bn.h (44476B)
1 // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. 2 // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // https://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 16 #ifndef OPENSSL_HEADER_BN_H 17 #define OPENSSL_HEADER_BN_H 18 19 #include <openssl/base.h> // IWYU pragma: export 20 21 #include <inttypes.h> // for PRIu64 and friends 22 #include <stdio.h> // for FILE* 23 24 #if defined(__cplusplus) 25 extern "C" { 26 #endif 27 28 29 // BN provides support for working with arbitrary sized integers. For example, 30 // although the largest integer supported by the compiler might be 64 bits, BN 31 // will allow you to work with much larger numbers. 32 // 33 // This library is developed for use inside BoringSSL, and uses implementation 34 // strategies that may not be ideal for other applications. Non-cryptographic 35 // uses should use a more general-purpose integer library, especially if 36 // performance-sensitive. 37 // 38 // Many functions in BN scale quadratically or higher in the bit length of their 39 // input. Callers at this layer are assumed to have capped input sizes within 40 // their performance tolerances. 41 42 43 // BN_ULONG is the native word size when working with big integers. 44 // 45 // Note: on some platforms, inttypes.h does not define print format macros in 46 // C++ unless |__STDC_FORMAT_MACROS| defined. This is due to text in C99 which 47 // was never adopted in any C++ standard and explicitly overruled in C++11. As 48 // this is a public header, bn.h does not define |__STDC_FORMAT_MACROS| itself. 49 // Projects which use |BN_*_FMT*| with outdated C headers may need to define it 50 // externally. 51 #if defined(OPENSSL_64_BIT) 52 typedef uint64_t BN_ULONG; 53 #define BN_BITS2 64 54 #define BN_DEC_FMT1 "%" PRIu64 55 #define BN_HEX_FMT1 "%" PRIx64 56 #define BN_HEX_FMT2 "%016" PRIx64 57 #elif defined(OPENSSL_32_BIT) 58 typedef uint32_t BN_ULONG; 59 #define BN_BITS2 32 60 #define BN_DEC_FMT1 "%" PRIu32 61 #define BN_HEX_FMT1 "%" PRIx32 62 #define BN_HEX_FMT2 "%08" PRIx32 63 #else 64 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" 65 #endif 66 67 68 // Allocation and freeing. 69 70 // BN_new creates a new, allocated BIGNUM and initialises it. 71 OPENSSL_EXPORT BIGNUM *BN_new(void); 72 73 // BN_init initialises a stack allocated |BIGNUM|. 74 OPENSSL_EXPORT void BN_init(BIGNUM *bn); 75 76 // BN_free frees the data referenced by |bn| and, if |bn| was originally 77 // allocated on the heap, frees |bn| also. 78 OPENSSL_EXPORT void BN_free(BIGNUM *bn); 79 80 // BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was 81 // originally allocated on the heap, frees |bn| also. 82 OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn); 83 84 // BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the 85 // allocated BIGNUM on success or NULL otherwise. 86 OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src); 87 88 // BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation 89 // failure. 90 OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src); 91 92 // BN_clear sets |bn| to zero and erases the old data. 93 OPENSSL_EXPORT void BN_clear(BIGNUM *bn); 94 95 // BN_value_one returns a static BIGNUM with value 1. 96 OPENSSL_EXPORT const BIGNUM *BN_value_one(void); 97 98 99 // Basic functions. 100 101 // BN_num_bits returns the minimum number of bits needed to represent the 102 // absolute value of |bn|. 103 OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn); 104 105 // BN_num_bytes returns the minimum number of bytes needed to represent the 106 // absolute value of |bn|. 107 // 108 // While |size_t| is the preferred type for byte counts, callers can assume that 109 // |BIGNUM|s are bounded such that this value, and its corresponding bit count, 110 // will always fit in |int|. 111 OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn); 112 113 // BN_zero sets |bn| to zero. 114 OPENSSL_EXPORT void BN_zero(BIGNUM *bn); 115 116 // BN_one sets |bn| to one. It returns one on success or zero on allocation 117 // failure. 118 OPENSSL_EXPORT int BN_one(BIGNUM *bn); 119 120 // BN_set_word sets |bn| to |value|. It returns one on success or zero on 121 // allocation failure. 122 OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value); 123 124 // BN_set_u64 sets |bn| to |value|. It returns one on success or zero on 125 // allocation failure. 126 OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value); 127 128 // BN_set_negative sets the sign of |bn|. 129 OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign); 130 131 // BN_is_negative returns one if |bn| is negative and zero otherwise. 132 OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn); 133 134 135 // Conversion functions. 136 137 // BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as 138 // a big-endian number, and returns |ret|. If |ret| is NULL then a fresh 139 // |BIGNUM| is allocated and returned. It returns NULL on allocation 140 // failure. 141 OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret); 142 143 // BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian 144 // integer, which must have |BN_num_bytes| of space available. It returns the 145 // number of bytes written. Note this function leaks the magnitude of |in|. If 146 // |in| is secret, use |BN_bn2bin_padded| instead. 