gnunet-android

GNUnet for Android
Log | Files | Refs | README

bn.h (44476B)


      1 // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
      2 // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved.
      3 //
      4 // Licensed under the Apache License, Version 2.0 (the "License");
      5 // you may not use this file except in compliance with the License.
      6 // You may obtain a copy of the License at
      7 //
      8 //     https://www.apache.org/licenses/LICENSE-2.0
      9 //
     10 // Unless required by applicable law or agreed to in writing, software
     11 // distributed under the License is distributed on an "AS IS" BASIS,
     12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 // See the License for the specific language governing permissions and
     14 // limitations under the License.
     15 
     16 #ifndef OPENSSL_HEADER_BN_H
     17 #define OPENSSL_HEADER_BN_H
     18 
     19 #include <openssl/base.h>   // IWYU pragma: export
     20 
     21 #include <inttypes.h>  // for PRIu64 and friends
     22 #include <stdio.h>  // for FILE*
     23 
     24 #if defined(__cplusplus)
     25 extern "C" {
     26 #endif
     27 
     28 
     29 // BN provides support for working with arbitrary sized integers. For example,
     30 // although the largest integer supported by the compiler might be 64 bits, BN
     31 // will allow you to work with much larger numbers.
     32 //
     33 // This library is developed for use inside BoringSSL, and uses implementation
     34 // strategies that may not be ideal for other applications. Non-cryptographic
     35 // uses should use a more general-purpose integer library, especially if
     36 // performance-sensitive.
     37 //
     38 // Many functions in BN scale quadratically or higher in the bit length of their
     39 // input. Callers at this layer are assumed to have capped input sizes within
     40 // their performance tolerances.
     41 
     42 
     43 // BN_ULONG is the native word size when working with big integers.
     44 //
     45 // Note: on some platforms, inttypes.h does not define print format macros in
     46 // C++ unless |__STDC_FORMAT_MACROS| defined. This is due to text in C99 which
     47 // was never adopted in any C++ standard and explicitly overruled in C++11. As
     48 // this is a public header, bn.h does not define |__STDC_FORMAT_MACROS| itself.
     49 // Projects which use |BN_*_FMT*| with outdated C headers may need to define it
     50 // externally.
     51 #if defined(OPENSSL_64_BIT)
     52 typedef uint64_t BN_ULONG;
     53 #define BN_BITS2 64
     54 #define BN_DEC_FMT1 "%" PRIu64
     55 #define BN_HEX_FMT1 "%" PRIx64
     56 #define BN_HEX_FMT2 "%016" PRIx64
     57 #elif defined(OPENSSL_32_BIT)
     58 typedef uint32_t BN_ULONG;
     59 #define BN_BITS2 32
     60 #define BN_DEC_FMT1 "%" PRIu32
     61 #define BN_HEX_FMT1 "%" PRIx32
     62 #define BN_HEX_FMT2 "%08" PRIx32
     63 #else
     64 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
     65 #endif
     66 
     67 
     68 // Allocation and freeing.
     69 
     70 // BN_new creates a new, allocated BIGNUM and initialises it.
     71 OPENSSL_EXPORT BIGNUM *BN_new(void);
     72 
     73 // BN_init initialises a stack allocated |BIGNUM|.
     74 OPENSSL_EXPORT void BN_init(BIGNUM *bn);
     75 
     76 // BN_free frees the data referenced by |bn| and, if |bn| was originally
     77 // allocated on the heap, frees |bn| also.
     78 OPENSSL_EXPORT void BN_free(BIGNUM *bn);
     79 
     80 // BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was
     81 // originally allocated on the heap, frees |bn| also.
     82 OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn);
     83 
     84 // BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the
     85 // allocated BIGNUM on success or NULL otherwise.
     86 OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src);
     87 
     88 // BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation
     89 // failure.
     90 OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src);
     91 
     92 // BN_clear sets |bn| to zero and erases the old data.
     93 OPENSSL_EXPORT void BN_clear(BIGNUM *bn);
     94 
     95 // BN_value_one returns a static BIGNUM with value 1.
     96 OPENSSL_EXPORT const BIGNUM *BN_value_one(void);
     97 
     98 
     99 // Basic functions.
    100 
    101 // BN_num_bits returns the minimum number of bits needed to represent the
    102 // absolute value of |bn|.
    103 OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn);
    104 
    105 // BN_num_bytes returns the minimum number of bytes needed to represent the
    106 // absolute value of |bn|.
    107 //
    108 // While |size_t| is the preferred type for byte counts, callers can assume that
    109 // |BIGNUM|s are bounded such that this value, and its corresponding bit count,
    110 // will always fit in |int|.
    111 OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn);
    112 
    113 // BN_zero sets |bn| to zero.
    114 OPENSSL_EXPORT void BN_zero(BIGNUM *bn);
    115 
    116 // BN_one sets |bn| to one. It returns one on success or zero on allocation
    117 // failure.
