aboutsummaryrefslogtreecommitdiff
path: root/src/lib/md5.c
diff options
context:
space:
mode:
authorChristian Grothoff <christian@grothoff.org>2019-10-17 16:56:41 +0200
committerChristian Grothoff <christian@grothoff.org>2019-10-17 16:56:41 +0200
commit972103dc288e2a2396e060018e7c3733f29a940d (patch)
treeaeb0b3a182d5168f12752928d3204342c9581e91 /src/lib/md5.c
parentcbbfd0591fc639ddd21a5850f54f403fb7394174 (diff)
downloadlibmicrohttpd-972103dc288e2a2396e060018e7c3733f29a940d.tar.gz
libmicrohttpd-972103dc288e2a2396e060018e7c3733f29a940d.zip
applying uncrustify to ensure uniform indentation
Diffstat (limited to 'src/lib/md5.c')
-rw-r--r--src/lib/md5.c226
1 files changed, 113 insertions, 113 deletions
diff --git a/src/lib/md5.c b/src/lib/md5.c
index a7eb35fe..3d0f7493 100644
--- a/src/lib/md5.c
+++ b/src/lib/md5.c
@@ -20,21 +20,21 @@
20#include "md5.h" 20#include "md5.h"
21#include "mhd_byteorder.h" 21#include "mhd_byteorder.h"
22 22
23#define PUT_64BIT_LE(cp, value) do { \ 23#define PUT_64BIT_LE(cp, value) do { \
24 (cp)[7] = (uint8_t)((value) >> 56); \ 24 (cp)[7] = (uint8_t) ((value) >> 56); \
25 (cp)[6] = (uint8_t)((value) >> 48); \ 25 (cp)[6] = (uint8_t) ((value) >> 48); \
26 (cp)[5] = (uint8_t)((value) >> 40); \ 26 (cp)[5] = (uint8_t) ((value) >> 40); \
27 (cp)[4] = (uint8_t)((value) >> 32); \ 27 (cp)[4] = (uint8_t) ((value) >> 32); \
28 (cp)[3] = (uint8_t)((value) >> 24); \ 28 (cp)[3] = (uint8_t) ((value) >> 24); \
29 (cp)[2] = (uint8_t)((value) >> 16); \ 29 (cp)[2] = (uint8_t) ((value) >> 16); \
30 (cp)[1] = (uint8_t)((value) >> 8); \ 30 (cp)[1] = (uint8_t) ((value) >> 8); \
31 (cp)[0] = (uint8_t)((value)); } while (0) 31 (cp)[0] = (uint8_t) ((value)); } while (0)
32 32
33#define PUT_32BIT_LE(cp, value) do { \ 33#define PUT_32BIT_LE(cp, value) do { \
34 (cp)[3] = (uint8_t)((value) >> 24); \ 34 (cp)[3] = (uint8_t) ((value) >> 24); \
35 (cp)[2] = (uint8_t)((value) >> 16); \ 35 (cp)[2] = (uint8_t) ((value) >> 16); \
36 (cp)[1] = (uint8_t)((value) >> 8); \ 36 (cp)[1] = (uint8_t) ((value) >> 8); \
37 (cp)[0] = (uint8_t)((value)); } while (0) 37 (cp)[0] = (uint8_t) ((value)); } while (0)
38 38
39static uint8_t PADDING[MD5_BLOCK_SIZE] = { 39static uint8_t PADDING[MD5_BLOCK_SIZE] = {
40 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 40 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
@@ -47,9 +47,9 @@ static uint8_t PADDING[MD5_BLOCK_SIZE] = {
47 * initialization constants. 47 * initialization constants.
48 */ 48 */
49void 49void
50MHD_MD5Init(struct MD5Context *ctx) 50MHD_MD5Init (struct MD5Context *ctx)
51{ 51{
52 if (!ctx) 52 if (! ctx)
53 return; 53 return;
54 54
55 ctx->count = 0; 55 ctx->count = 0;
@@ -64,26 +64,26 @@ MHD_MD5Init(struct MD5Context *ctx)
64 * of bytes. 64 * of bytes.