147 OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out); 148 149 // BN_lebin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as 150 // a little-endian number, and returns |ret|. If |ret| is NULL then a fresh 151 // |BIGNUM| is allocated and returned. It returns NULL on allocation 152 // failure. 153 OPENSSL_EXPORT BIGNUM *BN_lebin2bn(const uint8_t *in, size_t len, BIGNUM *ret); 154 155 // BN_bn2le_padded serialises the absolute value of |in| to |out| as a 156 // little-endian integer, which must have |len| of space available, padding 157 // out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|, 158 // the function fails and returns 0. Otherwise, it returns 1. 159 OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in); 160 161 // BN_bn2bin_padded serialises the absolute value of |in| to |out| as a 162 // big-endian integer. The integer is padded with leading zeros up to size 163 // |len|. If |len| is smaller than |BN_num_bytes|, the function fails and 164 // returns 0. Otherwise, it returns 1. 165 OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in); 166 167 // BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|. 168 OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in); 169 170 // BN_bn2hex returns an allocated string that contains a NUL-terminated, hex 171 // representation of |bn|. If |bn| is negative, the first char in the resulting 172 // string will be '-'. Returns NULL on allocation failure. 173 OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn); 174 175 // BN_hex2bn parses the leading hex number from |in|, which may be proceeded by 176 // a '-' to indicate a negative number and may contain trailing, non-hex data. 177 // If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and 178 // stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and 179 // updates |*outp|. It returns the number of bytes of |in| processed or zero on 180 // error. 181 OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in); 182 183 // BN_bn2dec returns an allocated string that contains a NUL-terminated, 184 // decimal representation of |bn|. If |bn| is negative, the first char in the 185 // resulting string will be '-'. Returns NULL on allocation failure. 186 // 187 // Converting an arbitrarily large integer to decimal is quadratic in the bit 188 // length of |a|. This function assumes the caller has capped the input within 189 // performance tolerances. 190 OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a); 191 192 // BN_dec2bn parses the leading decimal number from |in|, which may be 193 // proceeded by a '-' to indicate a negative number and may contain trailing, 194 // non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the 195 // decimal number and stores it in |*outp|. If |*outp| is NULL then it 196 // allocates a new BIGNUM and updates |*outp|. It returns the number of bytes 197 // of |in| processed or zero on error. 198 // 199 // Converting an arbitrarily large integer to decimal is quadratic in the bit 200 // length of |a|. This function assumes the caller has capped the input within 201 // performance tolerances. 202 OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in); 203 204 // BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in| 205 // begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A 206 // leading '-' is still permitted and comes before the optional 0X/0x. It 207 // returns one on success or zero on error. 208 OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in); 209 210 // BN_print writes a hex encoding of |a| to |bio|. It returns one on success 211 // and zero on error. 212 OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a); 213 214 // BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first. 215 OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a); 216 217 // BN_get_word returns the absolute value of |bn| as a single word. If |bn| is 218 // too large to be represented as a single word, the maximum possible value 219 // will be returned. 220 OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn); 221 222 // BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and 223 // returns one. If |bn| is too large to be represented as a |uint64_t|, it 224 // returns zero. 225 OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out); 226 227 228 // ASN.1 functions. 229 230 // BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes 231 // the result to |ret|. It returns one on success and zero on failure. 232 OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret); 233 234 // BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the 235 // result to |cbb|. It returns one on success and zero on failure. 236 OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn); 237 238 239 // BIGNUM pools. 240 // 241 // Certain BIGNUM operations need to use many temporary variables and 242 // allocating and freeing them can be quite slow. Thus such operations typically 243 // take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx| 244 // argument to a public function may be NULL, in which case a local |BN_CTX| 245 // will be created just for the lifetime of that call. 246 // 247 // A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called 248 // repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made 249 // before calling any other functions that use the |ctx| as an argument. 250 // 251 // Finally, |BN_CTX_end| must be called before returning from the function. 252 // When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from 253 // |BN_CTX_get| become invalid. 