    118 OPENSSL_EXPORT int BN_one(BIGNUM *bn);
    119 
    120 // BN_set_word sets |bn| to |value|. It returns one on success or zero on
    121 // allocation failure.
    122 OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value);
    123 
    124 // BN_set_u64 sets |bn| to |value|. It returns one on success or zero on
    125 // allocation failure.
    126 OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value);
    127 
    128 // BN_set_negative sets the sign of |bn|.
    129 OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign);
    130 
    131 // BN_is_negative returns one if |bn| is negative and zero otherwise.
    132 OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn);
    133 
    134 
    135 // Conversion functions.
    136 
    137 // BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
    138 // a big-endian number, and returns |ret|. If |ret| is NULL then a fresh
    139 // |BIGNUM| is allocated and returned. It returns NULL on allocation
    140 // failure.
    141 OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
    142 
    143 // BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian
    144 // integer, which must have |BN_num_bytes| of space available. It returns the
    145 // number of bytes written. Note this function leaks the magnitude of |in|. If
    146 // |in| is secret, use |BN_bn2bin_padded| instead.
    147 OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out);
    148 
    149 // BN_lebin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
    150 // a little-endian number, and returns |ret|. If |ret| is NULL then a fresh
    151 // |BIGNUM| is allocated and returned. It returns NULL on allocation
    152 // failure.
    153 OPENSSL_EXPORT BIGNUM *BN_lebin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
    154 
    155 // BN_bn2le_padded serialises the absolute value of |in| to |out| as a
    156 // little-endian integer, which must have |len| of space available, padding
    157 // out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|,
    158 // the function fails and returns 0. Otherwise, it returns 1.
    159 OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in);
    160 
    161 // BN_bn2bin_padded serialises the absolute value of |in| to |out| as a
    162 // big-endian integer. The integer is padded with leading zeros up to size
    163 // |len|. If |len| is smaller than |BN_num_bytes|, the function fails and
    164 // returns 0. Otherwise, it returns 1.
    165 OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in);
    166 
    167 // BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|.
    168 OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in);
    169 
    170 // BN_bn2hex returns an allocated string that contains a NUL-terminated, hex
    171 // representation of |bn|. If |bn| is negative, the first char in the resulting
    172 // string will be '-'. Returns NULL on allocation failure.
    173 OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn);
    174 
    175 // BN_hex2bn parses the leading hex number from |in|, which may be proceeded by
    176 // a '-' to indicate a negative number and may contain trailing, non-hex data.
    177 // If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and
    178 // stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and
    179 // updates |*outp|. It returns the number of bytes of |in| processed or zero on
    180 // error.
    181 OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in);
    182 
    183 // BN_bn2dec returns an allocated string that contains a NUL-terminated,
    184 // decimal representation of |bn|. If |bn| is negative, the first char in the
    185 // resulting string will be '-'. Returns NULL on allocation failure.
    186 //
    187 // Converting an arbitrarily large integer to decimal is quadratic in the bit
    188 // length of |a|. This function assumes the caller has capped the input within
    189 // performance tolerances.
    190 OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a);
    191 
    192 // BN_dec2bn parses the leading decimal number from |in|, which may be
    193 // proceeded by a '-' to indicate a negative number and may contain trailing,
    194 // non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the
    195 // decimal number and stores it in |*outp|. If |*outp| is NULL then it
    196 // allocates a new BIGNUM and updates |*outp|. It returns the number of bytes
    197 // of |in| processed or zero on error.
    198 //
    199 // Converting an arbitrarily large integer to decimal is quadratic in the bit
    200 // length of |a|. This function assumes the caller has capped the input within
    201 // performance tolerances.
    202 OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in);
    203 
    204 // BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in|
    205 // begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A
    206 // leading '-' is still permitted and comes before the optional 0X/0x. It
    207 // returns one on success or zero on error.
    208 OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in);
    209 
    210 // BN_print writes a hex encoding of |a| to |bio|. It returns one on success
    211 // and zero on error.
    212 OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a);
    213 
    214 // BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first.
    215 OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a);
    216 
    217 // BN_get_word returns the absolute value of |bn| as a single word. If |bn| is
    218 // too large to be represented as a single word, the maximum possible value
    219 // will be returned.
    220 OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn);
    221 
    222 // BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and
    223 // returns one. If |bn| is too large to be represented as a |uint64_t|, it
    224 // returns zero.
    225 OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out);
    226 
    227 
    228 // ASN.1 functions.
    229 
    230 // BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes
    231 // the result to |ret|. It returns one on success and zero on failure.
    232 OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret);
    233 
    234 // BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the
    235 // result to |cbb|. It returns one on success and zero on failure.
    236 OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn);
    237 
    238 
    239 // BIGNUM pools.
    240 //
    241 // Certain BIGNUM operations need to use many temporary variables and
    242 // allocating and freeing them can be quite slow. Thus such operations typically
    243 // take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx|
    244 // argument to a public function may be NULL, in which case a local |BN_CTX|
    245 // will be created just for the lifetime of that call.
