce parameter when using this AEAD must be
    151 // zero-length. Since the nonce is random, a single key should not be used for
    152 // more than 2^32 seal operations.
    153 //
    154 // Warning: this is for use for FIPS compliance only. It is probably not
    155 // suitable for other uses. Using standard AES-GCM AEADs allows one to achieve
    156 // the same effect, but gives more control over nonce storage.
    157 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_randnonce(void);
    158 
    159 // EVP_aead_aes_256_gcm_randnonce is AES-256 in Galois Counter Mode with
    160 // internal nonce generation. The 12-byte nonce is appended to the tag
    161 // and is generated internally. The "tag", for the purpurses of the API, is thus
    162 // 12 bytes larger. The nonce parameter when using this AEAD must be
    163 // zero-length. Since the nonce is random, a single key should not be used for
    164 // more than 2^32 seal operations.
    165 //
    166 // Warning: this is for use for FIPS compliance only. It is probably not
    167 // suitable for other uses. Using standard AES-GCM AEADs allows one to achieve
    168 // the same effect, but gives more control over nonce storage.
    169 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_randnonce(void);
    170 
    171 // EVP_aead_aes_128_ccm_bluetooth is AES-128-CCM with M=4 and L=2 (4-byte tags
    172 // and 13-byte nonces), as decribed in the Bluetooth Core Specification v5.0,
    173 // Volume 6, Part E, Section 1.
    174 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth(void);
    175 
    176 // EVP_aead_aes_128_ccm_bluetooth_8 is AES-128-CCM with M=8 and L=2 (8-byte tags
    177 // and 13-byte nonces), as used in the Bluetooth Mesh Networking Specification
    178 // v1.0.
    179 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth_8(void);
    180 
    181 // EVP_aead_aes_128_ccm_matter is AES-128-CCM with M=16 and L=2 (16-byte tags
    182 // and 13-byte nonces), as used in the Matter specification.
    183 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_matter(void);
    184 
    185 // EVP_has_aes_hardware returns one if we enable hardware support for fast and
    186 // constant-time AES-GCM.
    187 OPENSSL_EXPORT int EVP_has_aes_hardware(void);
    188 
    189 // EVP_aead_aes_128_eax is AES-128 in EAX mode. Nonce size is either 12 or 16
    190 // bytes, tag length is 16 bytes.
    191 // See https://doi.org/10.1007/978-3-540-25937-4_25.
    192 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_eax(void);
    193 
    194 // EVP_aead_aes_256_eax is AES-256 in EAX mode. Nonce size is either 12 or 16
    195 // bytes, tag length is 16 bytes.
    196 // See https://doi.org/10.1007/978-3-540-25937-4_25.
    197 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_eax(void);
    198 
    199 
    200 // Utility functions.
    201 
    202 // EVP_AEAD_key_length returns the length, in bytes, of the keys used by
    203 // |aead|.
    204 OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead);
    205 
    206 // EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
    207 // for |aead|.
    208 OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead);
    209 
    210 // EVP_AEAD_max_overhead returns the maximum number of additional bytes added
    211 // by the act of sealing data with |aead|.
    212 OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead);
    213 
    214 // EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
    215 // is the largest value that can be passed as |tag_len| to
    216 // |EVP_AEAD_CTX_init|.
    217 OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
    218 
    219 
    220 // AEAD operations.
    221 
    222 union evp_aead_ctx_st_state {
    223   uint8_t opaque[560];
    224   uint64_t alignment;
    225 };
    226 
    227 // An evp_aead_ctx_st (typedefed as |EVP_AEAD_CTX| in base.h) represents an AEAD
    228 // algorithm configured with a specific key and message-independent IV.
    229 struct evp_aead_ctx_st {
    230   const EVP_AEAD *aead;
    231   union evp_aead_ctx_st_state state;
    232   // tag_len may contain the actual length of the authentication tag if it is
    233   // known at initialization time.
    234   uint8_t tag_len;
    235 };
    236 
    237 // EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
    238 // any AEAD defined in this header.
    239 #define EVP_AEAD_MAX_KEY_LENGTH 80
    240 
    241 // EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
    242 // any AEAD defined in this header.
    243 #define EVP_AEAD_MAX_NONCE_LENGTH 24
    244 
    245 // EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
    246 // defined in this header.