254 255 // BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure. 256 OPENSSL_EXPORT BN_CTX *BN_CTX_new(void); 257 258 // BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx| 259 // itself. 260 OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx); 261 262 // BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future 263 // calls to |BN_CTX_get|. 264 OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx); 265 266 // BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once 267 // |BN_CTX_get| has returned NULL, all future calls will also return NULL until 268 // |BN_CTX_end| is called. 269 OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx); 270 271 // BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the 272 // matching |BN_CTX_start| call. 273 OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx); 274 275 276 // Simple arithmetic 277 278 // BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a| 279 // or |b|. It returns one on success and zero on allocation failure. 280 OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 281 282 // BN_uadd sets |r| = |a| + |b|, considering only the absolute values of |a| and 283 // |b|. |r| may be the same pointer as either |a| or |b|. It returns one on 284 // success and zero on allocation failure. 285 OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 286 287 // BN_add_word adds |w| to |a|. It returns one on success and zero otherwise. 288 OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w); 289 290 // BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a| 291 // or |b|. It returns one on success and zero on allocation failure. 292 OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 293 294 // BN_usub sets |r| = |a| - |b|, considering only the absolute values of |a| and 295 // |b|. The result must be non-negative, i.e. |b| <= |a|. |r| may be the same 296 // pointer as either |a| or |b|. It returns one on success and zero on error. 297 OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 298 299 // BN_sub_word subtracts |w| from |a|. It returns one on success and zero on 300 // allocation failure. 301 OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w); 302 303 // BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or 304 // |b|. Returns one on success and zero otherwise. 305 OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 306 BN_CTX *ctx); 307 308 // BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on 309 // allocation failure. 310 OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w); 311 312 // BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as 313 // |a|. Returns one on success and zero otherwise. This is more efficient than 314 // BN_mul(r, a, a, ctx). 315 OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); 316 317 // BN_div divides |numerator| by |divisor| and places the result in |quotient| 318 // and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in 319 // which case the respective value is not returned. It returns one on success or 320 // zero on error. It is an error condition if |divisor| is zero. 321 // 322 // The outputs will be such that |quotient| * |divisor| + |rem| = |numerator|, 323 // with the quotient rounded towards zero. Thus, if |numerator| is negative, 324 // |rem| will be zero or negative. If |divisor| is negative, the sign of 325 // |quotient| will be flipped to compensate but otherwise rounding will be as if 326 // |divisor| were its absolute value. 327 OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem, 328 const BIGNUM *numerator, const BIGNUM *divisor, 329 BN_CTX *ctx); 330 331 // BN_div_word sets |numerator| = |numerator|/|divisor| and returns the 332 // remainder or (BN_ULONG)-1 on error. 333 OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor); 334 335 // BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the 336 // square root of |in|, using |ctx|. It returns one on success or zero on 337 // error. Negative numbers and non-square numbers will result in an error with 338 // appropriate errors on the error queue. 339 OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx); 340 341 342 // Comparison functions 343 344 // BN_cmp returns a value less than, equal to or greater than zero if |a| is 345 // less than, equal to or greater than |b|, respectively. 346 OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b); 347 348 // BN_cmp_word is like |BN_cmp| except it takes its second argument as a 349 // |BN_ULONG| instead of a |BIGNUM|. 350 OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b); 351 352 // BN_ucmp returns a value less than, equal to or greater than zero if the 353 // absolute value of |a| is less than, equal to or greater than the absolute 354 // value of |b|, respectively. 355 OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b); 356 357 // BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise. 358 // It takes an amount of time dependent on the sizes of |a| and |b|, but 359 // independent of the contents (including the signs) of |a| and |b|. 360 OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b); 361 362 // BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero 363 // otherwise. 364 OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w); 365 366 // BN_is_zero returns one if |bn| is zero and zero otherwise. 367 OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn); 368 369 // BN_is_one returns one if |bn| equals one and zero otherwise. 