    246 //
    247 // A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called
    248 // repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made
    249 // before calling any other functions that use the |ctx| as an argument.
    250 //
    251 // Finally, |BN_CTX_end| must be called before returning from the function.
    252 // When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from
    253 // |BN_CTX_get| become invalid.
    254 
    255 // BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure.
    256 OPENSSL_EXPORT BN_CTX *BN_CTX_new(void);
    257 
    258 // BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx|
    259 // itself.
    260 OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx);
    261 
    262 // BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future
    263 // calls to |BN_CTX_get|.
    264 OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx);
    265 
    266 // BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once
    267 // |BN_CTX_get| has returned NULL, all future calls will also return NULL until
    268 // |BN_CTX_end| is called.
    269 OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx);
    270 
    271 // BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the
    272 // matching |BN_CTX_start| call.
    273 OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx);
    274 
    275 
    276 // Simple arithmetic
    277 
    278 // BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a|
    279 // or |b|. It returns one on success and zero on allocation failure.
    280 OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    281 
    282 // BN_uadd sets |r| = |a| + |b|, considering only the absolute values of |a| and
    283 // |b|. |r| may be the same pointer as either |a| or |b|. It returns one on
    284 // success and zero on allocation failure.
    285 OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    286 
    287 // BN_add_word adds |w| to |a|. It returns one on success and zero otherwise.
    288 OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w);
    289 
    290 // BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a|
    291 // or |b|. It returns one on success and zero on allocation failure.
    292 OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    293 
    294 // BN_usub sets |r| = |a| - |b|, considering only the absolute values of |a| and
    295 // |b|. The result must be non-negative, i.e. |b| <= |a|. |r| may be the same
    296 // pointer as either |a| or |b|. It returns one on success and zero on error.
    297 OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    298 
    299 // BN_sub_word subtracts |w| from |a|. It returns one on success and zero on
    300 // allocation failure.
    301 OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w);
    302 
    303 // BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or
    304 // |b|. Returns one on success and zero otherwise.
    305 OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    306                           BN_CTX *ctx);
    307 
    308 // BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on
    309 // allocation failure.
    310 OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w);
    311 
    312 // BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as
    313 // |a|. Returns one on success and zero otherwise. This is more efficient than
    314 // BN_mul(r, a, a, ctx).
    315 OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
    316 
    317 // BN_div divides |numerator| by |divisor| and places the result in |quotient|
    318 // and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in
    319 // which case the respective value is not returned. It returns one on success or
    320 // zero on error. It is an error condition if |divisor| is zero.
    321 //
    322 // The outputs will be such that |quotient| * |divisor| + |rem| = |numerator|,
    323 // with the quotient rounded towards zero. Thus, if |numerator| is negative,
    324 // |rem| will be zero or negative. If |divisor| is negative, the sign of
    325 // |quotient| will be flipped to compensate but otherwise rounding will be as if
    326 // |divisor| were its absolute value.
    327 OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem,
    328                           const BIGNUM *numerator, const BIGNUM *divisor,
    329                           BN_CTX *ctx);
    330 
    331 // BN_div_word sets |numerator| = |numerator|/|divisor| and returns the
    332 // remainder or (BN_ULONG)-1 on error.
    333 OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor);
    334 
    335 // BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the
    336 // square root of |in|, using |ctx|. It returns one on success or zero on
    337 // error. Negative numbers and non-square numbers will result in an error with
    338 // appropriate errors on the error queue.
    339 OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx);
    340 
    341 
    342 // Comparison functions
    343 
    344 // BN_cmp returns a value less than, equal to or greater than zero if |a| is
    345 // less than, equal to or greater than |b|, respectively.
    346 OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b);
    347 
    348 // BN_cmp_word is like |BN_cmp| except it takes its second argument as a
    349 // |BN_ULONG| instead of a |BIGNUM|.
    350 OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b);
    351 
    352 // BN_ucmp returns a value less than, equal to or greater than zero if the
    353 // absolute value of |a| is less than, equal to or greater than the absolute
    354 // value of |b|, respectively.
    355 OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
    356 
    357 // BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise.
    358 // It takes an amount of time dependent on the sizes of |a| and |b|, but
    359 // independent of the contents (including the signs) of |a| and |b|.
    360 OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b);
    361 
    362 // BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero
    363 // otherwise.
    364 OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w);
    365 
    366 // BN_is_zero returns one if |bn| is zero and zero otherwise.
    367 OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn);
    368 
    369 // BN_is_one returns one if |bn| equals one and zero otherwise.
    370 OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn);
    371 
    372 // BN_is_word returns one if |bn| is exactly |w| and zero otherwise.
    373 OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w);
    374 
    375 // BN_is_odd returns one if |bn| is odd and zero otherwise.
    376 OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn);
    377 
    378 // BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise.
    379 OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a);
    380 
    381 
    382 // Bitwise operations.
    383 
    384 // BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the
    385 // same |BIGNUM|. It returns one on success and zero on allocation failure.
