presentations

Presentations
Log | Files | Refs

math.html (5641B)


      1 <!doctype html>
      2 <html lang="en">
      3 
      4 	<head>
      5 		<meta charset="utf-8">
      6 
      7 		<title>reveal.js - Math Plugin</title>
      8 
      9 		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
     10 
     11 		<link rel="stylesheet" href="../../css/reveal.css">
     12 		<link rel="stylesheet" href="../../css/theme/night.css" id="theme">
     13 	</head>
     14 
     15 	<body>
     16 
     17 		<div class="reveal">
     18 
     19 			<div class="slides">
     20 
     21 				<section>
     22 					<h2>reveal.js Math Plugin</h2>
     23 					<p>A thin wrapper for MathJax</p>
     24 				</section>
     25 
     26 				<section>
     27 					<h3>The Lorenz Equations</h3>
     28 
     29 					\[\begin{aligned}
     30 					\dot{x} &amp; = \sigma(y-x) \\
     31 					\dot{y} &amp; = \rho x - y - xz \\
     32 					\dot{z} &amp; = -\beta z + xy
     33 					\end{aligned} \]
     34 				</section>
     35 
     36 				<section>
     37 					<h3>The Cauchy-Schwarz Inequality</h3>
     38 
     39 					<script type="math/tex; mode=display">
     40 						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
     41 					</script>
     42 				</section>
     43 
     44 				<section>
     45 					<h3>A Cross Product Formula</h3>
     46 
     47 					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
     48 					\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
     49 					\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
     50 					\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
     51 					\end{vmatrix}  \]
     52 				</section>
     53 
     54 				<section>
     55 					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
     56 
     57 					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
     58 				</section>
     59 
     60 				<section>
     61 					<h3>An Identity of Ramanujan</h3>
     62 
     63 					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
     64 					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
     65 					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
     66 				</section>
     67 
     68 				<section>
     69 					<h3>A Rogers-Ramanujan Identity</h3>
     70 
     71 					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
     72 					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
     73 				</section>
     74 
     75 				<section>
     76 					<h3>Maxwell&#8217;s Equations</h3>
     77 
     78 					\[  \begin{aligned}
     79 					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
     80 					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
     81 					\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
     82 					\]
     83 				</section>
     84 
     85 				<section>
     86 					<h3>TeX Macros</h3>
     87 
     88 					Here is a common vector space:
     89 					\[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 &lt; +\infty}\]
     90 					used in functional analysis.
     91 				</section>
     92 
     93 				<section>
     94 					<section>
     95 						<h3>The Lorenz Equations</h3>
     96 
     97 						<div class="fragment">
     98 							\[\begin{aligned}
     99 							\dot{x} &amp; = \sigma(y-x) \\
    100 							\dot{y} &amp; = \rho x - y - xz \\
    101 							\dot{z} &amp; = -\beta z + xy
    102 							\end{aligned} \]
    103 						</div>
    104 					</section>
    105 
    106 					<section>
    107 						<h3>The Cauchy-Schwarz Inequality</h3>
    108 
    109 						<div class="fragment">
    110 							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
    111 						</div>
    112 					</section>
    113 
    114 					<section>
    115 						<h3>A Cross Product Formula</h3>
    116 
    117 						<div class="fragment">
    118 							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
    119 							\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
    120 							\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
    121 							\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
    122 							\end{vmatrix}  \]
    123 						</div>
    124 					</section>
    125 
    126 					<section>
    127 						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
    128 
    129 						<div class="fragment">
    130 							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
    131 						</div>
    132 					</section>
    133 
    134 					<section>
    135 						<h3>An Identity of Ramanujan</h3>
    136 
    137 						<div class="fragment">
    138 							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
    139 							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
    140 							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
    141 						</div>
    142 					</section>
    143 
    144 					<section>
    145 						<h3>A Rogers-Ramanujan Identity</h3>
    146 
    147 						<div class="fragment">
    148 							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
    149 							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
    150 						</div>
    151 					</section>
    152 
    153 					<section>
    154 						<h3>Maxwell&#8217;s Equations</h3>
    155 
    156 						<div class="fragment">
    157 							\[  \begin{aligned}
    158 							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
    159 							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
    160 							\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
    161 							\]
    162 						</div>
    163 					</section>
    164 
    165 					<section>
    166 						<h3>TeX Macros</h3>
    167 
    168 						Here is a common vector space:
    169 						\[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 &lt; +\infty}\]
    170 						used in functional analysis.
    171 					</section>
    172 				</section>
    173 
    174 			</div>
    175 
    176 		</div>
    177 
    178 		<script src="../../js/reveal.js"></script>
    179 
    180 		<script>
    181 
    182 			Reveal.initialize({
    183 				history: true,
    184 				transition: 'linear',
    185 
    186 				math: {
    187 					// mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
    188 					config: 'TeX-AMS_HTML-full',
    189 					TeX: {
    190 						Macros: {
    191 							R: '\\mathbb{R}',
    192 							set: [ '\\left\\{#1 \\; ; \\; #2\\right\\}', 2 ]
    193 						}
    194 					}
    195 				},
    196 
    197 				dependencies: [
    198 					{ src: '../../plugin/math/math.js', async: true }
    199 				]
    200 			});
    201 
    202 		</script>
    203 
    204 	</body>
    205 </html>