370 OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn); 371 372 // BN_is_word returns one if |bn| is exactly |w| and zero otherwise. 373 OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w); 374 375 // BN_is_odd returns one if |bn| is odd and zero otherwise. 376 OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn); 377 378 // BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise. 379 OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a); 380 381 382 // Bitwise operations. 383 384 // BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the 385 // same |BIGNUM|. It returns one on success and zero on allocation failure. 386 OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); 387 388 // BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same 389 // pointer. It returns one on success and zero on allocation failure. 390 OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a); 391 392 // BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same 393 // pointer. It returns one on success and zero on allocation failure. 394 OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); 395 396 // BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same 397 // pointer. It returns one on success and zero on allocation failure. 398 OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a); 399 400 // BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a| 401 // is 2 then setting bit zero will make it 3. It returns one on success or zero 402 // on allocation failure. 403 OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n); 404 405 // BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if 406 // |a| is 3, clearing bit zero will make it two. It returns one on success or 407 // zero on allocation failure. 408 OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n); 409 410 // BN_is_bit_set returns one if the |n|th least-significant bit in |a| exists 411 // and is set. Otherwise, it returns zero. 412 OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n); 413 414 // BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one 415 // on success or zero if |n| is negative. 416 // 417 // This differs from OpenSSL which additionally returns zero if |a|'s word 418 // length is less than or equal to |n|, rounded down to a number of words. Note 419 // word size is platform-dependent, so this behavior is also difficult to rely 420 // on in OpenSSL and not very useful. 421 OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n); 422 423 // BN_count_low_zero_bits returns the number of low-order zero bits in |bn|, or 424 // the number of factors of two which divide it. It returns zero if |bn| is 425 // zero. 426 OPENSSL_EXPORT int BN_count_low_zero_bits(const BIGNUM *bn); 427 428 429 // Modulo arithmetic. 430 431 // BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error. 432 OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); 433 434 // BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and 435 // 0 on error. 436 OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); 437 438 // BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive. 439 // It returns 1 on success and 0 on error. 440 OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); 441 442 // BN_mod is a helper macro that calls |BN_div| and discards the quotient. 443 #define BN_mod(rem, numerator, divisor, ctx) \ 444 BN_div(NULL, (rem), (numerator), (divisor), (ctx)) 445 446 // BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <= 447 // |rem| < |divisor| is always true. It returns one on success and zero on 448 // error. 449 OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator, 450 const BIGNUM *divisor, BN_CTX *ctx); 451 452 // BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero 453 // on error. 454 OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 455 const BIGNUM *m, BN_CTX *ctx); 456 457 // BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be 458 // non-negative and less than |m|. 459 OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 460 const BIGNUM *m); 461 462 // BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero 463 // on error. 464 OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 465 const BIGNUM *m, BN_CTX *ctx); 466 467 // BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be 468 // non-negative and less than |m|. 469 OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 470 const BIGNUM *m); 471 472 // BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero 473 // on error. 474 OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 475 const BIGNUM *m, BN_CTX *ctx); 476 477 // BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero 478 // on error. 479 OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, 480 BN_CTX *ctx); 481 482 // BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the 483 // same pointer. It returns one on success and zero on error. 484 OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, 485 const BIGNUM *m, BN_CTX *ctx); 486 487 // BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be 488 // non-negative and less than |m|. 489 OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, 490 const BIGNUM *m); 491 492 // BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the 493 // same pointer. It returns one on success and zero on error. 