aboutsummaryrefslogtreecommitdiff
path: root/tex-stuff/math.tex
blob: 54a0fc8c50412d7c30c7e9cddff3025d97a991cf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
\documentclass{article}
\usepackage[a4paper, margin=2cm]{geometry}
\usepackage{amsmath}
\usepackage{amsfonts}
\begin{document}

\section{Ed25519 Elliptic Curve Based Algorithms And Protocols}
\subsection{Zero Knowledge Proofs}
\subsubsection{Proof 1: Knowledge of an ECDL}

Alice and Bob know $V$, $G$ and $q = |G|$, but only Alice knows $x$, so that
$V = xG$.

\begin{enumerate}
	\item Alice chooses $z \bmod q$ at random and calculates $A = zG$.
	\item Alice computes $c = HASH(G,V,A) \bmod q$.
	\item Alice sends $G, V, A$ and $r = (z + cx) \bmod q$ to Bob.
	\item Bob computes $c$ as above and checks that $rG = A + cV$.
\end{enumerate}

\begin{tabular}{r l}
	Prover only knowledge: & $x$ \\
	Common knowledge: & $V, G$ \\
	Proof: & $r, A$
\end{tabular}

\subsubsection{Proof 2: Equality of two ECDL}

Alice and Bob know $V$, $W$, $G_1$ and $G_2$, but only Alice knows $x$, so that
$V = xG_1$ and $W = xG_2$.

\begin{enumerate}
	\item Alice chooses $z \bmod q$ at random and calculates $A = zG_1$ and $B = zG_2$.
	\item Alice computes $c = HASH(G_1,G_2,V,W,A,B) \bmod q$.
	\item Alice sends $V, W, G_1, G_2, A, B$ and $r = (z + cx) \bmod q$ to Bob.
	\item Bob computes $c$ as above and checks that $rG_1 = A + cV$ and $rG_2 = B + cW$.
\end{enumerate}

\begin{tabular}{r l}
	Prover only knowledge: & $x$ \\
	Common knowledge: & $V, W, G_1, G_2$ \\
	Proof: & $r, A, B$
\end{tabular}

\subsubsection{Proof 3: An encrypted value is one out of two values}

Alice proves that an El Gamal encrypted value $(\alpha, \beta) = (M + rY, rG)$
either decrypts to $0$ or to the fixed value $G$ without revealing which is the
case, in other words, it is shown that $M \in \{0, G\}$. \\

\noindent If $M = 0$:

\begin{enumerate}
	\item Alice chooses $r_1, d_1, w \bmod q$ at random and calculates $A_1 = r_1G + d_1\beta$, $B_1 = r_1Y + d_1(\alpha - G)$, $A_2=wG$ and $B_2=wY$.
	\item Alice computes $c = HASH(G,\alpha,\beta,A_1,B_1,A_2,B_2) \bmod q$.
	\item Alice chooses $d_2=c-d_1 \bmod q$ and $r_2=w-rd_2 \bmod q$.
\end{enumerate}

\noindent If $M = G$:

\begin{enumerate}
	\item Alice chooses $r_2, d_2, w \bmod q$ at random and calculates $A_1=wG$, $B_1=wY$, $A_2=r_2G + d_2\beta$ and $B_2=r_2Y + d_2\alpha$.
	\item Alice computes $c = HASH(G,\alpha,\beta,A_1,B_1,A_2,B_2) \bmod q$.
	\item Alice chooses $d_1=c-d_2 \bmod q$ and $r_1=w-rd_1 \bmod q$.
\end{enumerate}

\noindent Then regardless of the value of $M$:

\begin{enumerate}
	\item Alice sends $G, (\alpha, \beta), A_1, B_1, A_2, B_2, d_1, d_2, r_1, r_2$ to Bob.
	\item Bob computes $c$ as above and checks that $c=d_1+d_2 \bmod q$, $A_1=r_1G+d_1\beta$, $B_1=r_1Y+d_1(\alpha-G)$, $A_2=r_2G+d_2\beta$ and $B_2=r_2Y+d_2\alpha$.
\end{enumerate}

\begin{tabular}{r l}
	Prover only knowledge: & $r, x$ \\
	Common knowledge: & $\alpha, \beta$ \\
	Proof: & $A_1, A_2, B_1, B_2, d_1, d_2, r_1, r_2$
\end{tabular}

\subsection{public outcome auctions}

TODO: no need to unicast Round 3 to seller, implications

\subsection{M+1st price auctions}

TODO: explain blowing up $k$ to $nk$ to prevent ties and the additional check
needed in Round 1.

