exchange

Base system with REST service to issue digital coins, run by the payment service provider
Log | Files | Refs | Submodules | README | LICENSE

commit e2f988b995290fdfa2552a396766c32dc7993fa9
parent 45fe8a52e6d3790d6fdc9cf25dcb8970e68a1433
Author: Christian Grothoff <christian@grothoff.org>
Date:   Thu,  1 Oct 2015 15:22:19 +0200

use U instead of B^{-1} as it is not a strict inverse

Diffstat:
Mdoc/paper/taler.tex | 4++--
1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex @@ -697,7 +697,7 @@ the mint: and then sends $S_{K}(B_b(C_p))$ to the customer. If the guards for the transaction fail, the mint sends a descriptive error back to the customer, with proof that it operated correctly (i.e. by showing the transaction history for the reserve). - \item The customer computes (and verifies) the unblinded signature $S_K(C_p) = B^{-1}_b(S_K(B_b(C_p)))$. + \item The customer computes (and verifies) the unblinded signature $S_K(C_p) = U_b(S_K(B_b(C_p)))$. The customer writes $\langle S_K(C_p), c_s \rangle$ to disk (effectively adding the coin to the local wallet) for future use. \end{enumerate} @@ -1359,7 +1359,7 @@ indicate the application of a function $f$ to one or more arguments. \item[$K$]{Public-priate (RSA) coin signing key pair $K := (K_s, K_p)$} \item[$b$]{RSA blinding factor for RSA-style blind signatures} \item[$B_b()$]{RSA blinding over the argument using blinding factor $b$} - \item[$B^{-1}_b()$]{RSA unblinding of the argument using blinding factor $b$, inverse of $B_b()$} + \item[$U_b()$]{RSA unblinding of the argument using blinding factor $b$} \item[$S_K()$]{Chaum-style RSA signature, commutes with blinding operation $B_b()$} \item[$w_s$]{Private key from customer for authentication} \item[$W_p$]{Public key corresponding to $w_s$}