494 OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, 495 BN_CTX *ctx); 496 497 // BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be 498 // non-negative and less than |m|. 499 OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, 500 const BIGNUM *m); 501 502 // BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that 503 // r^2 == a (mod p). It returns NULL on error or if |a| is not a square mod |p|. 504 // In the latter case, it will add |BN_R_NOT_A_SQUARE| to the error queue. 505 // If |a| is a square and |p| > 2, there are two possible square roots. This 506 // function may return either and may even select one non-deterministically. 507 // 508 // This function only works if |p| is a prime. If |p| is composite, it may fail 509 // or return an arbitrary value. Callers should not pass attacker-controlled 510 // values of |p|. 511 OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, 512 BN_CTX *ctx); 513 514 515 // Random and prime number generation. 516 517 // The following are values for the |top| parameter of |BN_rand|. 518 #define BN_RAND_TOP_ANY (-1) 519 #define BN_RAND_TOP_ONE 0 520 #define BN_RAND_TOP_TWO 1 521 522 // The following are values for the |bottom| parameter of |BN_rand|. 523 #define BN_RAND_BOTTOM_ANY 0 524 #define BN_RAND_BOTTOM_ODD 1 525 526 // BN_rand sets |rnd| to a random number of length |bits|. It returns one on 527 // success and zero otherwise. 528 // 529 // |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the 530 // most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two 531 // most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra 532 // action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most 533 // significant bits randomly ended up as zeros. 534 // 535 // |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If 536 // |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If 537 // |BN_RAND_BOTTOM_ANY|, no extra action will be taken. 538 OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); 539 540 // BN_pseudo_rand is an alias for |BN_rand|. 541 OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); 542 543 // BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set 544 // to zero and |max_exclusive| set to |range|. 545 OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); 546 547 // BN_rand_range_ex sets |rnd| to a random value in 548 // [min_inclusive..max_exclusive). It returns one on success and zero 549 // otherwise. 550 OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive, 551 const BIGNUM *max_exclusive); 552 553 // BN_pseudo_rand_range is an alias for BN_rand_range. 554 OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); 555 556 #define BN_GENCB_GENERATED 0 557 #define BN_GENCB_PRIME_TEST 1 558 559 // bn_gencb_st, or |BN_GENCB|, holds a callback function that is used by 560 // generation functions that can take a very long time to complete. Use 561 // |BN_GENCB_set| to initialise a |BN_GENCB| structure. 562 // 563 // The callback receives the address of that |BN_GENCB| structure as its last 564 // argument and the user is free to put an arbitrary pointer in |arg|. The other 565 // arguments are set as follows: 566 // - event=BN_GENCB_GENERATED, n=i: after generating the i'th possible prime 567 // number. 568 // - event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality 569 // checks. 570 // - event=BN_GENCB_PRIME_TEST, n=i: when the i'th primality test has finished. 571 // 572 // The callback can return zero to abort the generation progress or one to 573 // allow it to continue. 574 // 575 // When other code needs to call a BN generation function it will often take a 576 // BN_GENCB argument and may call the function with other argument values. 577 struct bn_gencb_st { 578 void *arg; // callback-specific data 579 int (*callback)(int event, int n, struct bn_gencb_st *); 580 }; 581 582 // BN_GENCB_new returns a newly-allocated |BN_GENCB| object, or NULL on 583 // allocation failure. The result must be released with |BN_GENCB_free| when 584 // done. 585 OPENSSL_EXPORT BN_GENCB *BN_GENCB_new(void); 586 587 // BN_GENCB_free releases memory associated with |callback|. 588 OPENSSL_EXPORT void BN_GENCB_free(BN_GENCB *callback); 589 590 // BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to 591 // |arg|. 592 OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback, 593 int (*f)(int event, int n, BN_GENCB *), 594 void *arg); 595 596 // BN_GENCB_call calls |callback|, if not NULL, and returns the return value of 597 // the callback, or 1 if |callback| is NULL. 598 OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n); 599 600 // BN_GENCB_get_arg returns |callback->arg|. 601 OPENSSL_EXPORT void *BN_GENCB_get_arg(const BN_GENCB *callback); 602 603 // BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe 604 // is non-zero then the prime will be such that (ret-1)/2 is also a prime. 605 // (This is needed for Diffie-Hellman groups to ensure that the only subgroups 606 // are of size 2 and (p-1)/2.). 607 // 608 // If |add| is not NULL, the prime will fulfill the condition |ret| % |add| == 609 // |rem| in order to suit a given generator. (If |rem| is NULL then |ret| % 610 // |add| == 1.) 611 // 612 // If |cb| is not NULL, it will be called during processing to give an 613 // indication of progress. See the comments for |BN_GENCB|. It returns one on 614 // success and zero otherwise. 