    247 #define EVP_AEAD_MAX_OVERHEAD 64
    248 
    249 // EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
    250 // EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
    251 // be used.
    252 #define EVP_AEAD_DEFAULT_TAG_LENGTH 0
    253 
    254 // EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
    255 // initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
    256 // necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
    257 // more uniform cleanup of |EVP_AEAD_CTX|.
    258 OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx);
    259 
    260 // EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and
    261 // returns the |EVP_AEAD_CTX|, or NULL on error.
    262 OPENSSL_EXPORT EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead,
    263                                               const uint8_t *key,
    264                                               size_t key_len, size_t tag_len);
    265 
    266 // EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on
    267 // |ctx|.
    268 OPENSSL_EXPORT void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx);
    269 
    270 // EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
    271 // argument is ignored and should be NULL. Authentication tags may be truncated
    272 // by passing a size as |tag_len|. A |tag_len| of zero indicates the default
    273 // tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
    274 // readability.
    275 //
    276 // Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
    277 // the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
    278 // harmless to do so.
    279 OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
    280                                      const uint8_t *key, size_t key_len,
    281                                      size_t tag_len, ENGINE *impl);
    282 
    283 // EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
    284 // call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
    285 // all zeros.
    286 OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
    287 
    288 // EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
    289 // authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
    290 // returns one on success and zero otherwise.
    291 //
    292 // This function may be called concurrently with itself or any other seal/open
    293 // function on the same |EVP_AEAD_CTX|.
    294 //
    295 // At most |max_out_len| bytes are written to |out| and, in order to ensure
    296 // success, |max_out_len| should be |in_len| plus the result of
    297 // |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
    298 // actual number of bytes written.
    299 //
    300 // The length of |nonce|, |nonce_len|, must be equal to the result of
    301 // |EVP_AEAD_nonce_length| for this AEAD.
    302 //
    303 // |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
    304 // insufficient, zero will be returned. If any error occurs, |out| will be
    305 // filled with zero bytes and |*out_len| set to zero.
    306 //
    307 // If |in| and |out| alias then |out| must be == |in|.
    308 OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
    309                                      size_t *out_len, size_t max_out_len,
    310                                      const uint8_t *nonce, size_t nonce_len,
    311                                      const uint8_t *in, size_t in_len,
    312                                      const uint8_t *ad, size_t ad_len);
    313 
    314 // EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
    315 // from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
    316 // success and zero otherwise.
    317 //
    318 // This function may be called concurrently with itself or any other seal/open
    319 // function on the same |EVP_AEAD_CTX|.
    320 //
    321 // At most |in_len| bytes are written to |out|. In order to ensure success,
    322 // |max_out_len| should be at least |in_len|. On successful return, |*out_len|
    323 // is set to the the actual number of bytes written.
    324 //
    325 // The length of |nonce|, |nonce_len|, must be equal to the result of
    326 // |EVP_AEAD_nonce_length| for this AEAD.
    327 //
    328 // |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
    329 // insufficient, zero will be returned. If any error occurs, |out| will be
    330 // filled with zero bytes and |*out_len| set to zero.
    331 //
    332 // If |in| and |out| alias then |out| must be == |in|.
    333 OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
    334                                      size_t *out_len, size_t max_out_len,
    335                                      const uint8_t *nonce, size_t nonce_len,
    336                                      const uint8_t *in, size_t in_len,
    337                                      const uint8_t *ad, size_t ad_len);
    338 
    339 // EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in|
    340 // and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of
    341 // ciphertext to |out| and the authentication tag to |out_tag|. It returns one
    342 // on success and zero otherwise.
    343 //
    344 // This function may be called concurrently with itself or any other seal/open
    345 // function on the same |EVP_AEAD_CTX|.
    346 //
    347 // Exactly |in_len| bytes are written to |out|, and up to
    348 // |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful
    349 // return, |*out_tag_len| is set to the actual number of bytes written to
    350 // |out_tag|.
    351 //
    352 // |extra_in| may point to an additional plaintext input buffer if the cipher
    353 // supports it. If present, |extra_in_len| additional bytes of plaintext are
    354 // encrypted and authenticated, and the ciphertext is written (before the tag)
    355 // to |out_tag|. |max_out_tag_len| must be sized to allow for the additional
    356 // |extra_in_len| bytes.
    357 //
    358 // The length of |nonce|, |nonce_len|, must be equal to the result of
    359 // |EVP_AEAD_nonce_length| for this AEAD.