\subsection{Prologue}

These steps are the same for all following protocols in this section.

Let $n$ be the number of participating bidders/agents in the protocol and $k$ be
the amount of possible valuations/prices for the sold good.  Let $G$ be the
base point of Ed25519 and $q = ord(G)$ the order of it. $0$ is the neutral point
for addition on Ed25519. $a \in \left\{1,2,\dots,n\right\}$ is the index of the
agent executing the protocol, while $i, h \in \left\{1, 2, \dots, n\right\}$ are
other agent indizes. $j, b_a \in \left\{1,2,\dots,k\right\}$ with $b_a$ denoting
the price $p_{b_a}$ bidder $a$ is willing to pay. $\forall j: p_j < p_{j+1}$.

\subsubsection{Generate public key}

\begin{enumerate}
	\item Choose $x_{+a} \in \mathbb{Z}_q$ and $\forall i,j: m_{ij}^{+a}, r_{aj} \bmod q$ at random.
	\item Publish $Y_{\times a}={x_{+a}}G$ along with Proof 1 of $Y_{\times a}$'s ECDL.
	\item Compute $Y=\sum_{i=1}^nY_{\times i}$.
\end{enumerate}

\subsubsection{Round 1: Encrypt bid}

The message has $k$ parts, each consisting of $10$ Points plus an additional $3$
Points for the last proof. Therefore the message is $10k*32 + 3*32 = 320k + 96$
bytes large.

\begin{enumerate}
	\item $\forall j:$ Set $B_{aj}=\begin{cases}G & \mathrm{if}\quad j=b_a\\0 & \mathrm{else}\end{cases}$ and publish $\alpha_{aj}=B_{aj}+r_{aj}Y$ and $\beta_{aj}=r_{aj}G$.
	\item $\forall j:$ Use Proof 3 to show that $(\alpha_{aj}, \beta_{aj})$ decrypts to either $0$ or $G$.
	\item Use Proof 2 to show that $ ECDL_Y\left(\left(\sum_{j=1}^k\alpha_{aj}\right) - G\right) = ECDL_G\left(\sum_{j=1}^k\beta_{aj}\right)$.
\end{enumerate}

\subsection{First Price Auction Protocol With Private Outcome}

\subsubsection{Round 2: Compute outcome}

The message has $nk$ parts, each consisting of $5$ Points. Therefore the message
is $5nk*32 = 160nk$ bytes large.

$\forall i,j:$ Compute and publish \\[2.0ex]
$\gamma_{ij}^{\times a} = m_{ij}^{+a}\displaystyle\left(\left(\sum_{h=1}^n\sum_{d=j+1}^k\alpha_{hd}\right)+\left(\sum_{d=1}^{j-1}\alpha_{id}\right)+\left(\sum_{h=1}^{i-1}\alpha_{hj}\right)\right)$ and \\[2.0ex]
$\delta_{ij}^{\times a} = m_{ij}^{+a}\displaystyle\left(\left(\sum_{h=1}^n\sum_{d=j+1}^k\beta_{hd}\right)+\left(\sum_{d=1}^{j-1}\beta_{id}\right)+\left(\sum_{h=1}^{i-1}\beta_{hj}\right)\right)$ \\[2.0ex]
with a corresponding Proof 2 for $ECDL(\gamma_{ij}^{\times a}) = ECDL(\delta_{ij}^{\times a})$.

\subsubsection{Round 3: Decrypt outcome}

$\forall i,j:$ Send $\varphi_{ij}^{\times a} =
x_{+a}\left(\sum_{h=1}^n\delta_{ij}^{\times h}\right)$ with a Proof 2 showing
$ECDL(\varphi_{ij}^{\times a}) = ECDL(Y_{\times a})$ to the seller who publishes
all $\varphi_{ij}^{\times h}$ and the corresponding proofs of correctness for
each $i, j$ and $h \neq i$ after having received all of them.