615 OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, 616 const BIGNUM *add, const BIGNUM *rem, 617 BN_GENCB *cb); 618 619 // BN_prime_checks_for_validation can be used as the |checks| argument to the 620 // primarily testing functions when validating an externally-supplied candidate 621 // prime. It gives a false positive rate of at most 2^{-128}. (The worst case 622 // false positive rate for a single iteration is 1/4 per 623 // https://eprint.iacr.org/2018/749. (1/4)^64 = 2^{-128}.) 624 #define BN_prime_checks_for_validation 64 625 626 // BN_prime_checks_for_generation can be used as the |checks| argument to the 627 // primality testing functions when generating random primes. It gives a false 628 // positive rate at most the security level of the corresponding RSA key size. 629 // 630 // Note this value only performs enough checks if the candidate prime was 631 // selected randomly. If validating an externally-supplied candidate, especially 632 // one that may be selected adversarially, use |BN_prime_checks_for_validation| 633 // instead. 634 #define BN_prime_checks_for_generation 0 635 636 // bn_primality_result_t enumerates the outcomes of primality-testing. 637 enum bn_primality_result_t { 638 bn_probably_prime, 639 bn_composite, 640 bn_non_prime_power_composite, 641 }; 642 643 // BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime 644 // number using the Enhanced Miller-Rabin Test (FIPS 186-4 C.3.2) with 645 // |checks| iterations and returns the result in |out_result|. Enhanced 646 // Miller-Rabin tests primality for odd integers greater than 3, returning 647 // |bn_probably_prime| if the number is probably prime, 648 // |bn_non_prime_power_composite| if the number is a composite that is not the 649 // power of a single prime, and |bn_composite| otherwise. It returns one on 650 // success and zero on failure. If |cb| is not NULL, then it is called during 651 // each iteration of the primality test. 652 // 653 // See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for 654 // recommended values of |checks|. 655 OPENSSL_EXPORT int BN_enhanced_miller_rabin_primality_test( 656 enum bn_primality_result_t *out_result, const BIGNUM *w, int checks, 657 BN_CTX *ctx, BN_GENCB *cb); 658 659 // BN_primality_test sets |*is_probably_prime| to one if |candidate| is 660 // probably a prime number by the Miller-Rabin test or zero if it's certainly 661 // not. 662 // 663 // If |do_trial_division| is non-zero then |candidate| will be tested against a 664 // list of small primes before Miller-Rabin tests. The probability of this 665 // function returning a false positive is at most 2^{2*checks}. See 666 // |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for 667 // recommended values of |checks|. 668 // 669 // If |cb| is not NULL then it is called during the checking process. See the 670 // comment above |BN_GENCB|. 671 // 672 // The function returns one on success and zero on error. 673 OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime, 674 const BIGNUM *candidate, int checks, 675 BN_CTX *ctx, int do_trial_division, 676 BN_GENCB *cb); 677 678 // BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime 679 // number by the Miller-Rabin test, zero if it's certainly not and -1 on error. 680 // 681 // If |do_trial_division| is non-zero then |candidate| will be tested against a 682 // list of small primes before Miller-Rabin tests. The probability of this 683 // function returning one when |candidate| is composite is at most 2^{2*checks}. 684 // See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for 685 // recommended values of |checks|. 686 // 687 // If |cb| is not NULL then it is called during the checking process. See the 688 // comment above |BN_GENCB|. 689 // 690 // WARNING: deprecated. Use |BN_primality_test|. 691 OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks, 692 BN_CTX *ctx, int do_trial_division, 693 BN_GENCB *cb); 694 695 // BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with 696 // |do_trial_division| set to zero. 697 // 698 // WARNING: deprecated: Use |BN_primality_test|. 699 OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks, 700 BN_CTX *ctx, BN_GENCB *cb); 701 702 703 // Number theory functions 704 705 // BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero 706 // otherwise. 707 OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 708 BN_CTX *ctx); 709 710 // BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a 711 // fresh BIGNUM is allocated. It returns the result or NULL on error. 712 // 713 // If |n| is even then the operation is performed using an algorithm that avoids 714 // some branches but which isn't constant-time. This function shouldn't be used 715 // for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is 716 // guaranteed to be prime, use 717 // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking 718 // advantage of Fermat's Little Theorem. 719 OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, 720 const BIGNUM *n, BN_CTX *ctx); 721 722 // BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the 723 // Montgomery modulus for |mont|. |a| must be non-negative and must be less 724 // than |n|. |n| must be greater than 1. |a| is blinded (masked by a random 725 // value) to protect it against side-channel attacks. On failure, if the failure 726 // was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be 727 // set to one; otherwise it will be set to zero. 728 // 729 // Note this function may incorrectly report |a| has no inverse if the random 730 // blinding value has no inverse. It should only be used when |n| has few 731 // non-invertible elements, such as an RSA modulus. 