aboutsummaryrefslogtreecommitdiff
path: root/src/lib/md5.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/md5.c')
-rw-r--r--src/lib/md5.c264
1 files changed, 264 insertions, 0 deletions
diff --git a/src/lib/md5.c b/src/lib/md5.c
new file mode 100644
index 00000000..d92a42ee
--- /dev/null
+++ b/src/lib/md5.c
@@ -0,0 +1,264 @@
1/*
2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
6 *
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
10 * with every copy.
11 *
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
16 */
17
18/* Based on OpenBSD modifications */
19
20#include "md5.h"
21#include "mhd_byteorder.h"
22
23#define PUT_64BIT_LE(cp, value) do { \
24 (cp)[7] = (uint8_t)((value) >> 56); \
25 (cp)[6] = (uint8_t)((value) >> 48); \
26 (cp)[5] = (uint8_t)((value) >> 40); \
27 (cp)[4] = (uint8_t)((value) >> 32); \
28 (cp)[3] = (uint8_t)((value) >> 24); \
29 (cp)[2] = (uint8_t)((value) >> 16); \
30 (cp)[1] = (uint8_t)((value) >> 8); \
31 (cp)[0] = (uint8_t)((value)); } while (0)
32
33#define PUT_32BIT_LE(cp, value) do { \
34 (cp)[3] = (uint8_t)((value) >> 24); \
35 (cp)[2] = (uint8_t)((value) >> 16); \
36 (cp)[1] = (uint8_t)((value) >> 8); \
37 (cp)[0] = (uint8_t)((value)); } while (0)
38
39static uint8_t PADDING[MD5_BLOCK_SIZE] = {
40 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
41 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
42 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
43};
44
45/*
46 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
47 * initialization constants.
48 */
49void
50MD5Init(struct MD5Context *ctx)
51{
52 if (!ctx)
53 return;
54
55 ctx->count = 0;
56 ctx->state[0] = 0x67452301;
57 ctx->state[1] = 0xefcdab89;
58 ctx->state[2] = 0x98badcfe;
59 ctx->state[3] = 0x10325476;
60}
61
62/*
63 * Update context to reflect the concatenation of another buffer full
64 * of bytes.
65 */
66void
67MD5Update(struct MD5Context *ctx, const unsigned char *input, size_t len)
68{
69 size_t have, need;
70
71 if (!ctx || !input)
72 return;
73
74 /* Check how many bytes we already have and how many more we need. */
75 have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_SIZE - 1));
76 need = MD5_BLOCK_SIZE - have;
77
78 /* Update bitcount */
79 ctx->count += (uint64_t)len << 3;
80
81 if (len >= need)
82 {
83 if (have != 0)
84 {
85 memcpy(ctx->buffer + have, input, need);
86 MD5Transform(ctx->state, ctx->buffer);
87 input += need;
88 len -= need;
89 have = 0;
90 }
91
92 /* Process data in MD5_BLOCK_SIZE-byte chunks. */
93 while (len >= MD5_BLOCK_SIZE)
94 {
95 MD5Transform(ctx->state, input);
96 input += MD5_BLOCK_SIZE;
97 len -= MD5_BLOCK_SIZE;
98 }
99 }
100
101 /* Handle any remaining bytes of data. */
102 if (len != 0)
103 memcpy(ctx->buffer + have, input, len);
104}
105
106/*
107 * Pad pad to 64-byte boundary with the bit pattern
108 * 1 0* (64-bit count of bits processed, MSB-first)
109 */
110void
111MD5Pad(struct MD5Context *ctx)
112{
113 uint8_t count[8];
114 size_t padlen;
115
116 if (!ctx)
117 return;
118
119 /* Convert count to 8 bytes in little endian order. */
120 PUT_64BIT_LE(count, ctx->count);
121
122 /* Pad out to 56 mod 64. */
123 padlen = MD5_BLOCK_SIZE -
124 ((ctx->count >> 3) & (MD5_BLOCK_SIZE - 1));
125 if (padlen < 1 + 8)
126 padlen += MD5_BLOCK_SIZE;
127 MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
128 MD5Update(ctx, count, 8);
129}
130
131/*
132 * Final wrapup--call MD5Pad, fill in digest and zero out ctx.
133 */
134void
135MD5Final(unsigned char digest[MD5_DIGEST_SIZE], struct MD5Context *ctx)
136{
137 int i;
138
139 if (!ctx || !digest)
140 return;
141
142 MD5Pad(ctx);
143 for (i = 0; i < 4; i++)
144 PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
145
146 memset(ctx, 0, sizeof(*ctx));
147}
148
149
150/* The four core functions - F1 is optimized somewhat */
151
152/* #define F1(x, y, z) (x & y | ~x & z) */
153#define F1(x, y, z) (z ^ (x & (y ^ z)))
154#define F2(x, y, z) F1(z, x, y)
155#define F3(x, y, z) (x ^ y ^ z)
156#define F4(x, y, z) (y ^ (x | ~z))
157
158/* This is the central step in the MD5 algorithm. */
159#define MD5STEP(f, w, x, y, z, data, s) \
160 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
161
162/*
163 * The core of the MD5 algorithm, this alters an existing MD5 hash to
164 * reflect the addition of 16 longwords of new data. MD5Update blocks
165 * the data and converts bytes into longwords for this routine.
166 */
167void
168MD5Transform(uint32_t state[4], const uint8_t block[MD5_BLOCK_SIZE])
169{
170 uint32_t a, b, c, d, in[MD5_BLOCK_SIZE / 4];
171
172#if _MHD_BYTE_ORDER == _MHD_LITTLE_ENDIAN
173 memcpy(in, block, sizeof(in));
174#else
175 for (a = 0; a < MD5_BLOCK_SIZE / 4; a++)
176 {
177 in[a] = (uint32_t)(
178 (uint32_t)(block[a * 4 + 0]) |
179 (uint32_t)(block[a * 4 + 1]) << 8 |
180 (uint32_t)(block[a * 4 + 2]) << 16 |
181 (uint32_t)(block[a * 4 + 3]) << 24);
182 }
183#endif
184
185 a = state[0];
186 b = state[1];
187 c = state[2];
188 d = state[3];
189
190 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
191 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
192 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
193 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
194 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
195 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
196 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
197 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
198 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
199 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
200 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
201 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
202 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
203 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
204 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
205 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
206
207 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
208 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
209 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
210 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
211 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
212 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
213 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
214 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
215 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
216 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
217 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
218 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
219 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
220 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
221 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
222 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
223
224 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
225 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
226 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
227 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
228 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
229 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
230 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
231 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
232 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
233 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
234 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
235 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
236 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
237 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
238 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
239 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
240
241 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
242 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
243 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
244 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
245 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
246 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
247 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
248 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
249 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
250 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
251 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
252 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
253 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
254 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
255 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
256 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
257
258 state[0] += a;
259 state[1] += b;
260 state[2] += c;
261 state[3] += d;
262}
263
264/* end of md5.c */