    386 OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
    387 
    388 // BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same
    389 // pointer. It returns one on success and zero on allocation failure.
    390 OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a);
    391 
    392 // BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same
    393 // pointer. It returns one on success and zero on allocation failure.
    394 OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
    395 
    396 // BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same
    397 // pointer. It returns one on success and zero on allocation failure.
    398 OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a);
    399 
    400 // BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a|
    401 // is 2 then setting bit zero will make it 3. It returns one on success or zero
    402 // on allocation failure.
    403 OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n);
    404 
    405 // BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if
    406 // |a| is 3, clearing bit zero will make it two. It returns one on success or
    407 // zero on allocation failure.
    408 OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n);
    409 
    410 // BN_is_bit_set returns one if the |n|th least-significant bit in |a| exists
    411 // and is set. Otherwise, it returns zero.
    412 OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n);
    413 
    414 // BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one
    415 // on success or zero if |n| is negative.
    416 //
    417 // This differs from OpenSSL which additionally returns zero if |a|'s word
    418 // length is less than or equal to |n|, rounded down to a number of words. Note
    419 // word size is platform-dependent, so this behavior is also difficult to rely
    420 // on in OpenSSL and not very useful.
    421 OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n);
    422 
    423 // BN_count_low_zero_bits returns the number of low-order zero bits in |bn|, or
    424 // the number of factors of two which divide it. It returns zero if |bn| is
    425 // zero.
    426 OPENSSL_EXPORT int BN_count_low_zero_bits(const BIGNUM *bn);
    427 
    428 
    429 // Modulo arithmetic.
    430 
    431 // BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error.
    432 OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
    433 
    434 // BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and
    435 // 0 on error.
    436 OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
    437 
    438 // BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive.
    439 // It returns 1 on success and 0 on error.
    440 OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
    441 
    442 // BN_mod is a helper macro that calls |BN_div| and discards the quotient.
    443 #define BN_mod(rem, numerator, divisor, ctx) \
    444   BN_div(NULL, (rem), (numerator), (divisor), (ctx))
    445 
    446 // BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <=
    447 // |rem| < |divisor| is always true. It returns one on success and zero on
    448 // error.
    449 OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator,
    450                             const BIGNUM *divisor, BN_CTX *ctx);
    451 
    452 // BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero
    453 // on error.
    454 OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    455                               const BIGNUM *m, BN_CTX *ctx);
    456 
    457 // BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be
    458 // non-negative and less than |m|.
    459 OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    460                                     const BIGNUM *m);
    461 
    462 // BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero
    463 // on error.
    464 OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    465                               const BIGNUM *m, BN_CTX *ctx);
    466 
    467 // BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be
    468 // non-negative and less than |m|.
    469 OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    470                                     const BIGNUM *m);
    471 
    472 // BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero
    473 // on error.
    474 OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    475                               const BIGNUM *m, BN_CTX *ctx);
    476 
    477 // BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero
    478 // on error.
    479 OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
    480                               BN_CTX *ctx);
    481 
    482 // BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the
    483 // same pointer. It returns one on success and zero on error.
    484 OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n,
    485                                  const BIGNUM *m, BN_CTX *ctx);
    486 
    487 // BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be
    488 // non-negative and less than |m|.
    489 OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n,
    490                                        const BIGNUM *m);
    491 
    492 // BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the
    493 // same pointer. It returns one on success and zero on error.
    494 OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
    495                                   BN_CTX *ctx);
    496 
    497 // BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be
    498 // non-negative and less than |m|.
    499 OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a,
    500                                         const BIGNUM *m);
    501 
    502 // BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that
    503 // r^2 == a (mod p). It returns NULL on error or if |a| is not a square mod |p|.
    504 // In the latter case, it will add |BN_R_NOT_A_SQUARE| to the error queue.
    505 // If |a| is a square and |p| > 2, there are two possible square roots. This
    506 // function may return either and may even select one non-deterministically.
    507 //
    508 // This function only works if |p| is a prime. If |p| is composite, it may fail
    509 // or return an arbitrary value. Callers should not pass attacker-controlled
    510 // values of |p|.
    511 OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p,
    512                                    BN_CTX *ctx);
    513 
    514 
    515 // Random and prime number generation.
    516 
    517 // The following are values for the |top| parameter of |BN_rand|.
    518 #define BN_RAND_TOP_ANY    (-1)
    519 #define BN_RAND_TOP_ONE     0
    520 #define BN_RAND_TOP_TWO     1
    521 
    522 // The following are values for the |bottom| parameter of |BN_rand|.
    523 #define BN_RAND_BOTTOM_ANY  0
    524 #define BN_RAND_BOTTOM_ODD  1
    525 
    526 // BN_rand sets |rnd| to a random number of length |bits|. It returns one on
    527 // success and zero otherwise.
    528 //
    529 // |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the
    530 // most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two
    531 // most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra
    532 // action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most
    533 // significant bits randomly ended up as zeros.