732 OPENSSL_EXPORT int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, 733 const BIGNUM *a, 734 const BN_MONT_CTX *mont, BN_CTX *ctx); 735 736 // BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be 737 // non-negative and must be less than |n|. |n| must be odd. This function 738 // shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead. 739 // Or, if |n| is guaranteed to be prime, use 740 // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking 741 // advantage of Fermat's Little Theorem. It returns one on success or zero on 742 // failure. On failure, if the failure was caused by |a| having no inverse mod 743 // |n| then |*out_no_inverse| will be set to one; otherwise it will be set to 744 // zero. 745 int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, 746 const BIGNUM *n, BN_CTX *ctx); 747 748 749 // Montgomery arithmetic. 750 751 // BN_MONT_CTX contains the precomputed values needed to work in a specific 752 // Montgomery domain. 753 754 // BN_MONT_CTX_new_for_modulus returns a fresh |BN_MONT_CTX| given the modulus, 755 // |mod| or NULL on error. Note this function assumes |mod| is public. 756 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod, 757 BN_CTX *ctx); 758 759 // BN_MONT_CTX_new_consttime behaves like |BN_MONT_CTX_new_for_modulus| but 760 // treats |mod| as secret. 761 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod, 762 BN_CTX *ctx); 763 764 // BN_MONT_CTX_free frees memory associated with |mont|. 765 OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont); 766 767 // BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or 768 // NULL on error. 769 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, 770 const BN_MONT_CTX *from); 771 772 // BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is 773 // assumed to be in the range [0, n), where |n| is the Montgomery modulus. It 774 // returns one on success or zero on error. 775 OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, 776 const BN_MONT_CTX *mont, BN_CTX *ctx); 777 778 // BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out 779 // of the Montgomery domain. |a| is assumed to be in the range [0, n*R), where 780 // |n| is the Montgomery modulus. Note n < R, so inputs in the range [0, n*n) 781 // are valid. This function returns one on success or zero on error. 782 OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, 783 const BN_MONT_CTX *mont, BN_CTX *ctx); 784 785 // BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain. 786 // Both |a| and |b| must already be in the Montgomery domain (by 787 // |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the 788 // range [0, n), where |n| is the Montgomery modulus. It returns one on success 789 // or zero on error. 790 OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, 791 const BIGNUM *b, 792 const BN_MONT_CTX *mont, BN_CTX *ctx); 793 794 795 // Exponentiation. 796 797 // BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply 798 // algorithm that leaks side-channel information. It returns one on success or 799 // zero otherwise. 800 OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, 801 BN_CTX *ctx); 802 803 // BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best 804 // algorithm for the values provided. It returns one on success or zero 805 // otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the 806 // exponent is secret. 807 OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, 808 const BIGNUM *m, BN_CTX *ctx); 809 810 // BN_mod_exp_mont behaves like |BN_mod_exp| but treats |a| as secret and 811 // requires 0 <= |a| < |m|. 812 OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, 813 const BIGNUM *m, BN_CTX *ctx, 814 const BN_MONT_CTX *mont); 815 816 // BN_mod_exp_mont_consttime behaves like |BN_mod_exp| but treats |a|, |p|, and 817 // |m| as secret and requires 0 <= |a| < |m|. 818 OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, 819 const BIGNUM *p, const BIGNUM *m, 820 BN_CTX *ctx, 821 const BN_MONT_CTX *mont); 822 823 824 // Deprecated functions 825 826 // BN_bn2mpi serialises the value of |in| to |out|, using a format that consists 827 // of the number's length in bytes represented as a 4-byte big-endian number, 828 // and the number itself in big-endian format, where the most significant bit 829 // signals a negative number. (The representation of numbers with the MSB set is 830 // prefixed with null byte). |out| must have sufficient space available; to 831 // find the needed amount of space, call the function with |out| set to NULL. 832 OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out); 833 834 // BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The 835 // bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|. 836 // 837 // If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise 838 // |out| is reused and returned. On error, NULL is returned and the error queue 839 // is updated. 840 OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out); 841 842 // BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is 843 // given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success 844 // or zero otherwise. 