\subsubsection{Epilogue: Outcome determination}

\begin{enumerate}
	\item $\forall j:$ Compute $V_{aj}=\sum_{i=1}^n\gamma_{aj}^{\times i} - \sum_{i=1}^n\varphi_{aj}^{\times i}$.
	\item If $\exists w: V_{aw} = 0$, then bidder $a$ is the winner of the auction. $p_w$ is the selling price.
\end{enumerate}

\subsection{First Price Auction Protocol With Public Outcome}

TODO

\subsection{M+1st Price Auction Protocol With Private Outcome}

\subsubsection{Addition to Round 1: Encrypt bid}

The Bidders also have to use Proof 2 to show that $ ECDL_Y\left(\left(\sum_{j=1}^{k/n}\alpha_{a,jn+a}\right) - G\right) = ECDL_G\left(\sum_{j=1}^{k/n}\beta_{a,jn+a}\right)$.
This is to ensure bidders have only chosen valid bids for their bid index, since
in M+1st price auctions the amount of possible prices is multiplied by $n$ to
prevent ties. This increases the message size by $96$ bytes.

\subsubsection{Round 2: Compute outcome}

The message has $nk$ parts, each consisting of $5$ Points. Therefore the message
is $5nk*32 = 160nk$ bytes large.

$\forall i,j:$ Compute and publish \\[2.0ex]
$\gamma_{ij}^{\times a} = m_{ij}^{+a}\displaystyle\left(\left(2M+2\right)\left(\sum_{h=1}^n\left(\sum_{d=j}^k\alpha_{hd}+\sum_{d=j+1}^k\alpha_{hd}\right)+\sum_{d=1}^{j}\alpha_{id}\right) - \left(2M+1\right)Y \right)$ and \\[2.0ex]
$\delta_{ij}^{\times a} = m_{ij}^{+a}\displaystyle\left(\left(2M+2\right)\left(\sum_{h=1}^n\left(\sum_{d=j}^k\beta_{hd}+\sum_{d=j+1}^k\beta_{hd}\right)+\sum_{d=1}^{j}\beta_{id}\right)\right)$ \\[2.0ex]
with a corresponding Proof 2 for $ECDL(\gamma_{ij}^{\times a}) = ECDL(\delta_{ij}^{\times a})$.

\subsubsection{Round 3: Decrypt outcome}

$\forall i,j:$ Send $\varphi_{ij}^{\times a} =
x_{+a}\left(\sum_{h=1}^n\delta_{ij}^{\times h}\right)$ with a Proof 2 showing
$ECDL(\varphi_{ij}^{\times a}) = ECDL(Y_{\times a})$ to the seller who publishes
all $\varphi_{ij}^{\times h}$ and the corresponding proofs of correctness for
each $i, j$ and $h \neq i$ after having received all of them.

\subsubsection{Epilogue: Outcome determination}

\begin{enumerate}
	\item $\forall j:$ Compute $V_{aj}=\sum_{i=1}^n\gamma_{aj}^{\times i} - \sum_{i=1}^n\varphi_{aj}^{\times i}$.
	\item If $\exists w: V_{aw} = 0$, then bidder $a$ is the winner of the auction. $p_w$ is the selling price.
\end{enumerate}
























\subsection{fixes to step 5 in (M+1)st Price auction from the 2003 paper pages 9 an 10}
\begin{align}
	\gamma_{ij} = & \frac{\prod_{h=1}^n \prod_{d=j}^k (\alpha_{hd}\alpha_{h,d+1})\left(\prod_{d=1}^j \alpha_{id}\right)^{2M+2}}{(2M+1)Y} \\
	\text{changed to} & \frac{\prod_{h=1}^n \left(\prod_{d=j}^k \alpha_{hd} \cdot \prod_{d=j+1}^k \alpha_{hd}\right)\left(\prod_{d=1}^j \alpha_{id}\right)^{2M+2}}{Y^{2M+1}} \\[2.0ex]
	\delta_{ij} = & \prod_{h=1}^n \prod_{d=j}^k (\beta_{hd}\beta_{h,d+1})\left(\prod_{d=1}^j \beta_{id}\right)^{2M+2} \\
	\text{changed to} & \prod_{h=1}^n \left(\prod_{d=j}^k \beta_{hd} \prod_{d=j+1}^k \beta_{hd}\right)\left(\prod_{d=1}^j \beta_{id}\right)^{2M+2}
\end{align}
\end{document}