65 */ 65 */
66void 66void
67MHD_MD5Update(struct MD5Context *ctx, const unsigned char *input, size_t len) 67MHD_MD5Update (struct MD5Context *ctx, const unsigned char *input, size_t len)
68{ 68{
69 size_t have, need; 69 size_t have, need;
70 70
71 if (!ctx || !input) 71 if (! ctx || ! input)
72 return; 72 return;
73 73
74 /* Check how many bytes we already have and how many more we need. */ 74 /* Check how many bytes we already have and how many more we need. */
75 have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_SIZE - 1)); 75 have = (size_t) ((ctx->count >> 3) & (MD5_BLOCK_SIZE - 1));
76 need = MD5_BLOCK_SIZE - have; 76 need = MD5_BLOCK_SIZE - have;
77 77
78 /* Update bitcount */ 78 /* Update bitcount */
79 ctx->count += (uint64_t)len << 3; 79 ctx->count += (uint64_t) len << 3;
80 80
81 if (len >= need) 81 if (len >= need)
82 { 82 {
83 if (have != 0) 83 if (have != 0)
84 { 84 {
85 memcpy(ctx->buffer + have, input, need); 85 memcpy (ctx->buffer + have, input, need);
86 MD5Transform(ctx->state, ctx->buffer); 86 MD5Transform (ctx->state, ctx->buffer);
87 input += need; 87 input += need;
88 len -= need; 88 len -= need;
89 have = 0; 89 have = 0;
@@ -92,7 +92,7 @@ MHD_MD5Update(struct MD5Context *ctx, const unsigned char *input, size_t len)
92 /* Process data in MD5_BLOCK_SIZE-byte chunks. */ 92 /* Process data in MD5_BLOCK_SIZE-byte chunks. */
93 while (len >= MD5_BLOCK_SIZE) 93 while (len >= MD5_BLOCK_SIZE)
94 { 94 {
95 MD5Transform(ctx->state, input); 95 MD5Transform (ctx->state, input);
96 input += MD5_BLOCK_SIZE; 96 input += MD5_BLOCK_SIZE;
97 len -= MD5_BLOCK_SIZE; 97 len -= MD5_BLOCK_SIZE;
98 } 98 }
@@ -100,7 +100,7 @@ MHD_MD5Update(struct MD5Context *ctx, const unsigned char *input, size_t len)
100 100
101 /* Handle any remaining bytes of data. */ 101 /* Handle any remaining bytes of data. */
102 if (len != 0) 102 if (len != 0)
103 memcpy(ctx->buffer + have, input, len); 103 memcpy (ctx->buffer + have, input, len);
104} 104}
105 105
106/* 106/*
@@ -108,42 +108,42 @@ MHD_MD5Update(struct MD5Context *ctx, const unsigned char *input, size_t len)
108 * 1 0* (64-bit count of bits processed, MSB-first) 108 * 1 0* (64-bit count of bits processed, MSB-first)
109 */ 109 */
110void 110void
111MD5Pad(struct MD5Context *ctx) 111MD5Pad (struct MD5Context *ctx)
112{ 112{
113 uint8_t count[8]; 113 uint8_t count[8];
114 size_t padlen; 114 size_t padlen;
115 115
116 if (!ctx) 116 if (! ctx)
117 return; 117 return;
118 118
119 /* Convert count to 8 bytes in little endian order. */ 119 /* Convert count to 8 bytes in little endian order. */
120 PUT_64BIT_LE(count, ctx->count); 120 PUT_64BIT_LE (count, ctx->count);
121 121
122 /* Pad out to 56 mod 64. */ 122 /* Pad out to 56 mod 64. */
123 padlen = MD5_BLOCK_SIZE - 123 padlen = MD5_BLOCK_SIZE
124 ((ctx->count >> 3) & (MD5_BLOCK_SIZE - 1)); 124 - ((ctx->count >> 3) & (MD5_BLOCK_SIZE - 1));
125 if (padlen < 1 + 8) 125 if (padlen < 1 + 8)
126 padlen += MD5_BLOCK_SIZE; 126 padlen += MD5_BLOCK_SIZE;
127 MHD_MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ 127 MHD_MD5Update (ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
128 MHD_MD5Update(ctx, count, 8); 128 MHD_MD5Update (ctx, count, 8);
129} 129}
130 130
131/* 131/*
132 * Final wrapup--call MD5Pad, fill in digest and zero out ctx. 132 * Final wrapup--call MD5Pad, fill in digest and zero out ctx.