845 OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, 846 const BIGNUM *m, BN_CTX *ctx, 847 const BN_MONT_CTX *mont); 848 849 // BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success 850 // or zero otherwise. 851 OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, 852 const BIGNUM *p1, const BIGNUM *a2, 853 const BIGNUM *p2, const BIGNUM *m, 854 BN_CTX *ctx, const BN_MONT_CTX *mont); 855 856 // BN_MONT_CTX_new returns a fresh |BN_MONT_CTX| or NULL on allocation failure. 857 // Use |BN_MONT_CTX_new_for_modulus| instead. 858 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void); 859 860 // BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It 861 // returns one on success and zero on error. Use |BN_MONT_CTX_new_for_modulus| 862 // instead. 863 OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, 864 BN_CTX *ctx); 865 866 // BN_bn2binpad behaves like |BN_bn2bin_padded|, but it returns |len| on success 867 // and -1 on error. 868 // 869 // Use |BN_bn2bin_padded| instead. It is |size_t|-clean. 870 OPENSSL_EXPORT int BN_bn2binpad(const BIGNUM *in, uint8_t *out, int len); 871 872 // BN_bn2lebinpad behaves like |BN_bn2le_padded|, but it returns |len| on 873 // success and -1 on error. 874 // 875 // Use |BN_bn2le_padded| instead. It is |size_t|-clean. 876 OPENSSL_EXPORT int BN_bn2lebinpad(const BIGNUM *in, uint8_t *out, int len); 877 878 // BN_prime_checks is a deprecated alias for |BN_prime_checks_for_validation|. 879 // Use |BN_prime_checks_for_generation| or |BN_prime_checks_for_validation| 880 // instead. (This defaults to the |_for_validation| value in order to be 881 // conservative.) 882 #define BN_prime_checks BN_prime_checks_for_validation 883 884 // BN_secure_new calls |BN_new|. 885 OPENSSL_EXPORT BIGNUM *BN_secure_new(void); 886 887 // BN_le2bn calls |BN_lebin2bn|. 888 OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret); 889 890 891 // Private functions 892 893 struct bignum_st { 894 // d is a pointer to an array of |width| |BN_BITS2|-bit chunks in 895 // little-endian order. This stores the absolute value of the number. 896 BN_ULONG *d; 897 // width is the number of elements of |d| which are valid. This value is not 898 // necessarily minimal; the most-significant words of |d| may be zero. 899 // |width| determines a potentially loose upper-bound on the absolute value 900 // of the |BIGNUM|. 901 // 902 // Functions taking |BIGNUM| inputs must compute the same answer for all 903 // possible widths. |bn_minimal_width|, |bn_set_minimal_width|, and other 904 // helpers may be used to recover the minimal width, provided it is not 905 // secret. If it is secret, use a different algorithm. Functions may output 906 // minimal or non-minimal |BIGNUM|s depending on secrecy requirements, but 907 // those which cause widths to unboundedly grow beyond the minimal value 908 // should be documented such. 909 // 910 // Note this is different from historical |BIGNUM| semantics. 911 int width; 912 // dmax is number of elements of |d| which are allocated. 913 int dmax; 914 // neg is one if the number if negative and zero otherwise. 915 int neg; 916 // flags is a bitmask of |BN_FLG_*| values 917 int flags; 918 }; 919 920 struct bn_mont_ctx_st { 921 // RR is R^2, reduced modulo |N|. It is used to convert to Montgomery form. It 922 // is guaranteed to have the same width as |N|. 923 BIGNUM RR; 924 // N is the modulus. It is always stored in minimal form, so |N.width| 925 // determines R. 926 BIGNUM N; 927 BN_ULONG n0[2]; // least significant words of (R*Ri-1)/N 928 }; 929 930 OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l); 931 932 #define BN_FLG_MALLOCED 0x01 933 #define BN_FLG_STATIC_DATA 0x02 934 // |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying 935 // on it will not compile. Consumers outside BoringSSL should use the 936 // higher-level cryptographic algorithms exposed by other modules. Consumers 937 // within the library should call the appropriate timing-sensitive algorithm 938 // directly. 939 940 941 #if defined(__cplusplus) 942 } // extern C 943 944 #if !defined(BORINGSSL_NO_CXX) 945 extern "C++" { 946 947 BSSL_NAMESPACE_BEGIN 948 949 BORINGSSL_MAKE_DELETER(BIGNUM, BN_free) 950 BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free) 951 BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free) 952 953 class BN_CTXScope { 954 public: 955 BN_CTXScope(BN_CTX *ctx) : ctx_(ctx) { BN_CTX_start(ctx_); } 956 ~BN_CTXScope() { BN_CTX_end(ctx_); } 957 958 private: 959 BN_CTX *ctx_; 960 961 BN_CTXScope(BN_CTXScope &) = delete; 962 BN_CTXScope &operator=(BN_CTXScope &) = delete; 963 }; 964 965 BSSL_NAMESPACE_END 966 967 } // extern C++ 968 #endif 969 970 #endif 971 972 #define BN_R_ARG2_LT_ARG3 100 973 #define BN_R_BAD_RECIPROCAL 101 974 #define BN_R_BIGNUM_TOO_LONG 102 975 #define BN_R_BITS_TOO_SMALL 103 976 #define BN_R_CALLED_WITH_EVEN_MODULUS 104 977 #define BN_R_DIV_BY_ZERO 105 978 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106 979 #define BN_R_INPUT_NOT_REDUCED 107 980 #define BN_R_INVALID_RANGE 108 981 #define BN_R_NEGATIVE_NUMBER 109 982 #define BN_R_NOT_A_SQUARE 110 983 #define BN_R_NOT_INITIALIZED 111 984 #define BN_R_NO_INVERSE 112 985 #define BN_R_PRIVATE_KEY_TOO_LARGE 113 986 #define BN_R_P_IS_NOT_PRIME 114 987 #define BN_R_TOO_MANY_ITERATIONS 115 988 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116 989 #define BN_R_BAD_ENCODING 117 990 #define BN_R_ENCODE_ERROR 118 991 #define BN_R_INVALID_INPUT 119 992 993 #endif // OPENSSL_HEADER_BN_H