    534 //
    535 // |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If
    536 // |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If
    537 // |BN_RAND_BOTTOM_ANY|, no extra action will be taken.
    538 OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
    539 
    540 // BN_pseudo_rand is an alias for |BN_rand|.
    541 OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
    542 
    543 // BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set
    544 // to zero and |max_exclusive| set to |range|.
    545 OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
    546 
    547 // BN_rand_range_ex sets |rnd| to a random value in
    548 // [min_inclusive..max_exclusive). It returns one on success and zero
    549 // otherwise.
    550 OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive,
    551                                     const BIGNUM *max_exclusive);
    552 
    553 // BN_pseudo_rand_range is an alias for BN_rand_range.
    554 OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
    555 
    556 #define BN_GENCB_GENERATED 0
    557 #define BN_GENCB_PRIME_TEST 1
    558 
    559 // bn_gencb_st, or |BN_GENCB|, holds a callback function that is used by
    560 // generation functions that can take a very long time to complete. Use
    561 // |BN_GENCB_set| to initialise a |BN_GENCB| structure.
    562 //
    563 // The callback receives the address of that |BN_GENCB| structure as its last
    564 // argument and the user is free to put an arbitrary pointer in |arg|. The other
    565 // arguments are set as follows:
    566 // - event=BN_GENCB_GENERATED, n=i:   after generating the i'th possible prime
    567 //                                    number.
    568 // - event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality
    569 //                                    checks.
    570 // - event=BN_GENCB_PRIME_TEST, n=i:  when the i'th primality test has finished.
    571 //
    572 // The callback can return zero to abort the generation progress or one to
    573 // allow it to continue.
    574 //
    575 // When other code needs to call a BN generation function it will often take a
    576 // BN_GENCB argument and may call the function with other argument values.
    577 struct bn_gencb_st {
    578   void *arg;        // callback-specific data
    579   int (*callback)(int event, int n, struct bn_gencb_st *);
    580 };
    581 
    582 // BN_GENCB_new returns a newly-allocated |BN_GENCB| object, or NULL on
    583 // allocation failure. The result must be released with |BN_GENCB_free| when
    584 // done.
    585 OPENSSL_EXPORT BN_GENCB *BN_GENCB_new(void);
    586 
    587 // BN_GENCB_free releases memory associated with |callback|.
    588 OPENSSL_EXPORT void BN_GENCB_free(BN_GENCB *callback);
    589 
    590 // BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to
    591 // |arg|.
    592 OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback,
    593                                  int (*f)(int event, int n, BN_GENCB *),
    594                                  void *arg);
    595 
    596 // BN_GENCB_call calls |callback|, if not NULL, and returns the return value of
    597 // the callback, or 1 if |callback| is NULL.
    598 OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n);
    599 
    600 // BN_GENCB_get_arg returns |callback->arg|.
    601 OPENSSL_EXPORT void *BN_GENCB_get_arg(const BN_GENCB *callback);
    602 
    603 // BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe
    604 // is non-zero then the prime will be such that (ret-1)/2 is also a prime.
    605 // (This is needed for Diffie-Hellman groups to ensure that the only subgroups
    606 // are of size 2 and (p-1)/2.).
    607 //
    608 // If |add| is not NULL, the prime will fulfill the condition |ret| % |add| ==
    609 // |rem| in order to suit a given generator. (If |rem| is NULL then |ret| %
    610 // |add| == 1.)
    611 //
    612 // If |cb| is not NULL, it will be called during processing to give an
    613 // indication of progress. See the comments for |BN_GENCB|. It returns one on
    614 // success and zero otherwise.
    615 OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
    616                                         const BIGNUM *add, const BIGNUM *rem,
    617                                         BN_GENCB *cb);
    618 
    619 // BN_prime_checks_for_validation can be used as the |checks| argument to the
    620 // primarily testing functions when validating an externally-supplied candidate
    621 // prime. It gives a false positive rate of at most 2^{-128}. (The worst case
    622 // false positive rate for a single iteration is 1/4 per
    623 // https://eprint.iacr.org/2018/749. (1/4)^64 = 2^{-128}.)
    624 #define BN_prime_checks_for_validation 64
    625 
    626 // BN_prime_checks_for_generation can be used as the |checks| argument to the
    627 // primality testing functions when generating random primes. It gives a false
    628 // positive rate at most the security level of the corresponding RSA key size.
    629 //
    630 // Note this value only performs enough checks if the candidate prime was
    631 // selected randomly. If validating an externally-supplied candidate, especially
    632 // one that may be selected adversarially, use |BN_prime_checks_for_validation|
    633 // instead.
    634 #define BN_prime_checks_for_generation 0
    635 
    636 // bn_primality_result_t enumerates the outcomes of primality-testing.
