libmicrohttpd

HTTP/1.x server C library (MHD 1.x, stable)
Log | Files | Refs | Submodules | README | LICENSE

commit 8466a08d3588608f018722d6a176ced2e0c2a539
parent 488615cea6ccb5437ebde23c03a5e52fdbc95436
Author: Christian Grothoff <christian@grothoff.org>
Date:   Tue, 20 Nov 2018 20:05:30 +0100

import sha256 from GNU Nettle

Diffstat:
Asrc/microhttpd/sha256.c | 401+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/microhttpd/sha256.h | 74++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 475 insertions(+), 0 deletions(-)

diff --git a/src/microhttpd/sha256.c b/src/microhttpd/sha256.c @@ -0,0 +1,401 @@ +/* sha256.c + + The sha256 hash function. + See http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf + + Copyright (C) 2001 Niels Möller + Copyright (C) 2018 Christian Grothoff (extraction of minimal subset + from GNU Nettle to work with GNU libmicrohttpd) + + This file is part of GNU Nettle. + + GNU Nettle is free software: you can redistribute it and/or + modify it under the terms of either: + + * the GNU Lesser General Public License as published by the Free + Software Foundation; either version 3 of the License, or (at your + option) any later version. + + or + + * the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your + option) any later version. + + or both in parallel, as here. + + GNU Nettle is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + General Public License for more details. + + You should have received copies of the GNU General Public License and + the GNU Lesser General Public License along with this program. If + not, see http://www.gnu.org/licenses/. +*/ + +/* Modelled after the sha1.c code by Peter Gutmann. */ + +#include <assert.h> +#include <stdlib.h> +#include <string.h> +#include <stdint.h> + +#include "sha256.h" + + +/* Generated by the shadata program. */ +static const uint32_t +K[64] = +{ + 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, + 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, + 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, + 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, + 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, + 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, + 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, + 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, + 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, + 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, + 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, + 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, + 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, + 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, + 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, + 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL, +}; + + +/* A block, treated as a sequence of 32-bit words. */ +#define SHA256_DATA_LENGTH 16 + +/* The SHA256 functions. The Choice function is the same as the SHA1 + function f1, and the majority function is the same as the SHA1 f3 + function. They can be optimized to save one boolean operation each + - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering + this */ + +/* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */ +#define Choice(x,y,z) ( (z) ^ ( (x) & ( (y) ^ (z) ) ) ) +/* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */ +#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) ) + +#define S0(x) (ROTL32(30,(x)) ^ ROTL32(19,(x)) ^ ROTL32(10,(x))) +#define S1(x) (ROTL32(26,(x)) ^ ROTL32(21,(x)) ^ ROTL32(7,(x))) + +#define s0(x) (ROTL32(25,(x)) ^ ROTL32(14,(x)) ^ ((x) >> 3)) +#define s1(x) (ROTL32(15,(x)) ^ ROTL32(13,(x)) ^ ((x) >> 10)) + +/* The initial expanding function. The hash function is defined over an + 64-word expanded input array W, where the first 16 are copies of the input + data, and the remaining 64 are defined by + + W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16] + + This implementation generates these values on the fly in a circular + buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this + optimization. +*/ + +#define EXPAND(W,i) \ +( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) ) + +/* The prototype SHA sub-round. The fundamental sub-round is: + + T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t] + T2 = S0(a) + Majority(a,b,c) + a' = T1+T2 + b' = a + c' = b + d' = c + e' = d + T1 + f' = e + g' = f + h' = g + + but this is implemented by unrolling the loop 8 times and renaming + the variables + ( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each + iteration. */ + +/* It's crucial that DATA is only used once, as that argument will + * have side effects. */ +#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \ + h += S1(e) + Choice(e,f,g) + k + data; \ + d += h; \ + h += S0(a) + Majority(a,b,c); \ + } while (0) + + +/* Reads a 32-bit integer, in network, big-endian, byte order */ +#define READ_UINT32(p) \ +( (((uint32_t) (p)[0]) << 24) \ + | (((uint32_t) (p)[1]) << 16) \ + | (((uint32_t) (p)[2]) << 8) \ + | ((uint32_t) (p)[3])) + +#define WRITE_UINT32(p, i) \ +do { \ + (p)[0] = ((i) >> 24) & 0xff; \ + (p)[1] = ((i) >> 16) & 0xff; \ + (p)[2] = ((i) >> 8) & 0xff; \ + (p)[3] = (i) & 0xff; \ +} while(0) + +#define WRITE_UINT64(p, i) \ +do { \ + (p)[0] = ((i) >> 56) & 0xff; \ + (p)[1] = ((i) >> 48) & 0xff; \ + (p)[2] = ((i) >> 40) & 0xff; \ + (p)[3] = ((i) >> 32) & 0xff; \ + (p)[4] = ((i) >> 24) & 0xff; \ + (p)[5] = ((i) >> 16) & 0xff; \ + (p)[6] = ((i) >> 8) & 0xff; \ + (p)[7] = (i) & 0xff; \ +} while(0) + +/* The masking of the right shift is needed to allow n == 0 (using + just 32 - n and 64 - n results in undefined behaviour). Most uses + of these macros use a constant and non-zero rotation count. */ +#define ROTL32(n,x) (((x)<<(n)) | ((x)>>((-(n)&31)))) + +static void +_nettle_sha256_compress(uint32_t *state, const uint8_t *input, const uint32_t *k) +{ + uint32_t data[SHA256_DATA_LENGTH]; + uint32_t A, B, C, D, E, F, G, H; /* Local vars */ + unsigned i; + uint32_t *d; + + for (i = 0; i < SHA256_DATA_LENGTH; i++, input+= 4) + { + data[i] = READ_UINT32(input); + } + + /* Set up first buffer and local data buffer */ + A = state[0]; + B = state[1]; + C = state[2]; + D = state[3]; + E = state[4]; + F = state[5]; + G = state[6]; + H = state[7]; + + /* Heavy mangling */ + /* First 16 subrounds that act on the original data */ + + for (i = 0, d = data; i<16; i+=8, k += 8, d+= 8) + { + ROUND(A, B, C, D, E, F, G, H, k[0], d[0]); + ROUND(H, A, B, C, D, E, F, G, k[1], d[1]); + ROUND(G, H, A, B, C, D, E, F, k[2], d[2]); + ROUND(F, G, H, A, B, C, D, E, k[3], d[3]); + ROUND(E, F, G, H, A, B, C, D, k[4], d[4]); + ROUND(D, E, F, G, H, A, B, C, k[5], d[5]); + ROUND(C, D, E, F, G, H, A, B, k[6], d[6]); + ROUND(B, C, D, E, F, G, H, A, k[7], d[7]); + } + + for (; i<64; i += 16, k+= 16) + { + ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data, 0)); + ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data, 1)); + ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data, 2)); + ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data, 3)); + ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data, 4)); + ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data, 5)); + ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data, 6)); + ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data, 7)); + ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data, 8)); + ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data, 9)); + ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10)); + ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11)); + ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12)); + ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13)); + ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14)); + ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15)); + } + + /* Update state */ + state[0] += A; + state[1] += B; + state[2] += C; + state[3] += D; + state[4] += E; + state[5] += F; + state[6] += G; + state[7] += H; +} + + +#define COMPRESS(ctx, data) (_nettle_sha256_compress((ctx)->state, (data), K)) + +/* Initialize the SHA values */ + +void +sha256_init(struct sha256_ctx *ctx) +{ + /* Initial values, also generated by the shadata program. */ + static const uint32_t H0[_SHA256_DIGEST_LENGTH] = + { + 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, + 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL, + }; + + memcpy(ctx->state, H0, sizeof(H0)); + + /* Initialize bit count */ + ctx->count = 0; + + /* Initialize buffer */ + ctx->index = 0; +} + + +/* Takes the compression function f as argument. NOTE: also clobbers + length and data. */ +#define MD_UPDATE(ctx, length, data, f, incr) \ + do { \ + if ((ctx)->index) \ + { \ + /* Try to fill partial block */ \ + unsigned __md_left = sizeof((ctx)->block) - (ctx)->index; \ + if ((length) < __md_left) \ + { \ + memcpy((ctx)->block + (ctx)->index, (data), (length)); \ + (ctx)->index += (length); \ + goto __md_done; /* Finished */ \ + } \ + else \ + { \ + memcpy((ctx)->block + (ctx)->index, (data), __md_left); \ + \ + f((ctx), (ctx)->block); \ + (incr); \ + \ + (data) += __md_left; \ + (length) -= __md_left; \ + } \ + } \ + while ((length) >= sizeof((ctx)->block)) \ + { \ + f((ctx), (data)); \ + (incr); \ + \ + (data) += sizeof((ctx)->block); \ + (length) -= sizeof((ctx)->block); \ + } \ + memcpy ((ctx)->block, (data), (length)); \ + (ctx)->index = (length); \ + __md_done: \ + ; \ + } while (0) + +/* Pads the block to a block boundary with the bit pattern 1 0*, + leaving size octets for the length field at the end. If needed, + compresses the block and starts a new one. */ +#define MD_PAD(ctx, size, f) \ + do { \ + unsigned __md_i; \ + __md_i = (ctx)->index; \ + \ + /* Set the first char of padding to 0x80. This is safe since there \ + is always at least one byte free */ \ + \ + assert(__md_i < sizeof((ctx)->block)); \ + (ctx)->block[__md_i++] = 0x80; \ + \ + if (__md_i > (sizeof((ctx)->block) - (size))) \ + { /* No room for length in this block. Process it and \ + pad with another one */ \ + memset((ctx)->block + __md_i, 0, sizeof((ctx)->block) - __md_i); \ + \ + f((ctx), (ctx)->block); \ + __md_i = 0; \ + } \ + memset((ctx)->block + __md_i, 0, \ + sizeof((ctx)->block) - (size) - __md_i); \ + \ + } while (0) + + +void +sha256_update(struct sha256_ctx *ctx, + size_t length, const uint8_t *data) +{ + MD_UPDATE (ctx, length, data, COMPRESS, ctx->count++); +} + + + +void +_nettle_write_be32(size_t length, uint8_t *dst, + const uint32_t *src) +{ + size_t i; + size_t words; + unsigned leftover; + + words = length / 4; + leftover = length % 4; + + for (i = 0; i < words; i++, dst += 4) + WRITE_UINT32(dst, src[i]); + + if (leftover) + { + uint32_t word; + unsigned j = leftover; + + word = src[i]; + + switch (leftover) + { + default: + abort(); + case 3: + dst[--j] = (word >> 8) & 0xff; + /* Fall through */ + case 2: + dst[--j] = (word >> 16) & 0xff; + /* Fall through */ + case 1: + dst[--j] = (word >> 24) & 0xff; + } + } +} + + +static void +sha256_write_digest(struct sha256_ctx *ctx, + size_t length, + uint8_t *digest) +{ + uint64_t bit_count; + + assert(length <= SHA256_DIGEST_SIZE); + + MD_PAD(ctx, 8, COMPRESS); + + /* There are 512 = 2^9 bits in one block */ + bit_count = (ctx->count << 9) | (ctx->index << 3); + + /* This is slightly inefficient, as the numbers are converted to + big-endian format, and will be converted back by the compression + function. It's probably not worth the effort to fix this. */ + WRITE_UINT64(ctx->block + (SHA256_BLOCK_SIZE - 8), bit_count); + COMPRESS(ctx, ctx->block); + + _nettle_write_be32(length, digest, ctx->state); +} + +void +sha256_digest(struct sha256_ctx *ctx, + size_t length, + uint8_t *digest) +{ + sha256_write_digest(ctx, length, digest); + sha256_init(ctx); +} diff --git a/src/microhttpd/sha256.h b/src/microhttpd/sha256.h @@ -0,0 +1,74 @@ +/* sha256.h + + The sha256 hash function. + + Copyright (C) 2001, 2012 Niels Möller + Copyright (C) 2018 Christian Grothoff (extraction of minimal subset + from GNU Nettle to work with GNU libmicrohttpd) + + This file is part of GNU Nettle. + + GNU Nettle is free software: you can redistribute it and/or + modify it under the terms of either: + + * the GNU Lesser General Public License as published by the Free + Software Foundation; either version 3 of the License, or (at your + option) any later version. + + or + + * the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your + option) any later version. + + or both in parallel, as here. + + GNU Nettle is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + General Public License for more details. + + You should have received copies of the GNU General Public License and + the GNU Lesser General Public License along with this program. If + not, see http://www.gnu.org/licenses/. +*/ + +#ifndef NETTLE_SHA2_H_INCLUDED +#define NETTLE_SHA2_H_INCLUDED + +#ifdef __cplusplus +extern "C" { +#endif + +#define SHA256_DIGEST_SIZE 32 +#define SHA256_BLOCK_SIZE 64 + +/* Digest is kept internally as 8 32-bit words. */ +#define _SHA256_DIGEST_LENGTH 8 + +struct sha256_ctx +{ + uint32_t state[_SHA256_DIGEST_LENGTH]; /* State variables */ + uint64_t count; /* 64-bit block count */ + uint8_t block[SHA256_BLOCK_SIZE]; /* SHA256 data buffer */ + unsigned int index; /* index into buffer */ +}; + +void +sha256_init(struct sha256_ctx *ctx); + +void +sha256_update(struct sha256_ctx *ctx, + size_t length, + const uint8_t *data); + +void +sha256_digest(struct sha256_ctx *ctx, + size_t length, + uint8_t *digest); + +#ifdef __cplusplus +} +#endif + +#endif /* NETTLE_SHA2_H_INCLUDED */