133 */ 133 */
134void 134void
135MHD_MD5Final(unsigned char digest[MD5_DIGEST_SIZE], struct MD5Context *ctx) 135MHD_MD5Final (unsigned char digest[MD5_DIGEST_SIZE], struct MD5Context *ctx)
136{ 136{
137 int i; 137 int i;
138 138
139 if (!ctx || !digest) 139 if (! ctx || ! digest)
140 return; 140 return;
141 141
142 MD5Pad(ctx); 142 MD5Pad (ctx);
143 for (i = 0; i < 4; i++) 143 for (i = 0; i < 4; i++)
144 PUT_32BIT_LE(digest + i * 4, ctx->state[i]); 144 PUT_32BIT_LE (digest + i * 4, ctx->state[i]);
145 145
146 memset(ctx, 0, sizeof(*ctx)); 146 memset (ctx, 0, sizeof(*ctx));
147} 147}
148 148
149 149
@@ -151,13 +151,13 @@ MHD_MD5Final(unsigned char digest[MD5_DIGEST_SIZE], struct MD5Context *ctx)
151 151
152/* #define F1(x, y, z) (x & y | ~x & z) */ 152/* #define F1(x, y, z) (x & y | ~x & z) */
153#define F1(x, y, z) (z ^ (x & (y ^ z))) 153#define F1(x, y, z) (z ^ (x & (y ^ z)))
154#define F2(x, y, z) F1(z, x, y) 154#define F2(x, y, z) F1 (z, x, y)
155#define F3(x, y, z) (x ^ y ^ z) 155#define F3(x, y, z) (x ^ y ^ z)
156#define F4(x, y, z) (y ^ (x | ~z)) 156#define F4(x, y, z) (y ^ (x | ~z))
157 157
158/* This is the central step in the MD5 algorithm. */ 158/* This is the central step in the MD5 algorithm. */
159#define MD5STEP(f, w, x, y, z, data, s) \ 159#define MD5STEP(f, w, x, y, z, data, s) \
160 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 160 (w += f (x, y, z) + data, w = w << s | w >> (32 - s), w += x)
161 161
162/* 162/*
163 * The core of the MD5 algorithm, this alters an existing MD5 hash to 163 * The core of the MD5 algorithm, this alters an existing MD5 hash to
@@ -165,20 +165,20 @@ MHD_MD5Final(unsigned char digest[MD5_DIGEST_SIZE], struct MD5Context *ctx)
165 * the data and converts bytes into longwords for this routine. 165 * the data and converts bytes into longwords for this routine.
166 */ 166 */
167void 167void
168MD5Transform(uint32_t state[4], const uint8_t block[MD5_BLOCK_SIZE]) 168MD5Transform (uint32_t state[4], const uint8_t block[MD5_BLOCK_SIZE])
169{ 169{
170 uint32_t a, b, c, d, in[MD5_BLOCK_SIZE / 4]; 170 uint32_t a, b, c, d, in[MD5_BLOCK_SIZE / 4];
171 171
172#if _MHD_BYTE_ORDER == _MHD_LITTLE_ENDIAN 172#if _MHD_BYTE_ORDER == _MHD_LITTLE_ENDIAN
173 memcpy(in, block, sizeof(in)); 173 memcpy (in, block, sizeof(in));
174#else 174#else
175 for (a = 0; a < MD5_BLOCK_SIZE / 4; a++) 175 for (a = 0; a < MD5_BLOCK_SIZE / 4; a++)
176 { 176 {
177 in[a] = (uint32_t)( 177 in[a] = (uint32_t) (
178 (uint32_t)(block[a * 4 + 0]) | 178 (uint32_t) (block[a * 4 + 0])
179 (uint32_t)(block[a * 4 + 1]) << 8 | 179 | (uint32_t) (block[a * 4 + 1]) << 8
180 (uint32_t)(block[a * 4 + 2]) << 16 | 180 | (uint32_t) (block[a * 4 + 2]) << 16
181 (uint32_t)(block[a * 4 + 3]) << 24); 181 | (uint32_t) (block[a * 4 + 3]) << 24);
182 } 182 }
183#endif 183#endif
184 184
@@ -187,73 +187,73 @@ MD5Transform(uint32_t state[4], const uint8_t block[MD5_BLOCK_SIZE])
187 c = state[2]; 187 c = state[2];
188 d = state[3]; 188 d = state[3];
189 189
190 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 190 MD5STEP (F1, a, b, c, d, in[0] + 0xd76aa478, 7);
191 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 191 MD5STEP (F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
192 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 192 MD5STEP (F1, c, d, a, b, in[2] + 0x242070db, 17);
193 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 193 MD5STEP (F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
194 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 194 MD5STEP (F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
195 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 195 MD5STEP (F1, d, a, b, c, in[5] + 0x4787c62a, 12);
196 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 196 MD5STEP (F1, c, d, a, b, in[6] + 0xa8304613, 17);
197 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 197 MD5STEP (F1, b, c, d, a, in[7] + 0xfd469501, 22);
198 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 198 MD5STEP (F1, a, b, c, d, in[8] + 0x698098d8, 7);
199 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 199 MD5STEP (F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
200 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 200 MD5STEP (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
201 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 201 MD5STEP (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
202 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 202 MD5STEP (F1, a, b, c, d, in[12] + 0x6b901122, 7);
203 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 203 MD5STEP (F1, d, a, b, c, in[13] + 0xfd987193, 12);
204 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 204 MD5STEP (F1, c, d, a, b, in[14] + 0xa679438e, 17);
205 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 205 MD5STEP (F1, b, c, d, a, in[15] + 0x49b40821, 22);
206 206
207 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 207 MD5STEP (F2, a, b, c, d, in[1] + 0xf61e2562, 5);
208 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 208 MD5STEP (F2, d, a, b, c, in[6] + 0xc040b340, 9);
209 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 209 MD5STEP (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
210 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 210 MD5STEP (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