    360 //
    361 // |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If
    362 // |max_out_tag_len| is insufficient, zero will be returned. If any error
    363 // occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len|
    364 // set to zero.
    365 //
    366 // If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias
    367 // any other argument.
    368 OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter(
    369     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
    370     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
    371     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
    372     size_t extra_in_len, const uint8_t *ad, size_t ad_len);
    373 
    374 // EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in|
    375 // and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of
    376 // authentication tag from |in_tag|. If successful, it writes |in_len| bytes of
    377 // plaintext to |out|. It returns one on success and zero otherwise.
    378 //
    379 // This function may be called concurrently with itself or any other seal/open
    380 // function on the same |EVP_AEAD_CTX|.
    381 //
    382 // The length of |nonce|, |nonce_len|, must be equal to the result of
    383 // |EVP_AEAD_nonce_length| for this AEAD.
    384 //
    385 // |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error
    386 // occurs, |out| will be filled with zero bytes.
    387 //
    388 // If |in| and |out| alias then |out| must be == |in|.
    389 OPENSSL_EXPORT int EVP_AEAD_CTX_open_gather(
    390     const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce,
    391     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag,
    392     size_t in_tag_len, const uint8_t *ad, size_t ad_len);
    393 
    394 // EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
    395 // not been set.
    396 OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx);
    397 
    398 
    399 // TLS-specific AEAD algorithms.
    400 //
    401 // These AEAD primitives do not meet the definition of generic AEADs. They are
    402 // all specific to TLS and should not be used outside of that context. They must
    403 // be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
    404 // not be used concurrently. Any nonces are used as IVs, so they must be
    405 // unpredictable. They only accept an |ad| parameter of length 11 (the standard
    406 // TLS one with length omitted).
    407 
    408 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void);
    409 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void);
    410 
    411 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void);
    412 
    413 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void);
    414 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void);
    415 
    416 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void);
    417 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void);
    418 
    419 // EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS
    420 // 1.2 nonce construction.
    421 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls12(void);
    422 
    423 // EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS
    424 // 1.2 nonce construction.
    425 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls12(void);
    426 
    427 // EVP_aead_aes_128_gcm_tls13 is AES-128 in Galois Counter Mode using the TLS
    428 // 1.3 nonce construction.
    429 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls13(void);
    430 
    431 // EVP_aead_aes_256_gcm_tls13 is AES-256 in Galois Counter Mode using the TLS
    432 // 1.3 nonce construction.
    433 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls13(void);
    434 
    435 
    436 // Obscure functions.
    437 
    438 // evp_aead_direction_t denotes the direction of an AEAD operation.
    439 enum evp_aead_direction_t {
    440   evp_aead_open,
    441   evp_aead_seal,
    442 };
    443 
    444 // EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
    445 // AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
    446 // given direction.
    447 OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction(
    448     EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len,
    449     size_t tag_len, enum evp_aead_direction_t dir);
    450 
    451 // EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
    452 // sets |*out_iv| to point to that many bytes of the current IV. This is only
    453 // meaningful for AEADs with implicit IVs (i.e. CBC mode in TLS 1.0).
    454 //
    455 // It returns one on success or zero on error.
    456 OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx,
    457                                        const uint8_t **out_iv, size_t *out_len);
    458 
    459 // EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by
    460 // |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one
    461 // on success or zero on error. |in_len| and |extra_in_len| must equal the
    462 // arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|.
    463 OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx,
    464                                         size_t *out_tag_len,
    465                                         const size_t in_len,
    466                                         const size_t extra_in_len);
    467 
    468 
    469 #if defined(__cplusplus)
    470 }  // extern C
    471 
    472 #if !defined(BORINGSSL_NO_CXX)
    473 extern "C++" {
    474 
    475 BSSL_NAMESPACE_BEGIN
    476 
    477 using ScopedEVP_AEAD_CTX =
    478     internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero,
    479                              EVP_AEAD_CTX_cleanup>;
    480 
    481 BORINGSSL_MAKE_DELETER(EVP_AEAD_CTX, EVP_AEAD_CTX_free)
    482 
    483 BSSL_NAMESPACE_END
    484 
    485 }  // extern C++
    486 #endif
    487 
    488 #endif
    489 
    490 #endif  // OPENSSL_HEADER_AEAD_H