    637 enum bn_primality_result_t {
    638   bn_probably_prime,
    639   bn_composite,
    640   bn_non_prime_power_composite,
    641 };
    642 
    643 // BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime
    644 // number using the Enhanced Miller-Rabin Test (FIPS 186-4 C.3.2) with
    645 // |checks| iterations and returns the result in |out_result|. Enhanced
    646 // Miller-Rabin tests primality for odd integers greater than 3, returning
    647 // |bn_probably_prime| if the number is probably prime,
    648 // |bn_non_prime_power_composite| if the number is a composite that is not the
    649 // power of a single prime, and |bn_composite| otherwise. It returns one on
    650 // success and zero on failure. If |cb| is not NULL, then it is called during
    651 // each iteration of the primality test.
    652 //
    653 // See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for
    654 // recommended values of |checks|.
    655 OPENSSL_EXPORT int BN_enhanced_miller_rabin_primality_test(
    656     enum bn_primality_result_t *out_result, const BIGNUM *w, int checks,
    657     BN_CTX *ctx, BN_GENCB *cb);
    658 
    659 // BN_primality_test sets |*is_probably_prime| to one if |candidate| is
    660 // probably a prime number by the Miller-Rabin test or zero if it's certainly
    661 // not.
    662 //
    663 // If |do_trial_division| is non-zero then |candidate| will be tested against a
    664 // list of small primes before Miller-Rabin tests. The probability of this
    665 // function returning a false positive is at most 2^{2*checks}. See
    666 // |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for
    667 // recommended values of |checks|.
    668 //
    669 // If |cb| is not NULL then it is called during the checking process. See the
    670 // comment above |BN_GENCB|.
    671 //
    672 // The function returns one on success and zero on error.
    673 OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime,
    674                                      const BIGNUM *candidate, int checks,
    675                                      BN_CTX *ctx, int do_trial_division,
    676                                      BN_GENCB *cb);
    677 
    678 // BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime
    679 // number by the Miller-Rabin test, zero if it's certainly not and -1 on error.
    680 //
    681 // If |do_trial_division| is non-zero then |candidate| will be tested against a
    682 // list of small primes before Miller-Rabin tests. The probability of this
    683 // function returning one when |candidate| is composite is at most 2^{2*checks}.
    684 // See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for
    685 // recommended values of |checks|.
    686 //
    687 // If |cb| is not NULL then it is called during the checking process. See the
    688 // comment above |BN_GENCB|.
    689 //
    690 // WARNING: deprecated. Use |BN_primality_test|.
    691 OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks,
    692                                            BN_CTX *ctx, int do_trial_division,
    693                                            BN_GENCB *cb);
    694 
    695 // BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with
    696 // |do_trial_division| set to zero.
    697 //
    698 // WARNING: deprecated: Use |BN_primality_test|.
    699 OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks,
    700                                   BN_CTX *ctx, BN_GENCB *cb);
    701 
    702 
    703 // Number theory functions
    704 
    705 // BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero
    706 // otherwise.
    707 OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    708                           BN_CTX *ctx);
    709 
    710 // BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a
    711 // fresh BIGNUM is allocated. It returns the result or NULL on error.
    712 //
    713 // If |n| is even then the operation is performed using an algorithm that avoids
    714 // some branches but which isn't constant-time. This function shouldn't be used
    715 // for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is
    716 // guaranteed to be prime, use
    717 // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
    718 // advantage of Fermat's Little Theorem.
    719 OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a,
    720                                       const BIGNUM *n, BN_CTX *ctx);
    721 
    722 // BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the
    723 // Montgomery modulus for |mont|. |a| must be non-negative and must be less
    724 // than |n|. |n| must be greater than 1. |a| is blinded (masked by a random
    725 // value) to protect it against side-channel attacks. On failure, if the failure
    726 // was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be
    727 // set to one; otherwise it will be set to zero.
    728 //
    729 // Note this function may incorrectly report |a| has no inverse if the random
    730 // blinding value has no inverse. It should only be used when |n| has few
    731 // non-invertible elements, such as an RSA modulus.
    732 OPENSSL_EXPORT int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse,
    733                                           const BIGNUM *a,
    734                                           const BN_MONT_CTX *mont, BN_CTX *ctx);
    735 
    736 // BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be
    737 // non-negative and must be less than |n|. |n| must be odd. This function
    738 // shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead.
    739 // Or, if |n| is guaranteed to be prime, use
    740 // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
    741 // advantage of Fermat's Little Theorem. It returns one on success or zero on
    742 // failure. On failure, if the failure was caused by |a| having no inverse mod
    743 // |n| then |*out_no_inverse| will be set to one; otherwise it will be set to
    744 // zero.
    745 int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
    746                        const BIGNUM *n, BN_CTX *ctx);
    747 
    748 
    749 // Montgomery arithmetic.
    750 
    751 // BN_MONT_CTX contains the precomputed values needed to work in a specific
    752 // Montgomery domain.
    753 
    754 // BN_MONT_CTX_new_for_modulus returns a fresh |BN_MONT_CTX| given the modulus,
    755 // |mod| or NULL on error. Note this function assumes |mod| is public.
    756 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod,
    757                                                         BN_CTX *ctx);
    758 
    759 // BN_MONT_CTX_new_consttime behaves like |BN_MONT_CTX_new_for_modulus| but
    760 // treats |mod| as secret.