211 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 211 MD5STEP (F2, a, b, c, d, in[5] + 0xd62f105d, 5);
212 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 212 MD5STEP (F2, d, a, b, c, in[10] + 0x02441453, 9);
213 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 213 MD5STEP (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
214 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 214 MD5STEP (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
215 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 215 MD5STEP (F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
216 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 216 MD5STEP (F2, d, a, b, c, in[14] + 0xc33707d6, 9);
217 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 217 MD5STEP (F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
218 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 218 MD5STEP (F2, b, c, d, a, in[8] + 0x455a14ed, 20);
219 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 219 MD5STEP (F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
220 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 220 MD5STEP (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
221 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 221 MD5STEP (F2, c, d, a, b, in[7] + 0x676f02d9, 14);
222 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 222 MD5STEP (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
223 223
224 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 224 MD5STEP (F3, a, b, c, d, in[5] + 0xfffa3942, 4);
225 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 225 MD5STEP (F3, d, a, b, c, in[8] + 0x8771f681, 11);
226 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 226 MD5STEP (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
227 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 227 MD5STEP (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
228 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 228 MD5STEP (F3, a, b, c, d, in[1] + 0xa4beea44, 4);
229 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 229 MD5STEP (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
230 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 230 MD5STEP (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
231 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 231 MD5STEP (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
232 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 232 MD5STEP (F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
233 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 233 MD5STEP (F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
234 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 234 MD5STEP (F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
235 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 235 MD5STEP (F3, b, c, d, a, in[6] + 0x04881d05, 23);
236 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 236 MD5STEP (F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
237 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 237 MD5STEP (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
238 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 238 MD5STEP (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
239 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 239 MD5STEP (F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
240 240
241 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 241 MD5STEP (F4, a, b, c, d, in[0] + 0xf4292244, 6);
242 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 242 MD5STEP (F4, d, a, b, c, in[7] + 0x432aff97, 10);
243 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 243 MD5STEP (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
244 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 244 MD5STEP (F4, b, c, d, a, in[5] + 0xfc93a039, 21);
245 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 245 MD5STEP (F4, a, b, c, d, in[12] + 0x655b59c3, 6);
246 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 246 MD5STEP (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
247 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 247 MD5STEP (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
248 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 248 MD5STEP (F4, b, c, d, a, in[1] + 0x85845dd1, 21);
249 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 249 MD5STEP (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
250 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 250 MD5STEP (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
251 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 251 MD5STEP (F4, c, d, a, b, in[6] + 0xa3014314, 15);
252 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 252 MD5STEP (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
253 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 253 MD5STEP (F4, a, b, c, d, in[4] + 0xf7537e82, 6);
254 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 254 MD5STEP (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
255 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 255 MD5STEP (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
256 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 256 MD5STEP (F4, b, c, d, a, in[9] + 0xeb86d391, 21);
257 257
258 state[0] += a; 258 state[0] += a;
259 state[1] += b; 259 state[1] += b;