    761 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod,
    762                                                       BN_CTX *ctx);
    763 
    764 // BN_MONT_CTX_free frees memory associated with |mont|.
    765 OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont);
    766 
    767 // BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or
    768 // NULL on error.
    769 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,
    770                                              const BN_MONT_CTX *from);
    771 
    772 // BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is
    773 // assumed to be in the range [0, n), where |n| is the Montgomery modulus. It
    774 // returns one on success or zero on error.
    775 OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a,
    776                                     const BN_MONT_CTX *mont, BN_CTX *ctx);
    777 
    778 // BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out
    779 // of the Montgomery domain. |a| is assumed to be in the range [0, n*R), where
    780 // |n| is the Montgomery modulus. Note n < R, so inputs in the range [0, n*n)
    781 // are valid. This function returns one on success or zero on error.
    782 OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a,
    783                                       const BN_MONT_CTX *mont, BN_CTX *ctx);
    784 
    785 // BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain.
    786 // Both |a| and |b| must already be in the Montgomery domain (by
    787 // |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the
    788 // range [0, n), where |n| is the Montgomery modulus. It returns one on success
    789 // or zero on error.
    790 OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a,
    791                                          const BIGNUM *b,
    792                                          const BN_MONT_CTX *mont, BN_CTX *ctx);
    793 
    794 
    795 // Exponentiation.
    796 
    797 // BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply
    798 // algorithm that leaks side-channel information. It returns one on success or
    799 // zero otherwise.
    800 OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    801                           BN_CTX *ctx);
    802 
    803 // BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best
    804 // algorithm for the values provided. It returns one on success or zero
    805 // otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the
    806 // exponent is secret.
    807 OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    808                               const BIGNUM *m, BN_CTX *ctx);
    809 
    810 // BN_mod_exp_mont behaves like |BN_mod_exp| but treats |a| as secret and
    811 // requires 0 <= |a| < |m|.
    812 OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    813                                    const BIGNUM *m, BN_CTX *ctx,
    814                                    const BN_MONT_CTX *mont);
    815 
    816 // BN_mod_exp_mont_consttime behaves like |BN_mod_exp| but treats |a|, |p|, and
    817 // |m| as secret and requires 0 <= |a| < |m|.
    818 OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a,
    819                                              const BIGNUM *p, const BIGNUM *m,
    820                                              BN_CTX *ctx,
    821                                              const BN_MONT_CTX *mont);
    822 
    823 
    824 // Deprecated functions
    825 
    826 // BN_bn2mpi serialises the value of |in| to |out|, using a format that consists
    827 // of the number's length in bytes represented as a 4-byte big-endian number,
    828 // and the number itself in big-endian format, where the most significant bit
    829 // signals a negative number. (The representation of numbers with the MSB set is
    830 // prefixed with null byte). |out| must have sufficient space available; to
    831 // find the needed amount of space, call the function with |out| set to NULL.
    832 OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out);
    833 
    834 // BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The
    835 // bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|.
    836 //
    837 // If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise
    838 // |out| is reused and returned. On error, NULL is returned and the error queue
    839 // is updated.
    840 OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out);
    841 
    842 // BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is
    843 // given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success
    844 // or zero otherwise.
    845 OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
    846                                         const BIGNUM *m, BN_CTX *ctx,
    847                                         const BN_MONT_CTX *mont);
    848 
    849 // BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success
    850 // or zero otherwise.
    851 OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1,
    852                                     const BIGNUM *p1, const BIGNUM *a2,
    853                                     const BIGNUM *p2, const BIGNUM *m,
    854                                     BN_CTX *ctx, const BN_MONT_CTX *mont);
    855 
    856 // BN_MONT_CTX_new returns a fresh |BN_MONT_CTX| or NULL on allocation failure.
    857 // Use |BN_MONT_CTX_new_for_modulus| instead.
    858 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void);
    859 
    860 // BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It
    861 // returns one on success and zero on error. Use |BN_MONT_CTX_new_for_modulus|
    862 // instead.
    863 OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod,
    864                                    BN_CTX *ctx);
    865 
    866 // BN_bn2binpad behaves like |BN_bn2bin_padded|, but it returns |len| on success
    867 // and -1 on error.
    868 //
    869 // Use |BN_bn2bin_padded| instead. It is |size_t|-clean.
    870 OPENSSL_EXPORT int BN_bn2binpad(const BIGNUM *in, uint8_t *out, int len);
    871 
    872 // BN_bn2lebinpad behaves like |BN_bn2le_padded|, but it returns |len| on
    873 // success and -1 on error.
    874 //
    875 // Use |BN_bn2le_padded| instead. It is |size_t|-clean.
    876 OPENSSL_EXPORT int BN_bn2lebinpad(const BIGNUM *in, uint8_t *out, int len);
    877 
    878 // BN_prime_checks is a deprecated alias for |BN_prime_checks_for_validation|.
    879 // Use |BN_prime_checks_for_generation| or |BN_prime_checks_for_validation|
    880 // instead. (This defaults to the |_for_validation| value in order to be
    881 // conservative.)
    882 #define BN_prime_checks BN_prime_checks_for_validation
    883 
    884 // BN_secure_new calls |BN_new|.
    885 OPENSSL_EXPORT BIGNUM *BN_secure_new(void);
    886 
    887 // BN_le2bn calls |BN_lebin2bn|.
    888 OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret);
    889 
    890 
    891 // Private functions
    892 
    893 struct bignum_st {
    894   // d is a pointer to an array of |width| |BN_BITS2|-bit chunks in
    895   // little-endian order. This stores the absolute value of the number.
    896   BN_ULONG *d;
    897   // width is the number of elements of |d| which are valid. This value is not
    898   // necessarily minimal; the most-significant words of |d| may be zero.
    899   // |width| determines a potentially loose upper-bound on the absolute value
    900   // of the |BIGNUM|.
    901   //
    902   // Functions taking |BIGNUM| inputs must compute the same answer for all
    903   // possible widths. |bn_minimal_width|, |bn_set_minimal_width|, and other
    904   // helpers may be used to recover the minimal width, provided it is not
    905   // secret. If it is secret, use a different algorithm. Functions may output
    906   // minimal or non-minimal |BIGNUM|s depending on secrecy requirements, but
    907   // those which cause widths to unboundedly grow beyond the minimal value
    908   // should be documented such.
    909   //
    910   // Note this is different from historical |BIGNUM| semantics.
    911   int width;
    912   // dmax is number of elements of |d| which are allocated.
    913   int dmax;
    914   // neg is one if the number if negative and zero otherwise.
    915   int neg;
    916   // flags is a bitmask of |BN_FLG_*| values
    917   int flags;
    918 };
    919 
    920 struct bn_mont_ctx_st {
    921   // RR is R^2, reduced modulo |N|. It is used to convert to Montgomery form. It
    922   // is guaranteed to have the same width as |N|.
    923   BIGNUM RR;
    924   // N is the modulus. It is always stored in minimal form, so |N.width|
    925   // determines R.
    926   BIGNUM N;
    927   BN_ULONG n0[2];  // least significant words of (R*Ri-1)/N
    928 };
    929 
    930 OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l);
    931 
    932 #define BN_FLG_MALLOCED 0x01
    933 #define BN_FLG_STATIC_DATA 0x02
    934 // |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying
    935 // on it will not compile. Consumers outside BoringSSL should use the
    936 // higher-level cryptographic algorithms exposed by other modules. Consumers
    937 // within the library should call the appropriate timing-sensitive algorithm
    938 // directly.
    939 
    940 
    941 #if defined(__cplusplus)
    942 }  // extern C
    943 
    944 #if !defined(BORINGSSL_NO_CXX)
    945 extern "C++" {
    946 
    947 BSSL_NAMESPACE_BEGIN
    948 
    949 BORINGSSL_MAKE_DELETER(BIGNUM, BN_free)
    950 BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free)
    951 BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free)
    952 
    953 class BN_CTXScope {
    954  public:
    955   BN_CTXScope(BN_CTX *ctx) : ctx_(ctx) { BN_CTX_start(ctx_); }
    956   ~BN_CTXScope() { BN_CTX_end(ctx_); }
    957 
    958  private:
    959   BN_CTX *ctx_;
    960 
    961   BN_CTXScope(BN_CTXScope &) = delete;
    962   BN_CTXScope &operator=(BN_CTXScope &) = delete;
    963 };
    964 
    965 BSSL_NAMESPACE_END
    966 
    967 }  // extern C++
    968 #endif
    969 
    970 #endif
    971 
    972 #define BN_R_ARG2_LT_ARG3 100
    973 #define BN_R_BAD_RECIPROCAL 101
    974 #define BN_R_BIGNUM_TOO_LONG 102
    975 #define BN_R_BITS_TOO_SMALL 103
    976 #define BN_R_CALLED_WITH_EVEN_MODULUS 104
    977 #define BN_R_DIV_BY_ZERO 105
    978 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106
    979 #define BN_R_INPUT_NOT_REDUCED 107
    980 #define BN_R_INVALID_RANGE 108
    981 #define BN_R_NEGATIVE_NUMBER 109
    982 #define BN_R_NOT_A_SQUARE 110
    983 #define BN_R_NOT_INITIALIZED 111
    984 #define BN_R_NO_INVERSE 112
    985 #define BN_R_PRIVATE_KEY_TOO_LARGE 113
    986 #define BN_R_P_IS_NOT_PRIME 114
    987 #define BN_R_TOO_MANY_ITERATIONS 115
    988 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116
    989 #define BN_R_BAD_ENCODING 117
    990 #define BN_R_ENCODE_ERROR 118
    991 #define BN_R_INVALID_INPUT 119
    992 
    993 #endif  // OPENSSL_HEADER_BN_H